esp32 lcd touch screen quotation

A beautiful 3.5” touchscreen display, based on ESP32-WROVER, with a built-in 2M pixel OV2640 camera, makes it an ever perfect platform for your ESP32 projects.

Makerfabs ESP32 3.5” Touch with camera is absolutely open for makers, and besides, Makerfabs provide plenty of Demos to help the users on the usage. Have a try at this fantastic display in your next ESP32 project!~

esp32 lcd touch screen quotation

Makerfabs has launched a 3.5-inch TFT touchscreen display with built-in WiFi and Bluetooth connectivity through an ESP32-S3 dual-core Tensilica LX7 microcontroller clocked at 240 MHz with vector instructions for AI acceleration.

This display offers a 320×480 resolution through the ILI9488 LCD driver, uses a 16-bit parallel interface for communication with ESP32-S3 clocked at up to 20 Mhz making it suitable for smooth graphics user interface, and the company also claims it is smooth enough for video displays, but more on that later.

Espressif Systems ESP32-S3 dual-core Tensilica LX7 @ up to 240 MHz with vector instructions for AI acceleration, 512KB RAM, 2.4 GHz WiFi 4 and Bluetooth 5.0 LE with support for long-range, up to 2Mbps data rate, mesh networking

Display – 3.5-inch color TFT LCD with 480×320 resolution, 16-bit parallel interface (ILI94988 driver), and capacitive touch panel (FT6263); backlight controller

The display can be programmed with the Arduino IDE. Sample code using the LovyanGFX library and EAGLE schematics and PCB layout can be found on Github. Makerfabs also designed an ESP32-S2 model that lacks Bluetooth connectivity, and the ESP32-S3 touchscreen display comes with more RAM and eMMC flash.

I was tipped about this display by Jon, a regular reader and commenter on CNX Software, who bought it, and said it works as advertised. The ESP32-S3 can really drive a high-speed display with a parallel LCD interface. However, it can’t stream video because there is no H.264 decoder, but it is great if you want a responsive GUI.

Makerfabs ESP32-S3 16-bit parallel capacitive touchscreen display is sold for $39.80 plus shipping, and the ESP32-S2 model is the same price with a resistive display, and there’s a capacitive display option for $4 more. As a side note, we previously wrote about another, smaller ESP32-S3 display, namely the LilyGO T-Display-S3, with a 1.9-inch display connected over a slower 8-bit parallel interface, and no touchscreen function that sells for around $17.

esp32 lcd touch screen quotation

This project uses the SPIFFS (ESP32 flash memory) to store images used as background. You"ll need to upload these to the ESP32 before you upload the sketch to the ESP32. For this you"ll need the ESP32 Sketch Data Upload tool.

You can download this from Github: "https://github.com/me-no-dev/arduino-esp32fs-plugin". Follow the instructions on the Github to install the tool:Download the tool archive from releases page.

Before you upload the data folder to the ESP32, you"ll first have to select the right partitioning scheme.Go to Tools -> Board and select ESP32 Dev Module.

Firstly, depending on the board you are using (with resistive touch, capacitive touch, or no touch) you will have to uncomment the correct one. For example, if you are using the ESP32 TouchDown uncomment: "#define ENABLE_CAP_TOUCH". If you are using a DevKitC with separate TFT, uncomment "#define ENABLE_RES_TOUCH".

Go ahead and upload the Bluetooth-System-Monitor.ino sketch to the ESP32. The settings under tools besides the Partition Scheme can be left to the default (see image). Go to "Sketch" and select "Upload". This may take a while because it is a large sketch.

esp32 lcd touch screen quotation

My previous instructables, ESP32 Photo Clock is am example, it download a current minute photo from the Internet, decode the JPEG photo and display it.

Many Arduino projects use monochrome display, one of the reason is the limited resources of a MCU. 320 pixels width, 240 pixels height and 8 bits color for each RGB color channel means 230 KB for each full screen picture. But normal Arduino (ATmega328) only have 32 KB flash and it is time consuming (over a second) to read data from SD card and draw it to the color display.

ESP32 have changed the game! It have much faster processing power (16 MHz vs 240 MHz dual core), much more RAM (2 KB vs over 200 KB) and much more flash (32 KB vs 4 MB), so it is capable to utilize more color and higher resolution image for displaying. At the same time it is capable to do some RAM hungry process such as Animated GIF, JPEG or PNG file decoding, it is a very important feature for displaying information gathered from the internet.

There are various color display for hobby electronics: LCD, IPS LCD, OLED with different resolutions and different driver chips. LCD can have higher image density but OLED have better viewable angle, IPS LCD can have both. OLED have more power efficient for each light up pixel but may have burn-in problems. Color OLED operate in 14 V, it means you need a dedicate step-up circuit, but it is not a problem if you simply use with a break-out board. LCD in most case can direct operate in 3.3 V, the same operating voltage as ESP32, so you can consider not use break out board to make a slimmer product.

Software support on the other side also influence your selection. You can develop ESP32 program with Arduino IDE or direct use ESP-IDF. But since ESP-IDF did not have too much display library and not much display hardware supported, so I will concentrate on Arduino display libraries only.

OLED have a big advantage, the pixel only draw power if it lights up. On the other hand, LCD back light always draw full power even you are displaying a black screen. So OLED can help save some power for the project powered by a battery.

This is a 1.5" 128 x 128 color OLED, this form factor is very fit for smart-watch-like wearable project. The most barrier of select this should be the price tag is around 4 times of a normal LCD.

ST7735 is a very popular LCD driver model for the resolution 128x128 and 128x160. It may cause by its popularity, there are many manufacturer produce compatible product. However, they are not fully compatible.

Thanks for the popularity of wearable gadget, I can find more small size IPS LCD in the market this year(2018). The above picture is an 0.96" 80x160 IPS color LCD using ST7735 driver chip. As you can see in the 3rd picture, you can treat it as a 128x160 color display in code but only the middle part is actually displaying. The 4th picture is the display without breakout board, it is thin, tiny and very fit for a wearable project!

SSD1283A is 1.6" 130x130 display, it claim only consume 0.1 in sleep mode and backlight turned off. In sleep mode the last drawn screen still readable under sufficient lighting.

It is a 2.2" 176x220 color LCD. It is relatively fewer projects using this chips and resolution. It may caused by the success of its chip family brother, ILI9341 (0.2" larger in size but have near double resolution).

Lower resolution still have its advantages, e.g. it can save half of the processing power on decoding the full screen size JPEG image and double the FPS ;>

I think ILI9341 is the most popular LCD driver chip in the hobby electronics market. In most case it is 240x320 resolution and have many screen size from 1.7" to 3.5". Some breakout board also built-in touch screen feature.

ST7789 also a common driver chip in ESP32 community. One of the reason is ESP32 official development kit using it. As same as ILI9341, ST7789 also can drive 240x320 resolution.

This also the highest pixel density color display in my drawer. As same as normal LCD, it can direct operate in 3.3 V, so it is very good for making slim wearable device.

The display speed is one of the most important thing we consider to select which library. I have chosen TFT_eSPI PDQ test for this comparison. I have made some effort to rewrite the PDQ test that can run in 4 libraries. All test will run with the same 2.8" ILI9341 LCD.

As I found TFT_eSPI is the most potential display library for ESP32 in this instructables, I have paid some effort to add support for all my display in hand. The newly added display support marked letter M in red at the above picture, here is my enhanced version:

Adafruit sell various display module in hobby electronics market and they also have very good support in software level. Their display libraries all built on a parent class called Adafruit_GFX, so I call it Adafruit GFX Family. This library generally support most Arduino hardware (also ESP32).

This library method signature is very similar to Adafruit GFX, but it is tailor-made for ESP8266 or ESP32. I think the source code is optimised for ESP32, so the PDQ result is much faster than other libraries.

#define LOAD_GLCD // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2 // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters

ESP32 + ILI9341 can run at SPI speed 40 MHz, it require some code change at library folder. The above pictures are the fine tuned result. Here are the code change summary:

ST7735 and ILI9341 are the most popular display, this 2 are better option for the beginner. You may notice LCD have a big weakness, the viewable angle, some color lost outside the viewable angle and the screen become unreadable. If you have enough budget, OLED or IPS LCD have much better viewable angle.

OLED require 14 V to light up the pixel so it is not easy to decouple the breakout board. On the other hand, LCD (also IPS LCD) usually operate in 3.3 V, as same as the ESP32. In most case, there are only the LED control circuit required between LCD and ESP32, i.e. a transistor and few resistors. So it relatively easy to make it.

It is very important to read the data sheet first before you decide not using breakout board. The pins layout, pin pitch size, the sample circuit connection and maximum rating all you can find in data sheet. The maximum voltage is especially important, you should sticky follow the rating or you will blow your LCD. The chip can operate in 3.3 V but LED may be 2.8 - 3.0 V so it require some electronics in the middle, most data sheet have the sample circuit. You may ask your seller send a soft copy of data sheet to you or simply Google it by the model number.

My special hint: I like to soldering a FPC cable with the same pin pitch size as the LCD to help the connection with the MCU. I have used this technique in these instructables:

Hello! Yes, I purchased this display from keyestudio, connected it to esp32 using this library from dfrobot. It is only necessary to consider that the pinout of the display connectors differs from dfrobot and keyestudio.

I"m wanting to connect a VGA camera, the sort you find as a little module on eBay with OVPxxxx chip, to a screen such as ILxxxx family, which appears to have direct VGA input. I think it will work if I connect the camera directly with no MCU, but I"d also like to add a cross-hair to the display (for a drill targetting system). I wonder is it possible to intercept the serial video data and change individual pixels in a streaming fashion, instead of loading a whole screen into memory, changing it and passing it on? I ask because it seems to me it would need a much less powerful MCU.0

So, basically I make a reset in the beggining (read datasheet) then next I use only SPI_DAT and SPLI_CLK. If I destroy the sequence touching with an oscilloscope, the LCD stops to understand the sequence DAT/CLK and I have to make another reset.

Those 2 pins must be dedicated to the display, otherwise the display will get confused without the CS pin. One DAT/CLK to LCD and another DAT/CLK to I2C.

Hello! Thank"s for your instruction. I want to use your 8pin ili9486 320x480 spi display with one of your presented libraries and esp32. 1.) Could you please tell me the connections between the display and the esp32 and 2.) which numbers do I have to write into the line utft myglcd (ili9486,?,?,?,?)?

esp32 lcd touch screen quotation

ESP32-2432S028 module is onboard ESP32-WROOM-32 module as the main control, which is a dual-core MCU,integrated Wl-Fi and BLE functions. The main frequency can reach 240MHz, 520KB SRAM, 448KB ROM, Flash size is 4MB+4MB. The display resolution is 240x320, it is resistive touch.

The module includes LCD display screen, backlight control circuit, touch screen control circuit, speaker drive circuit, photosensitive circuit and RGB-LED control circuit, TF card interface, serial interface, temperature humidity sensor interface (DHT11 interface) and reserved IO port interface.

ESP32-2432S028 Development board is based on controller of ESP32-DOWDQ6 , Dual-core CPU, Clock frequency up to 240MHZ, Integrated rich resource peripherals, high-speed SDIO, SPI, UART and other functions, supports automatic download.

esp32 lcd touch screen quotation

The TFT display is a kind of LCD that is connected to each pixel using a transistor and it features low current consumption, high-quality, high-resolution and backlight. This 2.8-inch full color LCD has a narrow PCB display. The resolution is 320×280 pixels and it has a four-wire SPI interface and white backlight.

esp32 lcd touch screen quotation

The ESP32 3.5-inch TFT Touch (Capacitive) w/ Camera offers a 3.5-inch 320 x 480 TFT LCD touchscreen display. Based on ESP32-WROVER, with a built-in 2M pixel OV2640 camera, which makes it is an ever-perfect platform for your ESP32 projects.

It uses SPI for communication with ESP32, the SPI main clock could be up to 60M ~ 80M, making the display smooth enough for videos, and the camera OV2640 with pixel 2M, with this camera, you can make applications such as remote photography, face recognition.

While the camera is not used, you can freely use all these pins with the breakout connectors, to connect the ESP32 display with sensors/ actuators, suitable for IoT applications.

esp32 lcd touch screen quotation

ESP-LCD is a multimedia smart-control solution built around ESP32-S2-HMI-DevKit-1 and an LCD capacitive touch screen. With ESP-LCD, users can easily realize a hardware network, and achieve remote or smart-touch control, data visualization, music playback, recording, etc. ESP-LCD is suitable for several smart-control scenarios involving smart clocks, air-quality detectors, smart audio control, and various other applications based on touch screens.

ESP32-S2-HMI-DevKit-1 is a development board based on the ESP32-S2-WROVER module. It has a 4.3-inch TFT-LCD, and a capacitive touch panel with a resolution of up to 480×800 and an initial start-up time that is less than 200 ms. ESP32-S2-HMI-DevKit-1 has various components, including a light sensor, a temperature and humidity sensor, a MEMS sensor, a micro-SD card connector, a TWAI® interface (compatible with CAN 2.0) etc. On top of that, it also supports functions, such as LVGL GUI development, music playback, and recording.