lcd panel tn ips for sale
Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.
There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.
Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.
Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.
Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.
Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.
LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.
VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.
Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.
There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.
OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.
As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.
These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.
When most people go shopping for a gaming monitor, their primary concerns are resolution and refresh rate. Those are certainly important considerations, but if you’ve ever had to put up with dull colors, murky blacks or terrible viewing angles, you’ll understand that panel types are important too.
TN, or Twisted Nematic panels, are the oldest variety of LCD panels, but they’re still quite common even today. They’re cheap to produce, and they have very low input lag, which makes them appealing for gamers. They also support refresh rates of up to 240Hz, another plus for fast-paced environments.
The problem with TN panels is that they have very poor color reproduction. While modern TN panels are far better than earlier models, it’s still relatively rare to find a TN panel with close to full sRGB reproduction. Even if they do have good color reproduction when you’re looking at them straight on, their viewing angles are limited, and they look washed out when viewed from the sides.
If you’re on a budget, enjoy playing competitive shooters or strategy games where reaction times matter, a TN panel could be fine for you. But if you want something that doubles as a media player, the average TN monitor might disappoint.
Fortunately, our GFT27CXB monitor is far from “average.” We engineered our TN panel to do what most TN panels simply cannot: deliver stunningly accurate colors. And with its 99% sRGB gamut, colors are rich and vibrant. And it’s fully customizable, with space to store up to 3 unique user profiles. So you get amazing color. But you also get full HD resolution with lightning-fast speeds up to 240hz refresh rate and 1ms response times.
IPS, or In-Plane Switching, monitors are almost the exact opposite of TN panels. They offer much wider viewing angles than TN panels as well as better black reproduction. The trade-off is that they’re more expensive. They have a history of slower refresh rates, too, although that has been changing lately. Today’s IPS panels can reach max. refresh rates as high as 200-240Hz.
There are some IPS monitors with very good refresh rates and response times, but they’re on the pricier side. You can expect to pay more than $500 for an IPS monitor with a 1ms response time. If you’re looking for a more budget-friendly IPS monitor, then you’ll have to settle for response times of 4ms or slower. IPS panels are also prone to backlight issues. Color reproduction is better than on TN panels, even at extreme angles, but the backlight can sometimes be seen.
Our REAPER series monitor—starting with the RFI25CBA—has been designed to overcome this particular issue. It’s been engineered to reduce the amount of backlight bleed-through on its IPS panel. The monitor also features an MRPT Mode to produce extremely clear moving pictures with excellent color while significantly reducing backlight issues.
VA, or Vertical Alignment, panels are somewhere in between TN and IPS, offering the best of both worlds. This type of panel is common in TVs but is relatively uncommon for gaming monitors. TN panels offer very good contrast ratios, so you can expect vibrant colors and good color reproduction. They also offer good viewing angles, and while brightness may vary depending on the angle you’re looking at the screen from, they’re not susceptible to the backlight issues of IPS panels.
The downside of VA panels is that they have slower response times. As with IPS panels, newer models do have high refresh rates, but the slow response time means you may see ghosting or motion blur in fast-paced, competitive games. Fortunately, all VIOTEK monitors come with AdaptiveSync, which works with AMD® FreeSync® and NVIDIA® G-Sync™ technologies. AdaptiveSync eliminates image distortion (e.g., tearing, stuttering, ghosting and judder) and other glitches that can happen if the monitor’s refresh rate doesn’t match the frame rate of the computer’s GPU. The result is smoother action with clearer images.
There are benefits and downsides to each panel type, and there’s no one correct answer to the question of “which is best.” It depends on your budget, the type of games you enjoy playing, whether you prize response times over other features, and what else you do with the monitor.
If you’re a competitive gamer who wants the absolute best response time on a budget, TN panels will get the job done, but they may disappoint when you’re playing a heavily modded game of Skyrim and want to stop and enjoy the scenery. IPS panels can deliver a similar experience if you’re willing to spend a lot of money. But if you’re like most of us, you’d rather put that extra cash towards a slightly better GPU.
Looking for something with a little more power? The GNV32CBO or GFV24CB are two 1080p monitors. These offer super-fast 165Hz refresh rates for pro-motion with reduced input lag. They’re also VA panels, delivering great color reproduction, AMD FreeSync to reduce image ghosting, and other game-friendly features.
So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.
TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.
IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.
In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.
IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.
While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.
Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.
Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.
One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.
VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.
In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”
VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.
Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.
For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.
When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.
Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.
LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.
Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.
Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.
Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.
Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.
Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.
Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.
If you can, check out the monitor you’re interested in in-person before you buy it. You can perform some simple ghosting and motion blur tests by grabbing a window with the mouse and moving it rapidly around the screen. You can also test the brightness, watch some videos, and play with the onscreen display to get a feel for it.
Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.
LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).
Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.
Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.
IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.
Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.
IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.
VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.
This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.
TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.
The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.
A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).
While impressive color production is possible on both display types, IPS panels tend to offer wider colors, given the nature of their hardware. While a wider range of colors tends to spell better color accuracy, the advent of additional TV technologies like quantum-dot color have evened the playing field considerably. In other words, you’re far more likely to notice the benefits of an IPS TV’s wider viewing angle than you are to notice its tendency for wider color.
Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.
Unfortunately, not only is it rare to find a TV’s panel type listed on a manufacturer’s website, but it’s increasingly rare for a brand to reveal a TV’s panel type at all—even when we contact brands directly for information. The reason for this caginess has everything to do with marketing; it’s better to keep shoppers focused on the bells, whistles, and impressive performance specs of a TV rather than its potential shortcomings.
To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.
Fortunately, it’s relatively easy to determine panel type if you have the proper equipment and you know what to look for. Certain test results and viewing characteristics act as tell-tale signs. This is why my colleagues and I make a point of discussing panel type in just about every TV review we publish, and why you should make a point of reading reviews before making a purchase.
Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.
Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).
If you’re buying a large screen and intend to host movie nights with friends and family, a TV with an IPS-style panel is far more accommodating thanks to its superior viewing angle. Just be aware that certain content—particularly dark content—won’t pop as much on account of the panel’s shallower black levels.
On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.
When searching for a liquid crystal display (LCD), consideration of the device’s display technology is essential. Screen technology companies such as Apple and Samsung search for the best possible display panels and panel technology in order to offer their customers the best image quality. In competitive gaming, gaming monitors must be able to provide great image quality but also fast refresh rates so that gamers can play at a fast pace.
Before diving into how exactly liquid crystals affect display features, it is necessary to understand their general role in an LCD monitor. LCD technology is not capable of illuminating itself, so it requires a backlight. The liquid crystals are responsible for transmitting the light from backlight to the computer monitor surface in a manner determined by the signals received. They do so by essentially moving the light differently through the layer’s molecular matrix when the liquid crystals are oriented or aligned in a certain manner, a process which is controlled by the LCD cell’s electrodes and their electric currents.
The methods of alignment, however, can vary between panel types, offering different features and benefits. Two common and popular liquid crystal alignment techniques are twisted nematic (TN) and in-plane switching(IPS).
TN panels offer the cheapest method of crystal alignment. They also are the most common of the alignment methods and have been used for quite a long time in the display industry, including in cathode ray tubes (CRTs) that preceded the LCD.
In TN displays, the electrodes are positioned on either side of the liquid crystal layer. When a current is sent between the back and front electrode, something called an electric field is created that shifts and manipulates the orientation of the molecular matrix.
If no electric field is applied to the specific cell, the crystals experience a 90 degree twist in the alignment. As light from the backlight passes through this twist, the light waves are polarized, allowing them to pass through the polarizer that sits on the surface of the TN monitor.
If an electric field is applied, it can either untwist the TN liquid crystal layer partially or in full, depending on the strength of the field. The structure of TN crystals will typically straighten out when this happens, and some, if not all, light waves will not be polarized properly to pass through to the surface.
Each LCD cell composes a pixel of the display, and in each pixel are subpixels. These subpixels use standard red green blue (sRGB) colors to create a variety of colors to make the pixel display the necessary color to play its role in the overall display. If beneath the subpixel the liquid crystal fully polarizes the light, that subpixel’s specific color would be very bright in the pixel as a whole. But if the light is not polarized at all, then that color will not show up. If partially polarized, only a limited amount of that color is used in the mixture of RGB colors in the final pixel.
A more complex method of alignment is IPS. IPS monitors, unlike the TN, place both electrodes on the same level, behind the liquid crystal layer. When the electric field is applied, this forces the liquid crystal molecules to align themselves parallel to the IPS device layers instead of perpendicularly like the TN molecules.
Opposite of the TN, when the electric field is applied, IPS technology will polarize the light to pass, whereas when the electric field is not applied, the light will not be polarized to pass. Because of the orientation of the crystals, IPS displays require brighter, more powerful backlights in order to produce the correct amount of brightness for the display.
An important consideration is viewing angles. The TN offers only a limited viewing angle, especially limited from vertical angle shifts, and so color reproduction at these angles will likely not look the same as from a straight-on viewing; the TN’s colors may invert at extreme angles. The IPS counters that and allows for greater and better viewing angles that consequently offer better color reproduction at these angles than the TN. There is one issue with extreme viewing angles for IPS devices: IPS glow. This occurs when the backlight shines through the display at very wide angles, but typically is not an issue unless a device is looked at from the side.
In terms of color, as mentioned, TN devices do not have very strong color reproduction compared to other alignment technologies. Without strong color reproduction, color banding can become visible, contrast ratio can suffer, and accurate colors may not be produced. Color gamut, or the range of colors that the device can reproduce and display, is another feature that most TN displays do not excel in. This means that the full sRGB spectrum is not accessible. IPS devices, on the other hand, have good quality black color reproductions, allowing the device to achieve a deeper, richer display, but it is still not the best option if a customer is in search of high contrast (discussed further in a couple more paragraphs).
While TNs may not have the best color quality, they allow for high refresh rates (how often a new image is updated per second), often around 240 Hz. They also have the lowest input lag (receiving of signals from external controllers) at about one millisecond. TN panels often attract gamers because of the need for minimal lag and fast refresh rates in a competitive or time-sensitive setting. In consideration of moving displays like in video game displays, it is also important for fast response times (how fast a pixel can change from one amount of lighting to another). The lower the response time (the higher the response rate), the less motion blur will be shown as the display changes to show motion. TNs also offer these low response times, but it is important to remember that a powerful graphics processing unit, commonly called a GPU, is still needed to push these displays to meet the fastest refresh and response rates.
Standard IPS devices have been known to have slower response time and refresh rates. This can often lead to not just motion blur but ghosting as well, meaning that an image does not refresh fast enough, and so the previous image will remain temporarily burned in the expected new image. In recent years, though, IPS technology has achieved higher refresh rates than in the past through the super-IPS, abbreviated s-IPS.
Another common consideration of customers is the price of each display. TN, though it does not offer as high quality of a display, offers the lowest cost and best moving displays, making it useful if the intended use of the LCD monitor is simple and not too demanding. However, if you intend for something that calls for better color production or viewing angles, the IPS and other methods are viable choices, but at much higher costs. Even though IPS motion displays have reached the speed and rates of TNs, the price for such technology is much more expensive than the TN option.
There are other options besides the TN and IPS. One option is known as vertical alignment (VA) and it allows for the best color accuracy and color gamut. Compared to a typical IPS contrast ratio of 1000:1, VA panels can often have ratios of 3000:1 or even 6000:1. Besides improved contrast ratio, the VA is in between the TN and IPS. To compare the TN vs IPS vs VA, the VA does not have as great a viewing angle as IPS but not as poor as the TN. Its response times are slower than TN but faster than IPS (though at fast refresh rates, the VA displays often suffer from ghosting and motion blur). Due to the contrast ratio benefits, VA technologies are most often desirable for TVs.
And lastly, there is an option quite similar to IPS that is called plane to line switching (PLS). It is only produced by Samsung, who claims the PLS offers better brightness and contrast ratios than the IPS, uses less energy, and is cheaper to manufacture (but because it is only created by Samsung, it is hard to judge pricing). It also has potential in creating flexible displays.
If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.
The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays. We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.
These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.
Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.
IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.
These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.
Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.
Winner. IPS TFT screens have around 0.3 milliseconds response time while TN TFT screens responds around 10 milliseconds which makes the latter unsuitable for gaming
Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.
As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.
Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.
Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.
What you need to choose is AMOLED for your TV and mobile phones instead of PMOLED. If you have budget leftover, you can also add touch screen functionality as most of the touch nowadays uses PCAP (Projective Capacitive) touch panel.
This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.
First, to be clear, there is no “best” panel type out of these, as all have their respective advantages and disadvantages over the others. The information here pertains to general characteristics, as even panels of the same panel type will have some variance in characteristics (power consumption, backlight bleed, etc.) depending on the luck of the draw. Manufacturer tuning can also impact display output, affording some differentiating leverage to manufacturers sourcing from panel suppliers (which is effectively all of them).
Nostalgia or riddance aside, there are still some valid reasons to use a CRT monitor. When compared to LCD panels, CRT monitors can have higher contrast ratio, very low response time (which leads to non-blurred pictures even with fast movement on screen), and very little input lag, although LCD input lag can be largely negated. The downsides of CRTs are apparent, though: they’re large, heavy, consume more power, produce flicker, can produce audible, high frequency noise (although age plays into whether one can hear them or not), produce slightly distorted images, and produce harmful electromagnetic waves (in the form of x-rays), which requires that toxic materials such as lead and barium must be used as shielding to prevent detrimental health effects. CRT monitors are also notoriously hazardous to repair, given their large, active electrical coils that can measure upwards of 50,000 volts of electricity.
CRT displays are sometimes still used in medical, simulation, military, and government fields that have embedded the displays into control panels and machinery.
CRT monitors have largely gone out of production, and are rarely sold new (finding a used CRT is fairly easy), but their advantages temporarily lent themselves to some special uses. In regards to gaming, CRT monitors have historically been advantageous to use when gaming competitively due to very little motion blur and very little input lag. That being said, these advantages have faded with the progressive march of TN panels.
TN panels now have low motion blur (especially with lightboost or a similar technology), offer high refresh rates, low response times (1ms GTG in many cases), and are more than adequate even in the world’s most competitive games.
Ultimately, for the vast majority of users, the disadvantages of CRTs aren’t worth their limited gains, especially when TN panels meant for gaming more than adequately satisfy the needs of even competitive gamers.
TN panels have many benefits over the previously popular CRT monitors: lower weight, lower cost to produce, lower power consumption, they’re much thinner, offer clearer pictures, have no realistically achievable resolution limits, offer flexibility in size and shape, and the ability to eliminate flicker.
That being said, TN panels weren"t and still aren’t perfect, and compared to the previously popular CRT monitors, they’ve suffered from limited viewing angles, uneven backlighting, worse motion blur, higher input lag, dead/stuck pixels, and poor display in sunlight.
To be clear, many of these issues have been improved upon, but due to the underlying science of LCD TN panels, cannot be completely resolved. In fact, many of these issues -- like uneven backlighting, motion blur, input lag, and dead/stuck pixels -- are inherent issues across all LCD panel types. Poor viewing angles become a more pressing issue with larger displays, since the viewing angle when viewed straight on increases towards the outside of the monitor, thus causing more color distortion. TN panels do have the advantages of lower response times and higher refresh rates than other panel types/CRTs. TN panels are generally from 60Hz to 144Hz, offering substantially greater fluidity of gameplay with higher frequencies.
TN panels provide a good compromise between CRTs and other LCD panels as their traditionally low response rates, input lag, and high refresh rate make them comparable to CRTs for accuracy; TN panels also have the advantages of offering sharper pictures, widescreen output, lower weight, smaller physical dimensions, and higher resolutions compared to CRTs.
Still, compared to other LCD panels, TN panels suffer from poor viewing angles and worse color reproduction. Ultimately, for most gamers playing somewhat competitively to very competitively, TN panels are a good choice, but for those looking for a prettier and improved color experience, another panel type may be worth considering.
IPS (In-Plane Switching) was created to address the shortcomings of TN panels. IPS panels seek to solve TN panels’ issues of poor color reproduction and viewing angles. In this regard, IPS panels have largely succeed. Not only do they offer a higher contrast ratio (superior blacks), high color accuracy (which leads to IPS panels also generally looking less “washed out”), but IPS panels also have very little color shift when changing the viewing angles.
The tradeoff to this is that IPS panels have slower response times, higher production costs, higher power consumption, and lower possible refresh rates. IPS panels have traditionally been 60Hz, although, as with all monitors, they can be overclocked (results will vary). There have been improvements to IPS panels over the years, and slightly different revisions in the form of E-IPS and H-IPS, but ultimately the differences between these versions are inconsequential to gamers and those not involved in graphic design as a job.
Due to their worse response rates and lower possible refresh rates, IPS panels are generally considered to be worse for competitive gameplay and used more often when color is important, such as graphic design. For gamers who don’t play competitively and prefer breathtaking strolls in Skyrim instead of sweeping scrubs in CS:GO, an IPS panel should be a consideration for the next monitor.
PLS (Plane to Line Switching) are quite similar to IPS panels, so much so that they have the same advantages and disadvantages, with a couple extra minor advantages. PLS is produced by Samsung, who claims that compared to IPS panels, PLS panels have better viewing angles, a 10% increase in brightness, 15% decrease in production costs, increased image quality, and allow for flexible panels. Samsung’s PLS panels have been known to overclock well in monitors such as the QNIX 2710 in particular. Overall, PLS is basically Samsung’s version of IPS, as it is very similar in functionality (and even name). AHVA is also very similar to IPS and PLS, and differentiation between them is rare, although it should not be confused with the next panel type.
VA (Vertical Alignment) panels offer a solid medium between TN and IPS panels. VA was created to combine the advantages of IPS and TN panels, and largely did, although they did so with some compromise. That seems to be a theme in the world of monitors.
Compared to IPS panels, VA panels have the advantage of higher possible refresh rates. Although most are currently 60Hz, there are a few that are above 60Hz. VA has more advantages over TN panels than IPS, with better color reproduction, higher maximum brightness, and better viewing angles. VA panels do have the best contrast ratios of all panel types mentioned, but they also have the worst response times of the monitor technologies covered here. This causes blurring in fast-moving pictures and is disadvantageous to gaming.
For the use of gaming, VA is not the greatest option due to generally higher response time in comparison to other panel types; this slower response causes more motion blur, effectively eliminating its deployment for fast-moving titles. For a general work monitor, VA panels provide high contrast ratios, brightness, refresh rates, good color reproduction, and good viewing angles.
TN panels are another good choice for competitive gamers, as they support higher refresh rates, low response times, decent input lag, and high resolutions. Their bad viewing angles, color reproduction, and slight blurring compared to CRT monitors (due to higher response times) are all disadvantages, ones which cannot be easily fixed.
IPS panels solve the issues of TN panels, with better color reproduction and viewing angles, but do so at the cost of refresh rate and response time. IPS panels are especially useful for those not wanting to play too competitively, but want a beautiful/immersive visual experience. PLS and AHVA are similar enough to IPS to usually not be differentiated.
VA panels provide a good middle ground with better-than-IPS refresh rates and contrast levels, but have worse viewing angles and color production, although generally still better than TN. Response times are VA’s largest downfall, though, being slower than IPS and its variants and TN.
What’s best for you will depend on all of these items. For those wanting to play at a competitive level and who favor FPS or racing games, TN panels are best. Those wanting a more impressive and immersive experience may want an IPS (or similar variant, such as PLS), especially if working on artistic endeavors. Finally, those wanting a general monitor for work might consider a VA panel, although due to their higher response times, they won’t be good for gaming.
When it comes to thebest gaming monitors available on the market, the dizzying array of sizes, resolutions, refresh rates, response times, FreeSync versus G-Sync and panel types can make purchase decisions difficult. Our job is to make the buying process easier for you, so in this article, we"re going to look at two of the popular panel types used in today"s best gaming monitors: IPS and VA.
VA stands for vertical alignment, in which liquid crystals are aligned vertically, perpendicular to the substrate surface. As a result, these panels tend to have greater viewing angles than TN panels (but lower than IPS) and excellent contrast ratios and excel at providing incredible levels of detail in gaming (or movie) scenes.
Pixel response time refers to how fast a monitor can shift from one color to another (typically black to white or gray to gray) and is measured in milliseconds. But what does a low response time mean for gamers in the real world? A lower response time will garner less motion blur and allow for a clearer picture with fast-moving scenes in games. Of the two, IPS panels tend to have the lower response times, typically at 1 to 3 ms for the fastest panels (some even going as low as 0.5 ms).
On the other hand, the many gaming monitors with VA panels are advertised with a 4ms or lower (GTG) value for gaming monitors. In fact, we"ve seen some VA monitors spec"d as low as 1ms GTG with overdrive. However, those lower response times can come at the expense of inverse ghosting, leaving bright artifacts behind fast-moving objects on a screen.
IPS panels can be had from the standard 60 Hz up to 360 Hz on the fastest 1080p panels (like theAsus ROG Swift PG259QN). For a long time, 4K IPS panels were stuck at a maximum of 144Hz. However, that changed recently with the introduction of theViewSonic Elite XG320U, which overclocks to 150Hz (at the expense of Adaptive-Sync).
While neither IPS nor VA panels can match the "infinite" contrast ratio of newOLED panels, VA does have the upper hand. A good VA panel can exhibit a static contrast ratio of 2,000:1 to 3,000:1. However, the very best panels can crank that figure to 4,000:1 and beyond (for example, theAOC C32G2ZE can hit 4,000:1). The advantage that VA panels hold over IPS in contrast ratio is even more pronounced in darkened rooms, where "IPS glow" can be a serious problem.
Most IPS panels feature horizontal/vertical viewing angles of up to 178 degrees. This means if you"re viewing content off-center, there isn"t much color-shifting or a dramatic drop in picture quality until you reach the extreme edges of the viewing angles.
While VA panels have made great strides over the years in viewing angles, they are still not entirely up to par compared to IPS panels. VA panels are typically a bit weaker with respect to color/contrast shifts when viewing content off-center. However, for gamers who are likely to be sitting dead-center in front of the screen and not moving along the periphery of a monitor"s optimum viewing angle, this is likely less of an issue.
IPS panels, in general, have greater color gamut performance, leading to richer colors for your games. Most IPS monitors can hit a higher percentage of the DCI-P3 and sRGB color gamuts. Higher color gamut scores generally lead to greater accuracy and more vibrant color representation.
VA panels are slightly behind the curve on color accuracy compared to IPS, but for typical gaming scenarios, they are well suited for the job. They particularly shine when it comes to shadow and highlight detail in games, and make a good choice when you"re watching movies in your downtime due to the deeper blacks. But when you weigh the advantages that VA panels have with contrast ratio and black levels versus the more accurate color performance of IPS panels for gaming, it more or less comes down to your personal preference.
While it may look like IPS is the winner based on its technical merits, it’s not that easy. When we’re talking about things like how responsive a monitor is or how it looks to the eye, a lot of it comes down to personal preference. You might prefer VA over IPS based on not only your gaming preferences but also productivity apps when it’s time to get work done.
And while you may enjoy having a fast 360 Hz IPS display for your twitchy eSports games, someone else might have a different panel in mind for a slower-paced RTS game. In the end, if it is all possible, we’d suggest that you try to get some “eyes on” time with a monitor before you plunk down your cold, hard cash at a brick and mortar electronics retailer. And if that’s not possible, pore over our vast back catalog of monitor reviews to help you make an informed decision.
TN stands for twisted nematic. This is a type of LED (a form of LCD) panel display technology. TN panels are characterized as being the fastest and cheapest among the other main types of display panels, VA (vertical alignment)and IPS (in-plane switching). As such, they work great for gaming monitors and gaming laptops. However, TN panels also offer the worst viewing angles and color when compared to VA and IPS panels.
PerformanceFastest: low response times, highest refresh rates, minimal motion blur; Low input lagLongest response times typically; Higher refresh rates possibleSlower response times than TN, faster response times than VA; Gaming-quality refresh rates are rare
DisplayWorst viewing angles;Worst colorViewing angles typically better than TN, worse than IPS; Good color; Best contrast;Best image depthBest viewing angles; Best color
There’s an almost overwhelming amount of options in the display market: OLED, MicroLED, and TN panel types just to name a few. But if you’re looking for a gaming monitor or simply don’t want to drain your bank account on a display, IPS and VA are generally the best choices. In-plane switching (or IPS) is an LCD-based technology that is used in just about every kind of display, whereas Vertical Alignment (or VA) is a more niche LCD technology used in gaming monitors, gaming TVs, and wide displays.
Although IPS is much more popular than VA and is often seen as the more premium option, both panel types have strengths and weaknesses that you should consider before you buy.
IPS panels have traditionally been used for making displays that have high color accuracy and large coverage of wide color gamuts like DCI-P3 or Adobe sRGB. Not only do IPS displays usually look good, but they also look good from wider angles, so you don’t need to look exactly head on at an IPS monitor to get accurate colors.
Although IPS is generally better than VA when it comes to color accuracy and coverage, VA panels have perfectly fine color accuracy and coverage for the vast majority of users. Only professional photo and video editors could really be disappointed with a VA monitor that only covers 90% of the DCI-P3 color space, which is actually a very good amount of coverage for gamers and content consumers.
Contrast ratio is a metric that measures how dark the color black is depicted on a display, measured as a ratio of x:1. The higher x is, the better. Although IPS is very good with color accuracy in general, it really struggles with making the color black, and even the best IPS monitors and TVs can only show a very dark grey rather than true black. Most IPS monitors are rated at a 1000:1 contrast ratio, which isn’t terrible but isn’t great either. Some monitors can get up to around 2000:1 however.
Despite VA’s general color accuracy issues, it’s actually amazing at depicting black as truly black. Even the worst VA displays can easily muster a 2000:1 contrast ratio, and some can even achieve higher than 5000:1. In fact, VA is second only to OLED when it comes to contrast ratio, and OLED actually delivers perfect contrast ratios of ∞:1. Because of this, a VA display can look better than an IPS counterpart in darker scenes.
Some displays can boost contrast ratio by using local dimming and HDR. By using a more complex backlight with multiple LEDs that can be turned on or off, local dimming helps IPS and VA displays look even darker when it matters. On the other end of the spectrum, HDR boosts brightness for colors that need it. With these two factors combined, some displays can boost the contrast ratio significantly. However, these features aren’t going to make an IPS display’s contrast ratio as good as the average VA display’s, and poorly implemented local dimming can backfire by creating more visual problems than it solves.
Response time is the amount of time it takes to fully refresh the display and show a new image. This is an area where both IPS and VA struggle, but nowadays very good IPS displays have overcome traditional issues with response times, and VA displays have not shown the same amount of progress. There is no standard that display manufacturers adhere to when it comes to measuring response time, but according to BenQ, which makes both IPS and VA monitors and TVs, IPS has a response time of 1-2ms whereas VA can only achieve 4-5ms. The specific values here aren’t important because this is a best-case scenario. What’s really important is that VA is much slower.
Very high response times can result in very animated scenes looking blurry and smeared. This issue is called ghosting, and it’s particularly annoying for discerning gamers playing fast-paced games like Counter-Strike: Global Offensive. Both IPS and VA displays have solutions and workarounds to avoid ghosting, the most important being overdrive. Overdrive that’s too aggressive can cause reverse ghosting, which is when the display tries to change a pixel’s color so quickly that it accidentally overshoots and ends up with the wrong color for a few frames. Ghosting and reverse ghosting both cause smearing, so if overdrive is too weak or too strong, the end result is similar: It looks bad.
Although the best IPS panels beat the best VA panels when it comes to response time, there are plenty of IPS displays that have very bad response times. It’s also worth noting that response time only needs to be equal to the refresh rate of the monitor for there to be no smearing. On a 60Hz display, for instance, it takes 16.66ms to show a new image, so a response time of 1ms doesn’t really do much. Response time matters much more at higher refresh rates, and even at 144Hz a response time of around 7ms is sufficient to avoid ghosting.
IPS is capable of significantly higher refresh rates than VA. IPS is capable of hitting 500Hz while VA caps out at 240Hz. However, the vast majority of VA displays are only capable of 144Hz or 165Hz; there are only a few VA monitors that can do 240Hz. For those wanting extremely high refresh rates, IPS is the clear winner.
While IPS displays are usually a safe recommendation for most people, sometimes there are very good reasons to buy VA monitors and TVs. VA has found its home in midrange gaming monitors, gaming TVs, and ultrawide displays, and many of the best gaming monitors use VA. If you’re shopping outside of these categories, however, you probably won’t have to worry about choosing between IPS and VA because VA is not very often used elsewhere.
If you do have the choice between VA and IPS, you’re going to have to evaluate what you prefer in a display, and you should definitely read some monitor reviews just to make sure if VA or IPS is going to deliver what you want in your next display purchase. After all, even an IPS display can have bad color accuracy or bad response time, so don’t assume IPS means quality and that VA means budget.
When choosing a new computer monitor, the type of panel used by the display is a key piece of information that reveals a lot about how the monitor will behave and perform. By far the most common types of display panels are TN, IPS and VA.
Monitor LCD panels are made up of many layers, including a backlight, polarizing filters and the liquid crystal layer. It"s this liquid crystal layer that determines the intensity of light let through from the backlight, and in what colors, whether red, green or blue. To control this intensity, a voltage is applied to the liquid crystals, which physically moves the crystals from one position to another. How these crystals are arranged and how they move when voltage is applied, is the fundamental difference between TN, VA and IPS.
Our original explainer about display technology and the difference between TN vs. VA vs. IPS was published almost three years ago, and while most of that information remains accurate to this day, we"ve seen the introduction of much faster IPS displays as well as a revolutionary updates to VA panels, particularly from Samsung Odyssey gaming monitors. We"ve also since tested over 100 monitors, so we have a lot more insights to share about performance.
TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.
VA, stands for vertical alignment. As the name suggests, this technology uses vertically aligned liquid crystals which tilt when a voltage is applied to let light pass through. This is the key difference between IPS and VA: with VA, the crystals are perpendicular to the substrates, while with IPS they are parallel.
IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the cryst