tft display with sd card factory
I found the TFT screen and Uno on Banggood.com about a month ago and over the weekend I was messing with the pair and found the tftbmp draw code in the demo.. I extended it with the ability to read any bmp file on the SD card.. so all you do is put your bitmaps on the SD and plug it in.. Having to add/edit/recompile/reload the Uno everytime is BS... Here is my code:
A micro sd card module is preferred in cases you need to store large amounts of data and other information for your Arduino project. The EEPROM of the Arduino microcontroller has a limited storage capacity and is specific with the format and nature of data it can hold. This makes it not the best for storing data like text, CSV, audio, video or image files.
A 74LVC125A Level Shifter on the module converts the interface logic from 3.3V-5V to 3.3V. This enables us to use this device with both 3.3V and 5V microcontrollers like Arduino.
Before inserting the micro SD card into the module and hooking it up to the Arduino, make sure it is properly formatted and is using the FAT16 or FAT32 file system. Most new SD cards come when already pre-formatted with a FAT file system but it’s always good to do it yourself to be certain.
The SD card module uses the SPI communication protocol and is therefore connected to the Arduino hardware SPI pins. The SPI pins depend on the type of Arduino used but in this case we are using the UNO whose SPI pins are from pin 10 to 12.
The connections are done as shown below. Make sure you don’t change the order of connection for the SCK, MOSI and MISO pins because they are declared in that order within the SD.h library.
The CardInfo sketch will not write any data to the card but it tells you if the card is recognized and also displays some information about it. This information is shown in the serial monitor like shown below.
After running the CardInfo sketch, you can run other sketches like the ReadWrite sketch so that you can learn how to use the various functions for reading and writing data to the SD card.
After setting up the micro SD card module for use with Arduino, we can now be able to store data like images in the sd card and display them on a TFT LCD screen. The best images to display are bitmap images so make sure you convert your images to bitmap format before storing them into the SD card. You can use an online image convertor.
Another important aspect you should keep in mind when converting your images is the size of the images. This depends on the size of the screen you are using, for example am using a 128×128 pixels screen therefore my images should be that size. Also make sure the images don’t exceed 60kb so that the can easily be processed by the microcontroller to be displayed on the TFT screen.
Just tested the 2.2″ version. Easiest way to control it from an Arduino is by using the Adafruit ILI9340 library. Made a video of the example sketch that comes with the library: http://www.youtube.com/watch?v=bVzZ6PWFbGE
Thanks for the feedback, I have tested it on 5V, it seems no problem for testing, for the LED backlight it has to be 3V3, or 5V with 10K resistor, for the VCC, not sure which have to be used. It seems the factory provided info it not fully promising.
The 2.2″ version is perfect for displaying complex information due to the 320×240 pixel area. Power consumption is reasonable. Be aware of the 3.3V levels since 5 volts will destroy your display (sooner or later). Most ARM boards will come with 3.3V levels anyway and even Atmel ATmega will work on 3.3 volts (but with lower frequency)
nice unit. got the 2.2″ version for my signal generator project (based on the AD9850 module i got from here also). clean and clear, very happy with it.. got it working with a couple of different libraries, mainly Adafruit and UTFT.
2.2” – Nice colors, easy integration with Arduino Uno and Teensy++2.0 . Only 3 stars because of the limited angle of view and issues withh the edge most lines.
2.2” display – Nice colors, easy integration with Arduino Uno and Teensy++2.0 . Only 3 stars because of the limited angle of view and issues with the edge most lines.
This guide is about DWIN HMI Touch Screen TFT LCD Display. HMI Means Human-Machine Interface. DWIN is specialized in making HMI Touch screen displays that are compatible with all microcontrollers like Arduino, STM32, PIC, and 8051 families of Microcontrollers.
This is a Getting Started tutorial with 7-inch DWIN HMI TFT LCD Display. We will see the architecture, features, board design, components, and specifications. We will also learn about the TTL & RS232 interfaces. Using the DGUS software you can create UI and with SD Card you can load the firmware on display memory.
One of the method to load the firmware to the T5L DWIN LCD Display is by using the SD Card. An SD Card of up to 16GB can be used to download the firmware files. We can easily insert the Micro SD card into the SD Card slot on the backside.
But we need to format this SD card in a FAT32 file system. You can insert the SD Card into your computer using the SD Card Adapter and perform a quick format.
After copying the file, remove the SD Card from your computer and insert it into the SD Card slot of DWIN LCD Display. Then power the display using the USB Cable. The firmware downloading process will start automatically.
The next part of this tutorial includes creating UI and interfacing DWIN LCD Display with Arduino. For that you can follow the DWIN LCD Arduino Interfacing Guide.
I"ve combined the BLE Shield and the OLED (SSD1351) TFT display and have this working very nicely - taking data from the Bluefruit iPhone APP - then displaying different things on the screen.
I"m more a software guy than Hardware - and need to know if I can use the wiring I currently have ....or modify easily to do what works now PLUS read the card.
The component TFT supports a 2.8 inch TFT display with a resolution of 240*320 pixels.The display is not soldered on the board, but there is a 14 pin connector for a TFT display. The ILI9341 has been tested.
There are four sample projects for the Arduino IDE which could be downloaded: TFT-Box3D (download here), TFT-Graphic-Test (download here), TFT-HelloWorld (download here) and TFT-HowToUseFonts (download here). And there are two examples for the Arduino IDE for using the touch functionality which could be downloaded: TFT-TouchBtn (download here) and TFT-TouchDraw (download here).
There are two dip switches for the component: SW311 and SW314. If you want to use the TFT display all switches on SW311 have to be on on. If you additonally want to use the touchpad of the display all switch of SW314 have to be on. The following two tables shows the functions and the potential conflicts with other components
RFID, SW303-3, MISO; Gyro, SW310-3, SDA/SDI; OLED, SW309-2, SDA; mikroBus, SW405-2, MISO; Unit-Bus, SW200-2, CN212 - PIN 5; Grove I2C, SW203-1, S2C - SDA
There are four sample projects for the Arduino IDE which could be downloaded: TFT-Box3D (download here), TFT-Graphic-Test (download here), TFT-HelloWorld (download here) and TFT-HowToUseFonts (download here).
And there are two examples for the Arduino IDE for using the touch functionality which could be downloaded: TFT-TouchBtn (download here) and TFT-TouchDraw (download here).
This awesome little display breakout is a great way to add a small, colorful and bright display to any project. Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available!
This 2.2″ display has 320×240 color pixels and is a true TFT display. The TFT driver (ILI9340 or compatible) can display full 18-bit color (262,144 shades). The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. Adafruit also had a little extra space on the back so there is a microSD card holder for easily loading full-color bitmaps from a FAT16/FAT32 formatted microSD card.
The Adafruit 2.2″ TFT LCD with MicroSD Card also features an EYESPI connector for a simpler connection to the LCD. EYESPI is a single 18-pin FPC used as a quick way to connect displays.
ER-TFTM050-3 is 800x480 dots 5" color tft lcd module display with RA8875 controller board,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,and ARM .It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.
It supports 8080 6800 8-bit,16-bit parallel,3-wire,4-wire,I2C serial spi interface. Built-in MicroSD card slot. It"s optional for 4-wire resistive touch panel (IC RA8875 built-in touch controller),capacitive touch panel with controller,font chip, flash chip and microsd card. We offer two types connection,one is pin header and the another is ZIF connector with flat cable.Mounting on board by default. There is no capacitive touch panel connection on the board of ER-TFTM050-3,its capacitive touch panel needs to be connected with your external board.Now we design another new board with capacitive touch connection named_ER-TFTM050A2-3.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for5" TFT capacitive touch shield with libraries,examples,schematic diagram for Arduino Due,Mega 2560 and Uno. For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.
KJ Size 2.8 (inch) Type TFT Driver chip ILI9341 or UC8230 or HX8347,please choose the one you need Resolution 320*240 (Pixel) Module interface 8-bit parallel interface Effective display area 57.6x43.2 (mm) Module PCB Size 78.22x52.7(mm) Working temperature -20 ° C ~ 70 ° C Working voltage 5V Power consumption is about 90mA Product picture Our company Inventory&Factry Packing Contact us
TFT Displays provide rich colors, detailed images, and bright graphics with their full-color RGB mode. TFT displays are perfect for applications including industrial instruments, coffee machines, automation, GPS navigator, energy control, and medical devices.
Thank you for your purchase. We hope you are happy with your purchase. However, if you are not completely satisfied with your purchase for any reason, ELEGOO provides a straightforward warranty that is processed in the most hassle-free way possible. Please refer to the chart below for the warranty timelines of various products, as warranty periods differ according to models.
All returns for refund must be postmarked within fourteen (14) days of the date the item was delivered to the designated shipping address. All returned items must be in new and unused condition, with all parts & accessories included and all original tags and labels attached.
All returns for exchange must be postmarked within thirty (30) days of the date the item was delivered to the designated shipping address. All returned items must be in new and unused condition, returned with all parts & accessories included and all original tags and labels attached.
This ST7735S 1.8" TFT Display features a resolution of 128×160 and SPI (4-wire) communication. Integrated with an SD card slot, it allows to easily read full-color bitmaps from the SD card. The module provides users with two wiring methods: pin header wiring and GDI (General Display interface). You can directly use an FPC cable to connect the display to any controller with GDI interface like FireBeetle-M0. Plug and play, easy to wire. Besides, the display supports low refresh rate and offers good display effect and strong versatility. It can be used in applications like sensor monitoring and alarm, Arduino temperature monitor, fan controller, etc.
This product is a breakout module that features SPI communication mode and onboard GDI interface, which could reduce the complexity of wiring. It can easily display the read content from the SD card.
The BasicTest.ino code shows us the basic display functions of the screen: text display, number display, drawing lines, drawing rectangles and other demos.
This display module features high resolution, low power consumption, wide angle and easy wiring. It employs IPS display with a small size of 1.54 inches, offering 240×240 resolution. The module adopts SPI and GDI interface(work with maincontrollers with GDI port). This LCD display can be powered by 3.3V~5V, and the maximum is power consumption is 24Ma. This product can be used in many display applications: waveform monitor display, electronic gift box, electronic weather decorations, etc.
The product is a Breakout module. It adopts SPI communication and has onboard GDI interface, which reduces the complexity of wiring and can easily display the contents read from SD card.
This is an example of commonly-used icons. 1. We use GIMP2 to convert these icons into codes for better display. 2. We provide some icons for you, Click here to find more "Click here to find more").