kdsr50xbr1 lcd panel replacement quotation
**The 2005 3LCD models are unique in that they are the only models between 2003 and 2007 that have not had a Sony warranty extension.***The expiration date of the extended warranty was originally 10/31/2008, but, based in part on the settlement of a class action lawsuit, on 11/12/2007, Sony extended the expiration date to 6/30/2009.
Most likely, all of the green discolorations occurred due to the presence of improperly polarized light in the green channel, arising from defective green polarizers and/or SXRD panels. There is more recent evidence from a subsequent SXRD class action lawsuit that green haze can be caused by skin oil or debris introduced during the manufacturing process (presumably, optical block assemblers touching the parts with their bare fingers). However, Sony claims that they cleaned such optical block parts in a clean room prior to releasing them.
Sony further claims that the yellow stains in the 2005 SXRDs, which tend to start in the upper or lower right corner, were caused by a "microscopic material" in the liquid crystal panels, disrupting their uniformity over time during prolonged exposure to UV light produced by the projection lamp. Sony claims that the extent of the discoloration depended on the amount of microscopic material present in the panel, which varied from TV to TV, and the frequency of usage by the consumer. They also claim that service records indicate that the issue always appeared within the first 3,000 hours of usage, if it was going to happen.
The blue discolorations seem to be the most common, particularly in the earlier (2003-2005) 3LCD models, although they are also observed in the more recent 3LCD models, as well as the SXRD models. These discolorations can take the form of blue blobs, haze, lines, bands, dots, star pattern, etc. In some cases, the discoloration is centered around an oval-shaped anomaly in the middle of the screen. In many cases, the discoloration (e.g., haze) is most visible on a gray background, but in other cases, the discoloration is visible on a black background (e.g., blobs). Once they become evident, the discolorations tend to accumulate and spread across the entire screen over the course of a few weeks to months.
The precise cause(s) of these discolorations have not been revealed by Sony, but the problem is well-known in the industry.Thediscolorations tend to be bluish in color,because the parts in the blue light path (particularly the blue polarizing filters and liquid crystalpanels) aresubject to the highest energy light (including UV) and heat. Photochemical and heat-based degradation of the blue polarizing filters can allow stray, improperly polarized blue light to pass through the blue LCD panel and onto the screen, leading to blue blobs on images that should be black. Photochemical and heat-based degradation of compounds in the blue LCD panel (e.g., the liquid crystal itself and/or alignment layers) can cause irregular distribution and/or alignment of the of the liquid crystal. This can lead to improper polarization of blue light as it passes through the damaged areas of the panel, resulting in the projection of stray blue light onto the screen.
There is a correlation between the appearance of the blue discolorations and the failure and/or replacement of the lamp. This may be a coincidence of the average life span of the lamp and the rate of degradation of the optical block parts, or changes in the lamps may accelerate the degradation or make it more evident. For example, the light spectrum emitted by older lamps may become more damaging, and/or the increased intensity of a brand new lamp may make the discolorations more visible or hasten the degradation of the already weakened parts.
images--typically called burn-in on older CRT and plasma displays. For example, this can occur in areas of black bars (e.g., letterboxes), in news ticker areas, or when pausing a program on a DVR.As the liquid crystal panels degrade over time, the
While the 2003-2004 3LCD models tend to have primarily blue discolorations, as described above, they can also suffer from stains in the yellow range, and this seems even more common in the newer 3LCD models (e.g., 2005-2006), particularly the A10s. These discolorations tend to start on the edges or appear within oval-shaped anomalies, and to spread over time. Similar to the yellow stains in the SXRDTM models, the yellow color arises due to light being completely blocked in the blue light pathdue to photochemical and heat-based damage (e.g., darkened areas on the orange-colored polarizing filter in the blue light path). The improper blockage of blue lightleaves the predominantly yellow light from the combined green and red light paths. TriState Module sells the orange-colored polarizing filter for the blue light path and reports that it can fix yellow discolorations.
On top of the high risk for blue discolorations described above, some2003-2004 3LCD modelsare also susceptible to developing an opaque, non-moving pattern on the screen, which is particularly evident on white or light backgrounds. This is referred to variously as stationary scribble, squiggly, random line, or road-mapping, and tends to be a solid color such as yellow, purple, or blue-green on a white background, but it varies somewhat depending on the specific color of the image on the screen.The problem tends to grow worse over time.
For the most part, this problem seems to have been caused by defective materials in a specific lot of LCD panels that were installed in the optical blocks, whichare particularly sensitive to damage arising from hot-cold (on-off) cycling. The color of the scribbles likely correlates with the light path with the damaged LCD panel. For example, damage to the blue panel may selectively block blue light in the damaged areas, leading to a yellow scribble (green plus red), damage to the green panel may lead to a purple scribble (blue plus red), or damage to the red panel may lead to a blue-green scribble. In some cases, different colored scribbles appear in different areas on the same TV, suggesting damage to multiple panels.
There is some evidence that leaving the TV on for an extended period (e.g., several days) can, at least temporarily, resolve or reduce this issue, perhaps by causing the defective panel to heat up, but this is not a complete or permanent fix.
The optical blocks are not sealed, so they are subject to dust accumulation, and this problem seems to be particularly frequent when the TVs are used in dusty or smoky conditions. Also unlike the rest of the issues described above, there have been no warranty extensions or class-action lawsuits for this issue. It may be possible to reduce the appearance of the blotches by cleaning the optical block with compressed air. Unfortunately, cleaning will rarely eliminate the problem, the problem will likely return over time, and it appears that the dust can get burned into parts within the optical block during prolonged exposure to the heat of the projection lamp, making cleaning ineffective. See the Optical Block Replacement/Cleaning page on this site for additional information.
For reference,in addition to liquid crystal projection technology (3LCD andLCoS/SXRDTM), othernewer technologies at the time included digital light processing (DLP) projection,plasma flat-panel,and LCD flat-panel. In the large screen market, DLP and plasma were in direct competition with liquid crystal projection in its heyday, and LCD flat-panels have overtaken the market as prices have come down on larger panels.
An industry group of LCD projection manufacturers called the "3LCD Group" was formed in 2004 to help market the 3LCD microdisplay technology. Sony is a member of this marketing group, and, along with Epson, accounted for most of the production of the LCD microdisplay panels used in the projection models. Although the current 3LCD Group web site refers only to front projectors, it included rear-projection TVs when they were in production. For example, see this version of the 3LCD Group web site archived in January of 2005. Here is an excerpt from a 1/7/2005 3LCD Group press release:
“As the U.S. market leader in microdisplay televisions, Sony has always been committed to providing consumers with video products that exceed their expectations,” said Mike Fidler, senior vice president in Sony Electronics’ Home Products Division. “3LCD technology fulfills this role by offering an ideal balance between superior performance, overall reliability and manufacturing efficiency.”
Liquid crystal projection TV sales and marketing efforts attempted to steer customers away from competing plasma TVs by citing a short 10,000-20,000-hour lifespanof the plasma tubes (less than 10 years at 3-6 hours per day).In addition, the longevity of competing DLP projection TVs was questioned based on the use of moving parts (DLP technology uses a spinning color wheel with millions of hinged micromirrors). Consistent with this, Sony and its 3LCD Group have released marketing statements such as the following:
It is generally accepted that liquid crystal flat-panel displays have an expected life span of about 60,000 hours(about 27 years at 6 hours per day)(e.g., site 1, site 2, site 3). The liquid crystal microdisplay panels in Sony"s 3LCD and SXRDTM TVs are a bit different than flat-panels. However, Sony and the 3LCD Group do not differentiate LCD flat panels and microdisplays when speaking about reliability. For example, the following statement can be found on the 3LCD Group web site:
Reliable, Road-Tested Tecnology: LCD technology surrounds us – HDTVs, PDAs, mobile phones, monitors and more...this powerful and road-tested technology is an optimal way to achieve sharp, beautiful images. 3LCD systems are reliable and use a simple optical design: 3 chips and 1 prism.
Furthermore, the estimated 60,000-hour lifespan of an LCD flat panel is actually based more on the longevity of the fluorescent back-lighting than the liquid crystal components themselves. So, if the lighting systems were replaceable on these units, the lifespan could, theoretically, be much longer.In liquid crystal projection systems, the lamps are, in fact, user-replaceable, and Sony has exploited this to further promote the longevity of the technology. They strongly promoted that their TVs only needed a lamp change every several years to restore the TV to a like-new condition. Here are some quotes from some of Sony"s marketing:
Easy Replacement Of UHP (Ultra High Pressure) Lamp. Sony innovation once again takes the lead with its proprietary new UHP replacement approach. Now you don’t have to worry about time eroding your TV’s picture quality – with a few simple twists of the screw, you can replace the old lamp and restore your Grand WEGA’s performance to full, vivid glory. Thanks to this convenient feature, you’ll enjoy the same high level of quality and enjoyment for many years.
The Fountain of Youth - User-Replaceable UHP Lamp. In the past, the gradual loss of picture quality was just part of owning a TV. Once the picture got to a point where it was unwatchable, the TV was replaced and the process started over. Sony recognizes the investment in time and money that a TV represents. That is the reason that Grand WEGA comes with an ingenious user-replaceable UHP lamp. After countless hours of enjoyment, simply replace the lamp and your Grand WEGA is as good as the day you bought it. In fact, with Sony"s renowned quality, Grand WEGA may be the last TV you ever own.The implication from these quotes is that liquid crystal rear-projection TVs could have an even longer life than a liquid crystal flat-panel display, and even CRT-based TVs, due to the user-replaceable lamps. In fact, a "white paper" from Sony on their projection systems directly suggests that liquid crystal microdisplay (fixed-pixel) projection panels offer "far longer life" than CRT-based TVs (e.g., see page 23):
CRTs have phosphors that are subject to burn-in when an image stays on the screen too long...Fixed-pixel projector display panels are immune to burn-in, offering far longer life. And the SXRD panel is particularly robust.However, unlike flat-panel liquid crystal displays with non-damaging fluorescent back-lighting, the UHP lamps in Sony"s rear-projection TVs create substantial direct heat, direct light (e.g., ultraviolet), and indirect heat (produced by conversion of reflected light). This damaging energy is focused on the small filters and liquid crystal panels within the optical block, significantly reducing lifespan.
The approximately 6,000-10,000 hour life spans seen with many of Sony"s optical blocks, thus, does not compare favorably with the marketing claims of superior reliability and longevity over plasma and DLP, let alone with the language in Sony’s marketing material that the TVs should last for “countless hours” (far into the future), and that, with lamp replacement, it could be the last TV you ever need to buy.
TV repair costs between $60 and $350 with most spending $207 on average for LCD, LED, plasma, and 4K TVs; costs are higher if repairing older DLP, projection, and HD TVs. TV problems like display issues, powering-on problems, or sound issues can be fixed. Pickup and delivery fees may apply.
For example, the price of a new Samsung 40-inch LED TV is about $400, yet the cost of a replacement display panel for this model is about $380. This price is only for the replacement part and does not cover diagnostic costs, labor costs, or travel or shipping fees.
Unless you are trying to fix a TV from the ’80s or earlier, cracked TV screen repair is not feasible; the entire display panel must be replaced instead. The cost of a replacement TV display panel is more than the cost of buying a new TV, and that’s before labor and other service costs.
The cost of TV screen replacement is generally the same as or more than the cost of buying a new TV. Therefore, replacing a broken or malfunctioning TV screen is not considered a viable option. If the TV is under the manufacturer’s warranty, the manufacturer may replace the entire unit.
TV manufacturers do keep replacement TV screen panels on hand to support products under warranty in case the screen malfunctions, due to manufacturer defect.
If you still want to replace a damaged or malfunctioning TV screen, your best option is to find a used replacement panel or a broken TV of the same model on which the screen is still functional. You might find one on eBay, and you can hire a technician to change out the panel.
The cost of a used replacement TV panel ranges from $50 to $350 or more, excluding shipping, depending on the brand and size. Note that the chances of finding exactly the part you need in excellent condition are slim, and the cost excludes the cost of installation by a repair shop.
Whether your TV is LCD, LED, plasma screen, or 4K (Ultra HD), the cost to fix common problems ranges from $60 to $350, depending on the repair type and the brand of TV being repaired.
TV motherboard replacement costs between $200 and $350, including parts and labor, or about $275 on average. Motherboard replacement parts range from $35 to $199and labor costs from $60 to $125.
When an inverter component goes bad, it is usually replaced rather than repaired. In some cases, the capacitors on a converter board fail, and a technician can fix it by replacing the capacitors rather than replacing the entire inverter component. However, if an entire inverter board replacement is not available for the model of TV being repaired, replacing the capacitors may be the only option for TV inverter repair.
A flat-screen TV bulb replacement costs between $60 to $115, with most homeowners spending $84 for parts and labor. The price for replacement bulbs ranges from $18.50 to $80.
If an older model LCD TV or projection TV powers on and has sound but no picture, this may be due to lamp burnout, which is both common and expected. In this case, replacing the bulb will fix the problem. An experienced technician should be able to replace the bulb quickly and easily.
TV backlight repair costs $100 to $122, including replacement parts and labor, at a repair shop. In-house repair costs are more due to trip fees. The price of backlight replacement parts averages around $2.50for each LED and between $20 and $25 for each CCFL strip.
Repairing a TV power supply board costs $23 to $234 for parts alone. Completely replacing the power supply board costs $250 for parts and labor. If one capacitor has failed, the cost for replacement capacitors is low. However, it’s more cost-effective for the technician to replace the entire board rather than spend time trying to diagnose and replace faulty capacitors one by one.
TV capacitor repair costs $60 to $129, including parts and labor. The cost for the replacement part ranges from $0.06 to $14, with the labor portion ranging from $60 to $125 per hour. TV capacitors protect the circuit from getting too much power, filter signals, and facilitate changing channels.
Flat screen replacement glass is not available. The only option for flat-screen TV glass repair is to try optical glass glue, which costs $1.70 for a 5-ml. tube. This may be an option for TV glass repair if the crack is only a few inches or less. TV panels are built as one unit at the factory, with the glass adhered to the display panel.
A TV fuse repair costs between $61 and $136, with most spending $99 on average. The cost of the replacement fuse itself is $1.50 to $11, while labor ranges from $60 to $125 per hour. Additional fees may apply.
LCD flat-panel repair is not considered cost-effective. If the glass is cracked or the display is physically damaged, it is cheaper to replace the entire TV than to repair or replace the display panel.
More popular TVs are usually less expensive to repair because repair shops order replacement parts for them in bulk, which allows them to buy those parts at a lower cost.
The cost of flat-screen TV repair ranges from $42 to $359. You cannot fix a broken screen, but the price of a new flat-panel TV starts from around $249 for a 1080-mp (non-4K) LED TV from LG to as much as $14,999 for an 85-inch 8K LED TV from Samsung. A TV referred to as a “flat TV” or “flat-screen” TV might be any of the following:
LCD TV repair typically costs $60 to $85 for diagnostics testing, and $200 to $300 to perform repairs. LCD TVs use backlighting, which may fail. Newer LCD TVs use LED strips for backlighting. Older ones might use CCFL. If CCFL backlighting fails, a technician can replace it with LED backlighting.
An LED TV is just an LCD TV that uses LED backlighting, which all newer models do (older models use CCFL backlighting). The cost to replace one LED backlighting strip ranges from $100 to $122, including parts and labor.
With modern TVs, repair entails component replacement or replacement of capacitors, for which high levels of certification are not necessary. Generally, TV repair shops will let you know if their employees have certification.
First, check that the connecting cable is securely in the socket on both ends. If that doesn’t work, try substituting another data cable if you have one, or test it with a replacement cable.
Circuit breaker - Check the circuit breaker for the power outlet that the TV plugs into. You can check the breakers by opening the door to your breaker panel and looking for circuit breakers that are in the OFF position.
Power cable - Check the power cable. If it is a removable cable, you can test it by substituting a power cable from another piece of equipment in your home, or you can buy a replacement cable for this test. The cost for a replacement TV power cable ranges from $2.50 to $10.
Lamp burnout -In a projection TV or older LCD TV, no picture may be caused by lamp burnout. In this case, a technician can replace the bulb quickly and easily.
The right parts - It can be complicated to determine which component of a TV is failing and causing the TV not to work correctly. If you buy a replacement part and perform the repair yourself, the TV may still not work, either because you replaced the wrong part, the part was old and not working properly to begin with, or you did not perform the work correctly. Buying multiple replacement parts can become costly.
In most cases, a flat-screen TV can be fixed. The exception is a physically damaged display panel or screen. Most other issues including failing speakers, backlights, or power supply. Burned out fuses and damaged input ports can also be repaired.
We are the leading exporter&factory for mobile phone and accessories such as battery, charger, keypad, housing,datacable,LCD in Shenzhen and Hong Kong.Meantime we supply many other electronic products,such as Portable DVD,Car DVD,MP3,MP4,LCD TV,Plasma TV,CD ROM,DVD Writer,Windows XP,Office 2003 software,IP phone,USB Phone,bluetooth earphone,bluetooth USB dongle,etc.
Issue: Projector had a replacement lamp and then approx. 200hrs use but has now developed a green defocussed area in the middle of the image. Research suggests the lamp may have been faulty and has heat damaged / distorted the polarizer.
Sony scores big in its effort to bring SXRD display technology to the masses. Great picture performance at a great price. SXRD, which is Sony"s unique spin on LCoS (liquid crystal on silicon) technology, received an in-depth treatment in our May 2005 review of the company"s Qualia 006, so I won"t rehash the details. But this set uses a new SXRD chip that shrinks the size of the panel from 0.78 inch (diagonal) down to 0.61 inch. Rather than sacrificing resolution, it delivers the same progressive-scan 1,920 x 1,080-pixel (1080p) pictures as the 006, but with an even finer pixel pitch than before (7 micrometers). The benefit is a completely seamless high-def picture, with no trace of the "screen-door" pixel grid that you often see in LCD HDTVs. As in the 006 and LCD rear projectors, three chips are used to transmit red, green, and blue picture information, which avoids the single-chip DLP "rainbow effect."
The other key refinement that Sony brings to its new SXRD models is an iris adjustment. This powerful feature, which lets you modify the light output of the TV"s lens to enhance picture contrast, has shown up on some high-end LCD and DLP front projectors in the past year or so but is only just starting to make its way into rear projectors. Aside from that, the KDS-R50XBR1 is a sleek-looking tabletop set with a glossy black border framing its 50-inch screen. Its semi-detached, nonremovable speakers add several inches to the set"s width - a point to consider if you"re installing it in a wall unit.
The Sony offers a generous range of connection options, including multiple HDMI and i.Link (FireWire) inputs as well as VGA and component-video jacks. One i.Link input is located behind a flip-up panel beneath the screen - perfect for plugging in a digital camcorder. While it doesn"t have a backlit keypad, Sony"s thin, sturdy remote control has a clean layout. You switch inputs by toggling through them with the TV/Video button. The Wide button calls up a list of four display modes, with three choices - Full, Zoom, and Wide Zoom - available for HDTV channels.