led vs lcd display difference in stock
LED-vs-LCD? Lately, choosing a TV has become like walking into a candy store. There are so many TV technology options to choose from, and each of them seems just as good.
Then there are the technical terms to deal with, such as LED TV, LCD TV, QLED TV, UHD TV, OLED TV, and more. You might feel like you need to be a tech pro just to watch your favourite TV show in the evening or enjoy a game with your friend.
Here at Dynamo LED, we offer both LED and LCD TVs, and we appreciate the benefits of both TVs. Be sure to check out our buying an LED Display guide for more info.
First, an important thing to understand is that the LED (Light Emitting Diode) monitor is an improvised version of the LCD (Liquid Crystal Display). This is why all LED monitor is LCD in nature, but not all LCDs are LED monitors.
LCD technology revolutionized monitors by using cold cathode fluorescent lamps for backlighting to create the picture displayed on the screen. A cold cathode fluorescent lamp (CCFL) is a tiny fluorescent bulb. In the context of this article, LCDs refer to this traditional type of CCFL LCD TVs.
LED monitors took the old technology a step further by replacing the fluorescent bulbs with LED backlight technology. And OLED (organic light-emitting diode) technology improves it even further by eliminating the need for backlighting.
The quality of direct-view LED screens is measured by pixel pitch. The pixel pitch is the distance between two adjacent LEDs on the display. The smaller the pixel pitch, the better the quality of the image.
Since LEDs replace fluorescent bulbs with light-emitting diodes, LED TVs are more energy-efficient than LCDs. A 32-inch LED TV screen consumes 10 watts less power than the same size LCD screen. The difference in power consumption increases as the size of the display increases.
Light-emitting diodes are considerably smaller than fluorescent lamps used in LCD monitors. Fluorescent lamps have a considerable thickness, but the thickness of diodes is next to none. Moreover, countless diodes are assembled in the same plane, so the thickness of the array isn’t increased no matter how many diodes are present.
Edge-lit LEDs have a slight drawback in viewing angle compared to LCDs, because of the position of the light source. However, direct-view LEDs offer a better angle for viewing than LCDs as the light source is evenly spread on the screen.
Since LED displays use full-array LED backlighting rather than one big backlight, LED TVs offer significantly better contrast than LCDs. LCD backlighting technology only shows white and black, but LED backlighting can emit the entire RGB spectrum, thereby providing a deeper RGB contrast.
If you wonder which display will last longer, this debate is also won by LED displays. LED televisions have a longer lifespan of 100,000 hours on average, compared to 50,000 hours provided by LCD televisions.
An LED display provides the option to dim the backlight, along with other eye comfort features. Not only that, it provides a wider viewing angle without harming image quality. Therefore, an LED display is far better for your eyes than an LCD.
In an LED display, a lot of smaller diodes are used and if a diode is damaged, it can be replaced. In an LCD, you will need to replace the entire bulb in case of damage. Therefore, an LED display is easier and cheaper to maintain than an LCD.
Since LEDs are a better and newer technology, the price of an LED display is higher than an LCD. However, this is only when we are considering the purchase cost.
The picture quality of an LED display is far better than an LCD. Due to modular light-emitting diodes, an LED screen produces better control over the contrast, rendering a clear picture. Also, LED provides RGB contrast, which can show truer blacks and truer whites.
Not to forget, they provide a shorter response time as well. Both of these factors result inLED displays having a better picture quality compared to LCD displays.
Since LED displays are considerably thinner than LCDs, they weigh considerably less. On average, an LED screen weighs about half of an LCD screen of the same size.
As you might have noticed by now, LED wins the battle with LCD without any doubt. This is because LED displays have an advantage in all the factors that matter when considering a purchase, except price.
Even when you consider the price, you will find that while LED technology is costlier, it provides better value for money in the long run. This is because of the longer lifespan and easier maintenance of LED screens.
They are more attractive too. With the increasing shortage of space in new residential complexes, what better solution than an ultra-thin LED display giving a cinematic experience in the comfort of your home.
LED screens are the first choice among the public today, across generations. All are opting to switch to LED from LCD to make their lives more enjoyable and better.
There are tons of screens available in the market today. However, LED screens and LCD screens are by far the most popular. But what is the difference between LCD vs. LED screens?
LED screens feature light-emitting diodes lights installed in the screens. The screens can be volatile or static, with some of them only responding to touch. Other LED screens will display pictures even when turned off.
Some of the benefits of LED monitors nclude enhanced picture quality and local dimming. Local dimming helps to dim down certain areas of your TV"s backlight. This helps to make the screen appear darker and better in displaying blacks.
Local dimming helps a lot in enhancing your screen"s contrast ratios. The higher the levels of the contrast ratios, the more enhanced difference between blacks and whites.
LED backlighting is an essential feature in offering realistic pictures. The features enhance the popularity of the LED screens (check out the Viewsonic TD2230 Review).
The main difference between LCD and LED displays is that the LCD screens come with a layer of liquid crystals. The liquid crystal layer is put between two plates. Images are made when light passes through parts of the liquid crystal.
The liquid crystal part either block or enhance an area which helps to create the image. Most LCD panel types have LED lights that help bring out the image.
Older LCD screens and use Cold Cathode Fluorescent Lamps (CCFLs) to light the screen. The CCFLs use electron discharge and fluorescence to light the screen.
LEDs like the one from our "Dell Computer Ultrasharp 24.0-Inch Screen LED Monitor Review" are taking over the market while LCD screens with CCFLs are fading away. LCD screens are used in watches, some notebook computers, and calculators.
OLED stands for organic light-emitting diodes, and it uses an organic compound to create outstanding high-contrast images - OLED screens are more environmentally friendly. They are also thinner than a standard LED screen as they don"t require a thick LED backlighting behind the screen to illuminate it.
On the other hand, you have QLED screens that are created and patented by Samsung. The QLED screens offer more crisp images as they create light with a shorter wavelength.
The Q in QLED stands for Quantum Dot (see Quantum Dot and IPS). The screens have an additional layer between the LCD screen and the backlight of the monitor. The layer allows light to pass through easily and produce better colors than an ordinary LED screen.
Slimmer design:LED screens to come in a slimmer design than their LCD counterparts. This gives them a sleek and elegant look, and it also takes less space.
Cheaper to run:If you are trying to cut down on energy cost, an LED screen will be a better option between the two as it is more energy-efficient. However, LED screens are more expensive than their LCD counterparts. As such, you can expect to pay more initially.
Better color:If you want to enjoy more realistic images, LED will be the better option. The screen offers you better color than other screens in the market. Additionally, it offers a better contrast, which is the range between the darkest blacks and brightest whites on the screen. The enhanced contrast ensures you end up with the most realistic images.
However, if you are working on a tight budget, you may consider an LCD screen. Besides the cost, LED performs better than the LCD screen in all the other aspects.
If you want to find out the type of screen you already have, you can check out the screen"s model number. The model number can tell you if the screen is an LED or LCD.
When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.
You"ll be happy with the picture regardless of what kind of display you buy. Still, LED TV have a few practical advantages that make them a better purchase than the older LCD TVs.
With an LED light, the pixels are either edge-lit or backlit. As such, the lights behind the screen are designed to light up all the pixels in your monitor at once.
LED monitors feature better dimming options without sacrificing picture clarity. They also come with features that reduce eye strain, making them the ideal option if you are spending long hours in front of the screen.
Alternatively, you can go for LCD screens that offer arefresh rate of 120Hz or more. The LCD screens also offer a wider variety of viewing angles, which can offer better comfort.
You can trust an LED monitor to offer you the best resolution for the most precise and crisp images. This enables you to enjoy clear and lifelike images.
When choosing between LED and LCD monitors, there are several factors to consider. Besides the backlighting technology, you should also consider the panel type - see also what types of monitors are there. Various panels have their benefits compared to others.
LED monitors tend to be more expensive than LCD screens, thanks to LED technology being newer and featuring pricier components. Additionally, there is a newer form of LED called the OLED, which stands for Organic Light-Emitting Diodes. These OLED displays are extremely expensive, especially at high resolutions. LED technology, on the other hand, is extremely cheap and readily available.
Are you lost on the best choice between LCD and LED monitors? If you spend a lot of time in front of your monitor, you should ensure you end up with the best quality screen. This will ensure that you get high-quality images and also minimize eye strain.
In the battle between LCD and LED displays, LED comes out as the better option. It offers more crisp and clear images, and it also comes with a sleek and elegant design. However, it can be a little expensive. If you are working on a budget, LCD monitors can make a perfect choice.
LED technology has improved drastically in recent years improving picture quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours. LCD is cheaper and generally more familiar. A LCD screen typically has a lifespan of about 50,000 hours.
Sort of. Older technologies like LCD technology and Plasma displays are becoming obsolete due to the intrinsic properties of LEDs like brightness, efficiency, maintainability, and sustainability.
LCD screens emit blue light and thus negatively affects not only vision but also overall health. Continual extended screen time mainly can impact your eyes in two major ways. When we look at a screen, our blink rate drops significantly, thus causing digital eye strain.
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.
Even though some say the picture quality of an LED TV is better, there is no straight answer for which has better picture quality since both TVs use the same kind of screen. For instance, a higher-end LCD TV can have a better quality than a low-end LED TV, but if you look at high-end models of either TV, the picture quality will be comparable.
RGB Dynamic LEDs show truer blacks and whites and thus get higher dynamic contrast ratio (which is desirable in a TV), at the cost of less detail in small bright objects on a dark background (such as star fields)
LED TVs use energy-efficient light emitting diodes (LED) for backlighting. These consume less power than cold cathode fluorescent lamps (CCFL) used in traditional LCD televisions. Power savings are typically 20-30%.
Edge-LEDs (the most common) are positioned around the rim of the screen and use a special diffusion panel to spread the light evenly behind the screen.
Flat Screen LCDs, about an inch or two thick are more expensive, but also more popular because of their sleek look and the flexible options of standing on a surface or mounting on a wall.
Front projection LCDs or projectors, which project an image onto the front of the screen. The TV itself is just a box installed anywhere in a room, which projects the image onto a flat screen hung on the wall as large as 300 inches.
Rear projection LCDs, where the image is sent from the rear of the TV to the screen in front. Rear projection LCDs are wide, heavy and only available in large sizes (60" and up).
Sometimes the distance between good and great seems like hardly any distance at all — such as liquid crystal displays (LCDs) versus light-emitting diode (LED) displays. Both are suitable for retail window signage, campus wayfinding or large video walls. But LCD and LED have significant differences, and their specific benefits are worth understanding so you can choose the best displays for your business needs.
LCD is the broader category; LED is a subset. In other words, all LED displays are LCDs, but not all LCDs are LED. LCDs are made up of hundreds of thousands — even millions — of individual pixels built from liquid crystals. Each pixel is capable of displaying a color when it receives an electrical charge. Like a mosaic, the displayed image is built from tiny elements that combine to form the overall picture.
But the liquid crystals don’t produce any light of their own, so in order for the image to be illuminated, the liquid crystals need to be backlit. LCDs are illuminated by cold cathode fluorescent lamps (CCFLs), evenly positioned behind the pixels so that, at least in theory, every part of the screen is evenly lit and at consistent brightness.
Up to a point, LED displays are much the same. An LED screen also uses liquid crystals to generate color — or pure black (no color), by not charging a specific pixel. So LED displays have the same need for backlighting. But rather than CCFL, tiny individual lights (light-emitting diodes) illuminate the liquid crystals.
The individual LEDs can be arranged one of two ways: full-array or edge-lit. For edge lighting, the LEDs are arranged around the edges of the back of the screen. Full-array, on the other hand, calls for many LEDs to be lined up evenly across the back of the screen, where they can be arranged into zones (usually called “dimming zones” or “local dimming”).
Is LED just plain better than LCD? Well, for a while, LCD screens represented the cutting edge of digital signage. But now, about the only meaningful advantage of LCD over LED is price point. As LCD is becoming outdated, it tends to be less of an upfront investment. In every other respect, though, LED displays have the advantage.
No matter the arrangement of the backlighting, LED has a greater nit value than LCD, which means it’s brighter (“nit” comes from the Latin “nitere,” meaning “to shine”). The average nit value for LCDs is between 500 and 700 nits, while LEDs are typically between 1,200 and 2,400 nits. With greater brightness comes greater contrast, and all-day visibility on outdoor displays.
Despite the energy output, higher brightness doesn’t necessarily mean a shorter lifespan. In fact, LED displays have an average lifespan of 10 years — double the average five-year lifespan of LCDs. Factoring longevity into the cost of your signage, LED’s longer lifespan can make it cheaper than LCD in the long run.
Even with edge lighting, LED produces more vividly lifelike images than CCFL-backlit LCDs — and with sleeker hardware, thanks to their minimalist design. And while LCD bezels have drastically reduced over time, they’re still greater than zero. LED has no bezels at all.
Full-array backlighting requires a little more depth to the screen, but with discrete dimming zones, LEDs can be illuminated far more precisely — which, in turn, means more accurate and engaging visuals.
LED isn’t the first technology to realize miniaturization is the way forward. Even as screens get bigger, the next big step is made of smaller parts: microLEDs.
Up to 40 times smaller than regular LEDs, microLEDs allow backlighting to be even more precisely targeted, with many times more diodes. This, in turn, delivers a more accurate picture, with greater contrast and highly focused areas of brightness. Samsung’s The Wall is a spectacular example of what microLED is capable of.
Whether you need your digital signage to entertain, inform or simply impress, understanding the differences between LCD and LED will allow you to make a better-informed decision.
With best-in-class picture quality and exceptional durability,Samsung LED displayscan help your business deliver content that engages, informs and entertains.Samsung’s trade-in program makes it easy for businesses to upgrade their video wall with LED technology. Once you’ve chosen your displays, learn how you can configure and tailor their real-time messaging using an integrated CMSin this free guide.
From panel technology to refresh rates, there are a lot of things to consider when looking for a new gaming monitor. To aid you on your journey for the perfect setup, we"re breaking down two of the most common display technology terms: LED and LCD. Here"s what you need to know about LED and LCD screens, what the terms stand for, and how they factor into modern gaming monitors.
LCD stands for liquid-crystal display, which refers to how the monitor works. Behind the screen, liquid crystals are sandwiched between two layers of glass and used to change the colors of pixels to create the images that you see. The whole process is a lot more complicated, but that"s the gist of how LCDs function.
In the past, some LCDs were backlit by CCFLs (cold-cathode fluorescent lamps). LCDs with fluorescent backlighting have been around longer, so if you can find one, they will be cheaper than LED monitors. However, if you"re a gamer looking for decent refresh rates and response times, it"s going to be hard to find a monitor with fluorescent backlighting. They"ve almost completely been replaced by LCD monitors with LED backlights.
LEDs work in a similar way; in fact, you can consider LEDs a subcategory of LCDs. The only difference between some LCDs and LEDs is the type of backlighting: LEDs use LED (light-emitting diodes) backlighting.
In contrast to fluorescent backlighting, LED backlighting generally provides brighter colors and sharper contrast. The monitors are also thinner in size and, in the long run, more energy efficient than LCDs with fluorescent backlights. LED backlighting is the newer technology and the current standard for monitors with high refresh rates and fast response times. When you see LCD in product descriptions, they"re almost always LCD monitors that use LED (as opposed to fluorescent) backlighting. For example, BenQ"s EL2870U monitor is listed as an LCD, but it"s an LCD with LED backlighting.
There are different types of LED backlighting: edge-lit and array-lit. In edge-lit monitors, the lights are placed around the edges of the monitor. Light guides are then used to diffuse the light evenly across the screen. In array-lit monitors, lights are placed behind the screen in a pattern.
For example, some edge-lit and array-lit LEDs have local dimming capabilities, a feature that can selectively dim certain zones of LED lights. Local dimming improves contrast ratio and provides deeper blacks in dimly lit scenes. These monitors, however, tend to be pricey. Some well-reviewed options include the Samsung Odyssey G7 and Philips Momentum 436M6VBPAB, both of which are edge-lit monitors with partial local dimming capabilities. The Acer Predator X35 is an (expensive) full-array monitor with full local dimming (FALD) capabilities.
You won"t have much of a choice between LED or LCD. Most monitors, regardless of whether they"re marked as LED or LCD, will use LED backlights. LED backlights became the new standard because they allow manufacturers to make thinner, more energy-efficient monitors with better graphics. It"s not worth going out of your way to find an LCD with fluorescent backlighting, unless you really, really hate LED lights.
Which backlights a monitor has isn"t as important as other factors such as panel technology, refresh rates and response time, G-Sync vs. FreeSync, and HDR --those are the characteristics you should pay more attention to when choosing a monitor. If you"re not looking to break the bank, a couple of great LED monitors at excellent price points we can recommend are the Asus VP249QGR, a nice budget 1080p monitor, and Acer XF250Q Cbmiiprx 24.5, a well-reviewed budget 240Hz monitor.
Check out our guide to the best cheap gaming monitors for more budget options; plus, see our picks for the best monitors for PS5 and Xbox Series X, best 144Hz monitors, and the best 4K gaming monitors for more LED displays worth picking up.
Light Emitting Diode (LED): LED is a type of LCD that actually accompanies the advancement of technology. This replaces the fluorescent tube with backlight technology, which produces a clearer picture than the LCD. LED have wider viewing angle than the LCD. It have better black level and contrast in comparison to LCD LCD display. LED delivers better color accuracy in comparison to the LCD. Advantage:LED have very long life.
Liquid Crystal Display (LCD): An LCD is a passive device, which means that it does not deliver any light to display characters, animations, videos, etc. LCD uses fluorescent tubes to lighten the picture, but can’t provide a clearer picture as LED delivers. It delivers good color accuracy, but we can notice the difference if we compare LED and LCD color accuracy. In LCD, the wide-angle decreases with 30 degrees from the center in the image then the contrast ratio.
6.LED delivers better color accuracy in comparison to the LCD.While it also delivers good color accuracy, we can notice the difference if we compare these two.
7.LED has a wider viewing angle than the LCD.While in LCD, the wide-angle decreases with 30 degrees from the center in the image then the contrast ratio.
LCD monitors have been around longer, so they’re more affordable. However, LED monitors are more energy-efficient, lighter and support 4K resolutions.
LCDs feature a layer of liquid crystal embedded between two panels. Images are created when fluorescent lamps behind the screen shine through the crystals and illuminate them.
There are various types of backlights used in LCD monitors, but the most common is cold cathode fluorescent lamps. Essentially, the lights used for CCFL displays are akin to those you see in offices, classrooms and stores, except much smaller.
The first few generations of LCD monitors and televisions used this type of backlight and while you can still find LCD monitors with this backlight, it"s becoming less and less common.
Since it’s an older technology, LCD monitors are generally much cheaper than LED monitors. However, despite being less advanced, they still provide a high-quality image. They’re also better suited for brighter environments like living rooms and kitchens since they provide an overall brighter image.
LCD monitors are also less prone to suffer from burn-in image issues. Burn-in refers to an image becoming “stuck” on the screen. This can happen if a static image is left displaying on the screen for too long. Image retention is more likely to happen if you’re a gamer since some video games feature heads-up display elements that rarely move out of place.
Because of the backlight, LCD monitors are bulkier and thicker than LED monitors. They’re also much less energy-efficient due to the energy required to power the fluorescent lamp backlight.
Finally, you’ll get a crisp 1080p high-definition resolution using an LCD monitor, but if you plan to stream 4K content, it’s best to steer clear from them as most LCDs don’t support 4K.
An LED monitor is also an LCD monitor since it also uses a liquid-crystal screen. However, this specific type of display where the backlight is composed of light-emitting diodes instead of fluorescent lamps. You can imagine light-emitting diodes as a series of tiny light bulbs.
Most LED displays feature edge lighting, which means that the LEDs are positioned around the edge of the screen. Some LED displays have a wide-array setup where the LEDs are placed all over the screen.
The overall image quality of an LED monitor is superior as well. Producing true black contrasts is an issue with LCDs due to the type of backlight, but LED screens reduce this problem significantly.
LED displays also have a fast refresh rate and low lag, which makes them ideal for gamers. Also, unlike with older LCD monitors, you’ll be able to stream 4K content.
Since LED monitors are the newer technology, they’re considerably more expensive than LCD monitors. There’s also a higher risk of image retention with LED displays.
This screen is relatively basic but it’s the best LED monitor you’ll get at its price point. It’s sleek, provides a crisp image and comes with both HDMI and VGA ports.
Although the initial price point of an LED monitor is higher, they’re more energy-efficient and have a longer lifespan. You’ll end up saving money in the long run, which makes it a much better investment than an LCD screen.
For companies interested in jumping into the world of video walls, or even upgrading your existing technology, the biggest question you’ll have to deal with is whether LED or LCD is right for your video wall.
Figuring out which type of display is right for you doesn’t need to be arduous. We’ve rounded up a number of considerations to help you make the most informed decision.
Technically, LED displays are just LCD displays. Both use Liquid Crystal Display (LCD) technology and a series of lamps placed at the back of the screen to produce the images we see on our screens.
The main difference between the two technologies is that for LCD displays, the lamps at the back of the screen are fluorescent, whereas LED displays use Light Emitting Diodes.
There are two types of LED backlighting technologies; edge lighting and full array lighting. In edge lighting – as the name suggests – the LEDs are placed along the edge of the screen whereas in full-array lighting, an array of LEDs spans the back of the LED screen. In both cases, local dimming may or may not be used. The majority of LED displays are edge-lit without local dimming.
Image quality is one of the most contentious issues when it comes to the LED vs. LCD video wall debate. LED displays generally have better picture quality compared to their LCD counterparts. From black levels to contrast and even colour accuracy, LED displays usually come out on top. Among LED screens, full-array back-lit displays with local dimming provide the best picture quality. There is usually no difference in terms of viewing angle. This instead depends on the quality of glass panel used.
The question of viewing distance may crop up in LED vs. LCD discussions. In general there is not a huge distance between the two technologies. If viewers will be watching from up close the screen needs a high pixel density regardless of whether your video wall uses LED or LCD technology.
It’s generally accepted that LED displays have the lowest energy consumption levels of all displays. LCD displays commonly consume more energy than plasma and CRT displays, neither of which are in production.
In their research, CNET found that “No question, LED LCDs have the lowest energy consumption” in a comparative test between plasma, LCD and LED displays.
LED displays also win in terms of thickness, or lack thereof The reason, once again, being the advanced lighting technology. To start with, light emitting diodes are much smaller compared to the fluorescent lamps used in LCD displays.
Secondly, when the LEDs are placed at the edges as opposed to the back end of the display, the resulting screen will obviously be thinner. This explains why edge-lit LED screens are the slimmest displays available.
If your main concern is budget, then LCD is the obvious choice. As this article points out, you can usually buy a much bigger LCD display for vastly less money than an LED. LCD video walls are generally much cheaper compared to similar sized LED displays.
LCD software allows you to select the right amount of output for a video wall. You can plug a media player into a video wall processor or a daisy chain of displays. With LED displays, however, all cabinets have to plug directly from the video encoder or player. Either that or all cabinets have to be daisy chained together.
Having considered all of these factors, you should now be excellently equipped to pick a display for your video wall. Be sure to take good care of your screen for maximum longevity.
LED and LCD monitors share a lot of the same scientific qualities. For instance, they each consist of liquid crystals that are used to emit light through a screen and present specially designed images to the human eye. But the way in which these different technologies execute this objective is where they differ from one another. Depending on their main applications, industrial computer monitors can feature either LEDs or LCDs. Keep reading to learn the differences between the two, so you can determine which one is suitable for your specific commercial or industrial applications.
The relationship between LED and LCD monitors is a little bit complex. All LEDs are technically LCDs. LCDs aren’t the same as LEDs. However, both have similar technical properties even though they’re not entirely the same thing and can each be used for various applications.
Both LED and LCD monitors utilize liquid crystals to present images on a screen with the main difference being the type of backlighting that they use. LCD monitors feature fluorescent backlighting, whereas LED monitors use light emitting diodes. The latter has been proven to significantly reduce symptoms of eyestrain by providing a much wider viewing angle and more adjustability. This improves user comfort for long periods of time without causing image distortion.
By far, LED monitors are a lot more suitable for gaming. Just avoid LED screens with edge lighting, as these are very monolithic and don’t allow for any adjustability whatsoever. You have to be sitting directly in front of the screen the entire time for optimal visibility, which can put a lot of strain on your neck shoulders, back, and eyes. Opt for a full-scale LED monitor that’s customizable and adjustable according to your sitting position, height, and optimal viewing angles instead.
OLED, which stands for organic light-emitting diode, plays up the energy efficiency aspect of regular LEDs by allowing individual pixels to be shut off at any given time. OLEDs are also more space efficient than their LED predecessors as they can be made in a much thinner design and the pixels only use power when they’re in use.
QLED, which stands for quantum light-emitting diode, consists of quantum dots. These miniscule phosphor particles become illuminated when a backlight is shone directly on them, which enhances the brightness capabilities of a regular LED.
LCD and LED industrial and commercial monitors consist of liquid crystals and some form of backlighting. Fluorescent backlighting found in industrial LCD monitors consume a lot of energy and place a great deal of strain on the eyes.
Commercial LED displays, on the other hand, softer light-emitting diodes that reduce energy consumption even when they’re turned on for long periods of time and reduce the rate of eyestrain without compromising the video and image quality.
Nauticomp Inc.is a world-renowned designer and distributor of high-efficiency, low energy consumption, and durable LED and LCD displays that are capable of withstanding all kinds of weather conditions and applications. Contact us today to learn more about our products.
For all the new technologies that have come our way in recent times, it’s worth taking a minute to consider an old battle going on between two display types. Two display types that can be found across monitors, TVs, mobile phones, cameras and pretty much any other device that has a screen.
In one corner is LED (light-emitting diode). It’s the most common type of display on the market, however, it might be unfamiliar because there’s slight labelling confusion with LCD (liquid crystal display).
For display purposes the two are the same, and if you see a TV or smartphone that states it has an ‘LED’ screen, it’s an LCD. The LED part just refers to the lighting source, not the display itself.
In a nutshell, LED LCD screens use a backlight to illuminate their pixels, while OLED’s pixels produce their own light. You might hear OLED’s pixels called ‘self-emissive’, while LCD tech is ‘transmissive’.
The light of an OLED display can be controlled on a pixel-by-pixel basis. This sort of dexterity isn’t possible with an LED LCD – but there are drawbacks to this approach, which we’ll come to later.
In cheaper TVs and LCD-screen phones, LED LCD displays tend to use ‘edge lighting’, where LEDs sit to the side of the display, not behind it. The light from these LEDs is fired through a matrix that feeds it through the red, green and blue pixels and into our eyes.
LED LCD screens can go brighter than OLED. That’s a big deal in the TV world, but even more so for smartphones, which are often used outdoors and in bright sunlight.
Brightness is generally measured as ‘nits’ – roughly the light of a candle per square metre. Brightness is important when viewing content in ambient light or sunlight, but also for high dynamic range video. This applies more to TVs, but phones boast credible video performance, and so it matters in that market too. The higher the level of brightness, the greater the visual impact.
Take an LCD screen into a darkened room and you may notice that parts of a purely black image aren’t black, because you can still see the backlighting (or edge lighting) showing through.
Being able to see unwanted backlighting affects a display’s contrast, which is the difference between its brightest highlights and its darkest shadows.
You’ll often see a contrast ratio quoted in a product’s specification, particularly when it comes to TVs and monitors. This tells you how much brighter a display’s whites are compared to its blacks. A decent LCD screen might have a contrast ratio of 1,000:1, which means the whites are a thousand times brighter than the blacks.
Contrast on an OLED display is far higher. When an OLED screen goes black, its pixels produce no light whatsoever. That means an infinite contrast ratio, although how great it looks will depend on how bright the screen can go. In general, OLED screens are best suited for use in darker rooms, and this is certainly the case where TVs are concerned.
OLED panels enjoy excellent viewing angles, primarily because the technology is so thin, and the pixels are so close to the surface. You can walk around an OLED TV or spread out in different spots in your living room, and you won’t lose out on contrast. For phones, viewing angles are extra important because you don’t tend to hold your hand perfectly parallel to your face.
Viewing angles are generally worse in LCDs, but this varies hugely depending on the display technology used. And there are lots of different kinds of LCD panel.
Perhaps the most basic is twisted nematic (TN). This is the type used in budget computer monitors, cheaper laptops, and very low-cost phones, and it offers poor angled viewing. If you’ve ever noticed that your computer screen looks all shadowy from a certain angle, it’s more than likely it uses a twisted nematic panel.
Thankfully, a lot of LCD devices use IPS panels these days. This stands for ‘in-plane switching’ and it generally provides better colour performance and dramatically improved viewing angles.
IPS is used in most smartphones and tablets, plenty of computer monitors and lots of TVs. It’s important to note that IPS and LED LCD aren’t mutually exclusive; it’s just another bit of jargon to tack on. Beware of the marketing blurb and head straight to the spec sheet.
The latest LCD screens can produce fantastic natural-looking colours. However, as is the case with viewing angles, it depends on the specific technology used.
OLED’s colours have fewer issues with pop and vibrancy, but early OLED TVs and phones had problems reining in colours and keeping them realistic. These days, the situation is better, Panasonic’s flagship OLEDs are used in the grading of Hollywood films.
Where OLED struggles is in colour volume. That is, bright scenes may challenge an OLED panel’s ability to maintain levels of colour saturation. It’s a weakness that LCD-favouring manufacturers enjoy pointing out.
Both have been the subject of further advancements in recent years. For LCD there’s Quantum Dot and Mini LED. The former uses a quantum-dot screen with blue LEDs rather than white LEDs and ‘nanocrystals’ of various sizes to convert light into different colours by altering its wavelength. Several TV manufacturers have jumped onboard Quantum Dot technology, but the most popular has been Samsung’s QLED branded TVs.
Mini LED is another derivation of LED LCD panels, employing smaller-sized LEDs that can emit more light than standard versions, increasing brightness output of the TV. And as they are smaller, more can be fitted into a screen, leading to greater control over brightness and contrast. This type of TV is becoming more popular, though in the UK and Europe it’s still relatively expensive. You can read more about Mini LED and its advantages in our explainer.
OLED, meanwhile, hasn’t stood still either. LG is the biggest manufacturer of large-sized OLED panels and has produced panels branded as evo OLED that are brighter than older versions. It uses a different material for its blue OLED material layer within the panel (deuterium), which can last for longer and can have more electrical current passed through it, increasing the brightness of the screen, and elevating the colour volume (range of colours it can display).
Another development is the eagerly anticipated QD-OLED. This display technology merges Quantum Dot backlights with an OLED panel, increasing the brightness, colour accuracy and volume, while retaining OLED’s perfect blacks, infinite contrast and potentially even wider viewing angles, so viewers can spread out anywhere in a room and see pretty much the same image. Samsung and Sonyare the two companies launching QD-OLED TVs in 2022.
And for smartphones there’s been a move towards AMOLED (Active-Matrix Organic Light Emitting Diode) screens for Android screens, while Apple has moved towards OLED for its smartphones and tried Mini LED with its iPad Pro. Technologies are consistently evolving with Superand Dynamic AMOLED versions available, more performance is being eked out.
While LED LCD has been around for much longer and is cheaper to make, manufacturers are beginning to move away from it, at least in the sense of the ‘standard’ LCD LED displays, opting to explore the likes of Mini LED and Quantum Dot variations.
OLED has gained momentum and become cheaper, with prices dipping well below the £1000 price point. OLED is much better than LED LCD at handling darkness and lighting precision, and offers much wider viewing angles, which is great for when large groups of people are watching TV. Refresh rates and motion processing are also better with OLED though there is the spectre of image retention.
If you’re dealing with a limited budget, whether you’re buying a phone, a monitor, a laptop or a TV, you’ll almost certainly end up with an LCD-based screen. OLED, meanwhile, incurs more of a premium but is getting cheaper, appearing in handheld gaming devices, laptops, some of the best smartphones as well as TVs
Which is better? Even if you eliminate money from the equation, it really comes down to personal taste. Neither OLED nor LCD LED is perfect. Some extol OLED’s skill in handling darkness, and its lighting precision. Others prefer LCD’s ability to go brighter and maintain colours at bright levels.
How do you decide? Stop reading this and go to a shop to check it out for yourself. While a shop floor isn’t the best environment in which to evaluate ultimate picture quality, it will at least provide an opportunity for you to realise your priorities. Whether you choose to side with LCD or OLED, you can take comfort in the fact that both technologies have matured considerably, making this is a safe time to invest.
Chances are, the screen that you"re reading this article on is either an LED, OLED, or an LCD display. These are just three of the many display types out there in the wild. On the surface, they all seem the same. But deep down, they couldn"t be more different.
So, when it comes to OLED vs. LCD—or OLED vs. LED—what are the differences? Here"s a look at these three display technologies, what makes them different, and which one is the best.
LCD stands for "liquid crystal display". The early roots of LCD displays stretch back to 1888 when German scientist, Friedrich Reinitzer, discovered an odd substance. It was a liquid that had the molecular structure of a solid. It was later named "liquid crystal." After decades of study, someone eventually saw the potential for this strange substance to be used for displays.
The first LCD displays to be used on consumer devices were on digital clocks back in 1968. The technology developed over the following years, being put into numerous other devices.
LCD display panels are divided into layers. The backmost layer is a light source. This is a translucent sheet that disperses light from bulbs at the bottom of the display.
After the filter, the light gets its color by passing through the red, blue, and green filters of the sub-pixels. From there, the light exits the display and creates the image that the viewer sees.
OLED stands for "organic light emitting diode." During the 1970s, scientists were experimented with organic materials that can emit light. In 1987, scientists at Eastman Kodak developed an OLED display that consumed a low amount of energy. And in 2007, Sony unveiled the world"s first OLED television: the Sony XEL-1.
The light from an LED is emitted from an electrical current going through an organic compound. That organic compound is sandwiched between a positively charged anode and a negatively charged cathode. The cathode is rich in electrons, and the anode is rich in electron "holes". Electron holes are areas in an atom where there is no electron.
On the other side of the OLED, the electrons flow from the cathode. The electrons then flow to the emissive layer, where they meet the holes. Since the electrons are sent through a voltage, they are "excited", meaning that they have an excess of energy.
When they meet the electron holes, they have to lose that excess energy in order to relax to the ground state for that atom. They release that energy in the form of photos (light particles). From there, the light travels through the red, blue, and green sub-pixels, just like with an LCD display.
LED displays are virtually indistinguishable from LCD displays. The only difference is in how the two types of displays get their light. Instead of using a translucent sheet, LED displays use individually LEDs. There are three primary arrangements of LEDs in the displays.
Full array LED displays have the LEDs arranged evenly throughout the display. This is the preferred arrangement on higher-end TVs. There are a lot of LEDs behind the panel, which means that local dimming is possible.
The direct-lit arrangement can appear to be similar to full array, but there are some differences. With the direct-lit arrangement, the LEDs are also dispersed evenly throughout the panel, but there are far less of them. Because of this, direct-lit displays can not do local dimming. This arrangement is present on lower-end devices.
A display is usually judged by its ability to create vibrant colors. This is an area where OLEDs come out on top. Compared to OLED displays, LCD displays often appear washed out and not as saturated. This is why OLED displays are becoming more popular in the smartphone market.
OLED displays can also produce images with higher contrast than the other two technologies. Since all of the OLEDs on the panel can be turned on and off individually, darker areas of the display can go as dark as they need to.
Full array LED displays come in right behind OLED displays because, like in the case of OLED displays, the LEDs in an LED display can be controlled individually. Full array LED displays use a method called "local dimming", a technique of shutting off LEDs completely in areas that are darker.
LCD displays come in last place because in order for any pixels to be visible, the entire back panel has to be lit. This means that completely black areas are impossible to achieve.
In terms of price, LCD displays are typically cheaper. High definition LCD displays can run you no more than a few hundred dollars. Since LED displays offer better contrast over LCD, you can expect there to be an added price premium.
When it comes to power consumption, OLED scores a win. Since the OLEDs are powered individually, the display only gives power to the ones that need it. Pixels can be turn off completely when there are blacks in the picture.
Full array LED displays come in second place because of the local dimming functionality. Certain LEDs can be completely turned off when the scene calls for blacks. Even though they have this feature, more energy is consumed per LED because the light has to pass through all of the layers of the LCD before reaching the viewers" eyes.
LCDs are the least power efficient. Regardless of the presence of blacks in the scene, the entire panel needs to be lit. This means that the light source is shining at 100% the entire time.
Each display technology has its benefits and its drawbacks. LCD displays are for people who want to save more money, while LED displays are for people who would like to spend more for a bit more contrast in their picture. You"ll spend more on the TV, but it will have a less significant impact on your electricity bill.
OLED displays are for those who want the best of all worlds. They produce the best contrast with the most vivid colors. You will be paying the most for the actual device, but the more power efficient display technology will help even out some of that cost.
LCD stands for “liquid crystal display” and technically, both LED and LCD TVs are liquid crystal displays. The basic technology is the same in that both television types have two layers of polarized glass through which the liquid crystals both block and pass light. So really, LED TVs are a subset of LCD TVs.
LED, which stands for “light emitting diodes,” differs from general LCD TVs in that LCDs use fluorescent lights while LEDs use those light emitting diodes. Also, the placement of the lights on an LED TV can differ. The fluorescent lights in an LCD TV are always behind the screen. On an LED TV, the light emitting diodes can be placed either behind the screen or around its edges. The difference in lights and in lighting placement has generally meant that LED TVs can be thinner than LCDs, although this is starting to change. It has also meant that LED TVs run with greater energy efficiency and can provide a clearer, better picture than the general LCD TVs.
LED TVs provide a better picture for two basic reasons. First, LED TVs work with a color wheel or distinct RGB-colored lights (red, green, blue) to produce more realistic and sharper colors. Second, light emitting diodes can be dimmed. The dimming capability on the back lighting in an LED TV allows the picture to display with a truer black by darkening the lights and blocking more light from passing through the panel. This capability is not present on edge-lit LED TVs; however, edge-lit LED TVs can display a truer white than the fluorescent LED TVs.
Because all these LCD TVs are thin-screen, each has particular angle-viewing and anti-glare issues. The backlit TVs provide better, cleaner angle viewing than the edge-lit LED TV. However, the backlit LED TV will usually have better angle viewing than the standard LCD TV. Both LED and LCD TVs have good reputations for their playback and gaming quality.
While the main LED and LCD difference lies in the technology the TV uses to project visuals on screen, each of the two technologies responds to projections and video in a different way.
An LED TV, owing to the technology it uses, flaunts a thinner screen with sharper edges. On the other hand, the two-layer display technology adds bulk to an LCD TV.
Backlight is an important difference between LCD and LED TVs. An LED TV backlight comes in two ways: edge lighting and full array lighting. Unlike an LCD TV that uses CCFL for backlight, most LED TVs use ‘light guides’ to project pictures on the screen. For example: the latest LED Sony TV and LG TV use the edge lit with local dimming technology to present bright visuals.
When comparing LCD vs LED on the parameter of brightness, an LED TV stands out as a winner. This is because it appoints an individual dimming and backlighting system, which in comparison to LCD, makes your projections more defined, authentic, and closer to reality.
LED TVs have superior black levels and employ dynamic contrast mechanisms as compared to LCDs. Colour precision is also more defined in case of LED TV.
LCDs project clear pictures for up to 165 degrees, but projections tend to distort beyond this point. However, LED TVs are equipped to offer you better clarity at all viewing angles.
LED TVs are more energy-efficient as these models use light emitting diodes (LED) for backlighting. These TVs consume less power as compared to cold cathode fluorescent lamps (CCFL), which most LCD TVs use. This results in a power savings of up to 30%.
Owing to the technology on offer, the price of LED TVs is higher as compared to LCD TVs. For instance, to buy an LED TV that is HD Ready, you will have to spend a minimum of Rs. 10,000 and the price will go up with an increase in screen size and technology. Smart TVs, for instance, come with a higher price tag.
The best part about an LED TV is that it can perfectly fit your space, however limited or expansive it may be, courtesy its versatile size and thickness. You can buy LCDs ranging between 13 and 57 inches in size and LEDs of up to 90 inches, based on the available space.
The most common type of LCD TVs today is the flat screen; however, you can also get front projection LCDs that project an image onto a flat screen. When it comes to LEDs, the most common type is the Edge LED TV that spreads the light uniformly behind the screen. You can also find Dynamic RGB LEDs, which offer dimmer or brighter projections on certain areas, and Full-array LEDs that do not offer dimming or brightening of an individual area.
With this comparison, you must have realised that LED TVs are better than LCDs. However, when choosing a TV, understand your viewing requirement first, then choose what suits you the best. If playing games or watching films in high definition is your passion, then choose LED TVs over LCDs.
In the time to come, OLED technology is going to dominate the LED TV market. While some brands like Sony have already launched exceptional OLED TVs, more is yet to come. Unfortunately, LCD TVs will slowly vanish from the market owing to their cumbersome make and limited features.