3.5 tft lcd shield ili9481 for sale
This 3.5" TFT LCD Module has a high resolution of 400x240. This module has an double resolution and extremely fine dot pitch. It also include a touchpad and 12bit onboard touchpad controller. This LCD module is suitable for user require high resolution, brilliant display quality.
This 3.5 inch TFT LCD Module can be can be easy controlled by MCU such as 8051, PIC, AVR, ARDUINO, and ARM .It can be used in any embedded systems which require display high quality colorful image. Please see the sample pictures, they are taken directly from the LCD display. The Module include a 5V>3.3V regulator, touchpad IC, PWM circuit and SD card slot.
This 3.5 inch TFT LCD Module is not an ordinary 3.5 inch Module, this module has a high resolution of 480x320, Ordinary 3.2 inch has only 320x240 resolution. This module has an double resolution and extremely fine dot pitch (0.139mmx0.139mm). It also include a touchpad and 12bit onboard touchpad controller. This LCD module is suitable for user require high resolution, brilliant display quality.
The TFT LCD Module has embedded Flash IC, which contain fonts of 10 sizes and 236 icons. The LCD module support Henning Karlsen"s UTFT library, which can be downloaded here.
This TFT 3.5 Inch LCD display support 480x320 pixel resolutions. The display uses the ILI9481 graphics controller. The module includes the 5V-3.3V power conversion circuit and no additional level conversion circuitry is required. This Module can be inserted directly into the Arduino Mega2560 Board.
ER-TFTM035-6 is 320x480 dots 3.5" color tft lcd module display with ILI9488 controller and breakout board,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.
It supports 8080 8-bit /9-bit/16-bit /18-bit parallel ,3-wire,4-wire serial spi interface.Built-in microSD card slot, optional 3.5" 4-wire resistive touch panel with controller XPT2046 and capacitive touch panel with controller FT6236, so you can detect finger presses anywhere on the screen and doesn"t require pressing down on the screen with a stylus and has nice glossy glass cover . It"s optional for font chip, flash chip and microsd card. We offer two types connection,one is pin header and the another is ZIF connector with flat cable mounting on board by default and suggested. Lanscape mode is also available.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.5"TFT Touch Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.
So, pretty obvious, though I"m not sure about the simplicity. I have an LCD screen. I *think* it"s technically meant for an arduino, but I"m not sure. I"ve included a picture of the back of it, since that"s the important part as near as I can tell, controller is "ILI9481". I"m obviously looking to hook it to a pi (model 3). I don"t care if I hook it straight to pins, or the HDMI port, or one of the ribbon ports on it, but I need to know what pins SHOULD do what for what kind of cables. If there"s any way to make that SD card slot *also* work with my pie, that would be fabulous.
{"id":4846767439943,"title":"3.5\" inch TFT LCD Touch Screen Display Board 480x320 For Arduino UNO R3 Mega2560","handle":"3-5-inch-tft-lcd-touch-screen-display-board-480x320-for-arduino-uno-r3-mega2560","description":"\u003cstrong\u003eFeatures:\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\n\u003cul\u003e\n\u003cli\u003e3.5 inch TFT LCD Module, Resolution 480x320, Controller ili9481 ili9468, ili9488 hx8357, or r61581.\u003c\/li\u003e\n\u003cli\u003eDesigned with a TF(Micro SD) card socket on the back of board so that you can conveniently insert a card.\u003c\/li\u003e\n\u003cli\u003eSupport touch screen function.\u003c\/li\u003e\n\u003cli\u003eThe test code is provided below.\u003c\/li\u003e\n\u003cli\u003eThis kit requires certain professional knowledge and ability, make sure you know how to use it, please. We cannot provide any technical assistance.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cstrong\u003eSpecifications:\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\n\u003cul\u003e\n\u003cli\u003eController: ili9481 ili9468, ili9488 hx8357, or r61581\u003c\/li\u003e\n\u003cli\u003eResolution: 480x320\u003c\/li\u003e\n\u003cli\u003eVoltage: 5V\/3.3V\u003c\/li\u003e\n\u003c\/ul\u003e","published_at":"2020-09-23T14:45:22+08:00","created_at":"2020-09-23T14:45:21+08:00","vendor":"DIYMORE","type":"","tags":[],"price":1199,"price_min":1199,"price_max":1199,"available":true,"price_varies":false,"compare_at_price":null,"compare_at_price_min":0,"compare_at_price_max":0,"compare_at_price_varies":false,"variants":[{"id":32576306151495,"title":"Default Title","option1":"Default Title","option2":null,"option3":null,"sku":"X30590","requires_shipping":true,"taxable":false,"featured_image":null,"available":true,"name":"3.5\" inch TFT LCD Touch Screen Display Board 480x320 For Arduino UNO R3 Mega2560","public_title":null,"options":["Default Title"],"price":1199,"weight":0,"compare_at_price":null,"inventory_management":"shopify","barcode":"","requires_selling_plan":false,"selling_plan_allocations":[]}],"images":["\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_2.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_4.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_5.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_3.jpg?v=1600843524","\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_6.jpg?v=1600843524"],"featured_image":"\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523","options":["Title"],"media":[{"alt":null,"id":7475166085191,"position":1,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_1.jpg?v=1600843523","width":1000},{"alt":null,"id":7475166117959,"position":2,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_2.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_2.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166150727,"position":3,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_4.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_4.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166183495,"position":4,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_5.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_5.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166216263,"position":5,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_3.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_3.jpg?v=1600843524","width":1000},{"alt":null,"id":7475166249031,"position":6,"preview_image":{"aspect_ratio":1.0,"height":1000,"width":1000,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_6.jpg?v=1600843524"},"aspect_ratio":1.0,"height":1000,"media_type":"image","src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0122\/7558\/0986\/products\/X30590_6.jpg?v=1600843524","width":1000}],"requires_selling_plan":false,"selling_plan_groups":[],"content":"\u003cstrong\u003eFeatures:\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\n\u003cul\u003e\n\u003cli\u003e3.5 inch TFT LCD Module, Resolution 480x320, Controller ili9481 ili9468, ili9488 hx8357, or r61581.\u003c\/li\u003e\n\u003cli\u003eDesigned with a TF(Micro SD) card socket on the back of board so that you can conveniently insert a card.\u003c\/li\u003e\n\u003cli\u003eSupport touch screen function.\u003c\/li\u003e\n\u003cli\u003eThe test code is provided below.\u003c\/li\u003e\n\u003cli\u003eThis kit requires certain professional knowledge and ability, make sure you know how to use it, please. We cannot provide any technical assistance.\u003c\/li\u003e\n\u003c\/ul\u003e\n\u003cstrong\u003eSpecifications:\u003c\/strong\u003e\u003cbr data-mce-fragment=\"1\"\u003e\n\u003cul\u003e\n\u003cli\u003eController: ili9481 ili9468, ili9488 hx8357, or r61581\u003c\/li\u003e\n\u003cli\u003eResolution: 480x320\u003c\/li\u003e\n\u003cli\u003eVoltage: 5V\/3.3V\u003c\/li\u003e\n\u003c\/ul\u003e"}
desertcart is the best online shopping platform where you can buy 3.5 TFT LCD WITH SD CARD FOR ARDUINO UNO MEGA ILI9481 NO TOUCHSCREEN from renowned brand(s). desertcart delivers the most unique and largest selection of products from across the world especially from the US, UK and India at best prices and the fastest delivery time.
desertcart ships the 3.5 TFT LCD WITH SD CARD FOR ARDUINO UNO MEGA ILI9481 NO TOUCHSCREEN to and more cities in Belize. Get unlimited free shipping in 164+ countries with desertcart Plus membership. We can deliver the 3.5 TFT LCD WITH SD CARD FOR ARDUINO UNO MEGA ILI9481 NO TOUCHSCREEN speedily without the hassle of shipping, customs or duties.
desertcart buys 3.5 TFT LCD WITH SD CARD FOR ARDUINO UNO MEGA ILI9481 NO TOUCHSCREEN directly from the authorized agents and verifies the authenticity of all the products. We have a dedicated team who specialize in quality control and efficient delivery. We also provide a free 14 days return policy along with 24/7 customer support experience.
Yes, it is absolutely safe to buy 3.5 TFT LCD WITH SD CARD FOR ARDUINO UNO MEGA ILI9481 NO TOUCHSCREEN from desertcart, which is a 100% legitimate site operating in 164 countries. Since 2014, desertcart has been delivering a wide range of products to customers and fulfilling their desires. You will find several positive reviews by desertcart customers on portals like Trustpilot, etc. The website uses an HTTPS system to safeguard all customers and protect financial details and transactions done online. The company uses the latest upgraded technologies and software systems to ensure a fair and safe shopping experience for all customers. Your details are highly secure and guarded by the company using encryption and other latest softwares and technologies.
In this video we learn how to drive the new, low cost big, 3.5″ Color TFT display for Arduino Uno and Mega. For the written tutorial please check here.
Many Arduino projects require adequate display of what is being monitored. Think of time, temperature, humidity, pressure, sound, light, voltages, or combinations of recorded data in a weather station. With the addition of fast and capable ESP32 microcontroller boards to my personal ‘fleet’ my collection of good old Arduino Unos with their TFT display shields seemed prone to gather dust. The ESP32 combines well with TFT displays through a 4-pin SPI interface* while the Uno shields have parallel interfaces that feature 28 pins of which a minimum of 13 is necessary for the daily display business (see figure 2). A parallel interface is generally faster than a SPI interface. The prospect of a bunch of shield displays with fast parallel interface parked forever in a deep drawer was a stimulus for me to start a project to connect these shields to an ESP32. Fortunately there are several solutions available of which I selected the one proposed by Alberto Iriberri Andrés at https://www.pangodream.es/ili9341-esp32-parallel. However, the nightmarish prospect of connecting shield after shield with an ESP with unwieldy Dupont jumper wires inspired me to create a Uno-shield compatible parallel ESP32 TFTdisplay workbench for the purpose of checking all my Uno TFT shields, one by one. Here follows the design, wiring, and the results with a collection of parallel Uno shield type displays.
The market is swamped with TFT shields that can be placed directly on the pin sockets of an Arduino Uno. These shields feature parallel interfaces. They have in common that there are four pin header blocks through which one can stick such a shield very handy right onto a Uno (fig. 2). The displays mounted on these shields have different pixel dimensions and, more important, different controller chips. Most commonly used are ILI9341, ILI9481 and ILI 9486 chips. The best performing TFT shields are equipped with 3V-5V voltage converters (e.g. the shield shown in fig 2) but there are plenty of cheap shields available that lack a voltage regulator and therefore accept only 3V.
Controllers need their own specific driver to make the display work correctly. A major effort to supply the Arduino world with adequate drivers for ESP8266 and ESP32 microprocessors running smoothly with the above ILI controllers has been undertaken in recent years by the electronics engineer known as Bodmer: the TFT_e_SPI.h library.
So what I needed is a board that accomodates an ESP32 and that has enough space to accommodate a variety of small (2.4 inch) and large (3.95 inch) Uno TFT shields.
The base board consists of a doule-sided soldering board fastened with four nylon spacers on a piece of cardboard. Mounted on this base are two 15-pin parallel socket headers to accommodate an ESP32 microcontroller board and the four socket headers to accommodate the Arduino Uno TFT shields to be tested. As screen diagonals of TFT shields in my ‘arsenal’ vary between 2.4 inch and 3.95 inch, a 12080 mm double-sided soldering board with 4230 holes was selected for this purpose. The positioning of the socket headers is shown in figure 3. There are also two 2-pin pin headers to allow to select the proper voltage to power the display being tested (with jumpers).
The positioning of pins on the original Arduino Uno does not follow the uniform 2.54 mm (0.1 inch) pitch rule. Any Uno parallel TFT shield therefore will not immediately fit a standard soldering board. On the back of each shield are jumper blocks labeled J1 through 4 (figure 2). We call J1 here the ‘SD jumper block’, J2 the ‘parallel jumper block’, J3 the ‘control jumper block’ and J4 the ‘power block’. Part of the SD jumper block is occupied by the parallel data interface. Some manoevering makes it clear trhat the J2-J3-J4 blocks fit the holes of the soldering board while the parallel jumper block (J1) is the outlier. Fortunately, the pins in all blocks follow the 2.54 mm pitch rule. It is J1 as a whole that is half a unit positioned ‘out of pitch’. Through this unorthodoxy, say asymmetry, a TFT shield fits an Arduino in only one way. Very clever. The present soldering board was adapted to this configuration by cutting a narrow sleeve where the pins of the J1 parallel jumper block should be, just wide enough to let the pins of the corresponding socket header through. Then an extra piece of soldering board was prepared and fastened with wire and solder under the sleeve, taking care that the J1 accepting socket header would exactly match jumper block J1.
The design is quite simple: two parallel rows of 15-pin socket headers serve as a mounting point for the ESP32 (figures 2,3). These sockets are positioned in the upper left corner of the board to leave as much area as possible to position the TFT shields. Here, TFT shields are oriented landscape. The bench is designed only for displaying data and graphs only, with no SD card reader support.
All Uno TFT shields have three pins that deal with power (3V3, 5V, GND), five pins that are necessary for display control and eight pins connected with the parallel data transfer interface, i.e., there is a total of 16 pins that need to be wired (figure 2). In addition I planned three ‘free’ pins of the ESP32 available via pin sockets for input-output puposes: pins D2, D5 and D15 (figure 4).
With so many wires it is necessary to bring order in the assembly of the bench. One can distinguish (1) power wires, (2) TFT control wires, (3) parallel interface wires, (4) additional wiring. One by one the groups of wires were mounted on the soldering board.
The group of control wires originates from pins D26, D27, D14, D12 and D13 and connect to the socket header that accomodates TFT shield jumper J1 (figure 5).
There are eight data pins on the TFT shields, marked LCD_D0 through LCD_D07. LCD-00 and LCD_01 are pins on jumper block J3 while the remaining LCD_nn pins can be found on jumper block J2. These pins must be connected to, respectively, pins RX2, D4, D23, D22, D21, D19, D18 and TX2 (figure 6).
Bodmer’s TFT_eSPI library is different than other libraries, e.g. Adafruit_GFX and U8G2 in the sense that there is no ‘constructor’. Pin definitions for each type of controller are in TFT_eSPI systematics stored in a separate Setup_nn.h file that is placed in a folder with the name ‘User_Setups’. In turn, the specific Setup_nn.h is called in another stetup file named User_Setup_Select.h. Consider the systematics as a kind of two-stage rocket. Both stages need to be edited befor launch. The first stage is User_Setup_Select.h and the second stage is Setup_nn.h.
An example of the specific Setup_nn.h file for one of my ILI9341 shields (the one shown in figure 1) is named ‘Setup_FW_WROOM32_ILI9341_parallel_TFT_016.h’. This is a file editable with any ASCII editor.
Figure 1 shows one of my Uno TFT shields mounted on the bench, running the example ‘TFT_graphicstest_one_lib,’ that can be found in the Arduino IDE under File, Examples, TFT_eSPI, 320×240, of course after correct installation of Bodmer’s TFT_eSPI library. With an ESP32. My own ‘ESP32_parallel_Uno_shield_TFT_radar_scope.ino’ runs fine: the downloadable demo sketch which mimics an aviation traffic controller’s radar scope with a sweeping beam. I created this sketch in 2017 as a demo for one of my first Arduino Uno TFT shields**. The body of that demo was used for the present demo sketch.
Testing my complete collection showed marked differences between shields. I tested shields with ILI341, ILI9481, ILI8486 and ILI9488 controllers, with mixed results. Best performance was achieved with ILI9341 controller equipped shields. Shields that lack a voltage regulator appeared to be dedicated 3V3 shields as they would not perform, or produce an upload error, if the 5V jumper was closed. One 3V3 shield needed the 3V3 jumper closed during upload while after upload it needed 5V to lighten up the screen. Some but not all shields accepted closed 3V3 and 5V jumpers during uploading and running sketches. One ILI9481-powered shield behaved very peculiar: only if both 3V3 and 5V jumpers were open during upload the sketch would be accepted and then be visible on screen only with the 5V jumper closed.
The experiences with the TFT shields lead to the following rule of thumb: first try to figure out the correct controller (this on an Arduino Uno with David Prentices’ ‘MCUFRIEND_kbv.h’), then checking the User_Setup_nn.h file icreated for this shield n the TFT_eSPI library system, and then try to upload first with the 3V3 jumper closed, then again (if necessary) with the 5V jumper closed, and finally with both jumpers closed.
This display can be mounted on an Arduino Mega or Due. It has a fairly high resolution of 320*480 pixels and is also quite large with 3.2 inch LCD size.
The display is based on the popular ILI9481 chipset and works with 5V so it can be used with all Arduino compatible boards. Just plugin and start coding.