edge lit led lcd panel brands
Lightboxes can be built to your specifications regarding size, color temperature, and frame color. Single and double-sided [illuminated on the front and rear face] light panels are also available. Edge-lit panels are 8mm or about 1/3-inch thick a light panel including a flip-open frame [now called a lightbox] has a thickness of 0.625 to 1.50-inches. Illumination across the LED light panel from edge-to-edge is within 10% so a dark center is not a concern. Read more
Light panels have many uses in retail environments such as lighted shelves, signs or as a lightbox for photographic transparencies, stained glass and faux windows. For interior lighting applications, the panel performs well as a ceiling troffer, lighted wall, under cabinet light and under stone such as Onyx, quartzite or translucent man-made countertops. Read more
In signage, edge-lit panels can be a substitute for fluorescent tubes. Panels are thin, evenly illuminated and last for years without maintenance. Several color temperatures are available and RGB.
When displaying stained glass or some other translucent material in a window, you can use our clear edge-lit panel to let natural light through during the day and illuminate your art at night.
The local dimming on LED TVs is a key way of introducing contrast. With this technology, the intensity of lighting adapts to the image shown achieving contrast ratios.
LED-backlit LCD, which uses light-emitting diodes for backlighting is a common type of display on televisions and laptops. Unlike pure LED screens these LCDs are not self-illuminating and are reliant on the backlighting for illuminating the display. It is an advancement on the preceding cold cathode fluorescent technology and some manufacturers and retailers may advertise this type of screen as an LED TV.
Edge-lit is a type of screen backlighting that has LED lights lining either the top and bottom edges of the screen or the perimeter of the screen. This form of backlighting differs from others as the screen is not lit from behind, and often produces a more muted effect. An opaque piece of plastic called a diffuser light guide distributes the lighting across the rear of an LCD panel.
Edge-lit LEDs can be individually brightened or dimmed to provide the high degree of backlight control that screened content demands. Edge-lit screens can achieve this in one of two ways:
Direct-lit backlighting uses LED lighting across a television back panel. This form of backlighting initially used Cold Cathode Fluorescent Lamps (CCFLs) before transitioning to LED. The lighting is behind the LCD panel to provide consistent lighting across the entire screen.
The use of LEDs creates an extremely bright picture. This can lead to black and naturally dark tones appearing too bright, a phenomenon known as ‘elevated black levels’. This appearance can really affect wide-screed films, especially as there is no way to alter the backlight of specific portions of the screen. This has led to the development of alternative backlighting arrangements that minimize the greying of black sections of the screen.
Both types of backlighting provide the illumination LED screens required to produce a visible image. The main difference is that direct-lit backlights sit behind the LCD panel to provide the necessary lighting whereas edge-lit screens have LEDs sitting at the perimeter of the screen. Here are some other notable differences:
The first generation of LED backlighting was edge-lit. However, this early form of edge-lit technology caused the development of hotspots on the screen and the overall lighting was inadequate. As LED design became more efficient and effective, Samsung revisited this type of backlighting with a market-leading edge-lit LED television in 2009.
Direct-lit panels use a simple array of LEDs to provide uniform lighting across an entire LCD panel. The adoption of direct-lit screen technology in the 2000s was driven by the availability of white LEDs that could replace existing CCFL technology.
Direct-lit performs across a range of viewing angles and colors, but it is limited by not being able to increase contrast, as the entire backlight has to be dimmed to change color intensity. This affects the ability of a screen to achieve a deep black tone. Full array lighting and flexible backlight technologies have superseded direct-lit lighting. They are more advanced and can achieve more nuanced imaging effects.
Edge Lit screens can achieve full, deep blacks as they can use local dimming technology to reduce lighting in areas of the screen that display black or dark colors.
When comparing different models of televisions, you might see the term "edge-lit LED." All LED TVs are a type of LCD TV; the "LED" refers only to the kind of lighting source used to illuminate the LCD pixels in the television. There is more than one way to light the pixels. The two primary technologies are edge-lit and full-array.
In an edge-lit television, the LEDs that illuminate the LCD pixels are located only along the edges of the set. These LEDs face inward toward the screen to illuminate it.
These models are thin and light at the mild expense of some picture quality—specifically in the area of black levels. Black areas of the picture, such as a dark night scene, are not truly black but more like a very dark gray since the lighting is coming from the edge and illuminating the dark areas a bit more.
In some poorer-quality edge-lit LEDs, uniform picture quality can be a problem. Because the LEDs are along the edges of the panel, quality declines as you approach the middle of the screen because a uniform amount of illumination is not reaching the pixels further from the edges. Again, this is more noticeable during scenes of darkness; the black along the sides of the screen is more gray than black (and corners can appear to have a flashlight-like quality of illumination emanating from the edges).
Full-array LED televisions use a full panel of LEDs to illuminate the pixels. Most of these sets also have local dimming, which means the LEDs can be dimmed in different regions of the panel while other areas are not. It helps improve black levels, which appear closer to black than dark gray.
In general, full-array LED is a superior technology when it comes to picture quality, but edge-lit sets have one significant advantage: depth. Edge-lit LED TVs can be much thinner than those lit with either a full LED panel or traditional fluorescent (non-LED) backlight. For that reason, most of the super-thin sets you see in stores will be edge-lit.
If you"re looking for the best possible picture quality, you are most likely to find it in a full-array LED display with local dimming. If you are primarily concerned about the appearance of the television and want an extremely thin screen, edge-lit is the style that will fit your needs.
The Samsung QN90B QLED is the best TV with an LED panel we"ve tested. It"s an impressive TV with amazing picture quality and a great selection of gaming features. It uses a Mini LED backlight, with way more dimming zones than most LED TVs, which allows for greater control over the local dimming feature for better dark room performance, with less distracting blooming around bright objects. It also gets exceptionally bright, meaning it can handle lots of glare in a bright room.
Unlike most high-end LED TVs, it"s also a good choice for a wide seating arrangement, as the image remains consistent when viewed at an angle thanks to Samsung"s "Ultra Viewing Angle" technology. It also has a great selection of extra features like a built-in Tizen smart interface that"s easy to use and has a ton of apps available to download, so you can easily find your favorite shows. It"s also excellent for gaming, as it supports 4k @ 120Hz gaming from the new-gen consoles, and it supports a variable refresh rate to reduce tearing.
LCD panels are backlit by LED lights, so they rely on a backlight behind the panel to make the picture visible, and the LCD layer can"t prevent all light from escaping out of the screen. This means that even in a black scene, the backlight is still on, and some light escapes, causing blacks to appear gray.
In an attempt to mask this shortcoming, some LED TVs employ local dimming to target dark portions of the screen and dim the backlight in those areas. The intended result is that dark portions become darker, but everything else is left as bright as it should be, increasing the contrast between dark and light objects.
OLEDs use self-emitting pixels and don"t have a backlight, and because of this, they don"t have local dimming features. However, we score OLEDs as a perfect 10 for local dimming, because they do everything that a local dimming feature on an LED TV should do. Dark areas are completely off, leaving bright areas to stand out without any blooming.
Contrast/Brightness: These settings aim to improve the contrast ratio by tinkering with the white and black levels. It doesn"t have a direct effect on the local dimming but can improve the picture quality. The contrast setting increases the luminosity of the brightest whites, while brightness (sometimes called black level), makes blacks darker. Keep in mind the brightness setting on some TVs controls the backlight, which doesn"t affect picture quality.
Frame dimming: Frame dimming, or CE dimming on Samsung TVs, is a basic version of local dimming, but it dims the entire backlight instead of zones. Usually found on edge-lit TVs, it causes small highlights to become dim as well. It may improve the contrast a bit, but it"s not very useful for most scenes.
Local dimming features on LED TVs are a way to improve the contrast ratio. Since these TVs consist of LED backlights behind an LCD panel, local dimming aims to turn off, or dim, certain zones of the LED backlight, making blacks look darker and highlights brighter. However, there may be some issues with local dimming on some TVs as it could cause blooming around bright objects or for entire zones to light up when there"s a small object. Overall, most local dimming features on modern TV do an effective job at improving the picture quality in dark scenes, and only some lower-end models will have glaring problems.
TV/Audio/Video: If you can"t get enough of your favorite sports, the latest movies, love 3D entertainment -- or just want to listen to your favorite music in stunning clarity -- our newest electronics can help you experience it all in a whole new way. Another plus? Now, you can get a one-year Disney+ subscription with participating OLED TV model purchases, or a 6-month subscription with participating NanoCell TVs.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
There"s an unsung hero in your living room, a piece of technology that has been steadily advancing for years, providing better and better picture quality and more immersive entertainment, and it"s one you may not even know exists. I"m talking, of course, about the backlight in your TV.
What"s a backlight? Well, it"s the light source that is situated directly behind the LCD panel of the majority of TVs. It"s what makes the screen glow, what gives bright colors their vibrancy, and increasingly, what gives dark shadows their depth.
There"s a little more to the glowing panel of an LCD TV than you might expect. The LCD panel offers the shape and color components of an image, but it doesn"t actually produce any light of its own. And without light to produce the colors we see and project the image outward to the viewer, an LCD TV wouldn"t be worth much. Enter the humble backlight.
Behind the LCD panel is a backlight, and between the backlight and the LCD panel are usually a few layers of polarized filters, backlight diffusers, and other optical layers designed to turn this collection of tech components into a sharper viewable image.
You"ll have an LCD panel to provide much of the image content, and a backlight behind it to provide the light that makes that LCD panel visible and the colors vivid. But that backlight has undergone a lot of changes over time — several just within recent years. And a lot of the improvements we"ve seen in modern TVs can be traced to the humble backlight.
But with the advent of LCD-based flat screen TVs, the need arose for illumination, and originally that meant cold cathode fluorescent lamps (CCFL), a technology that"s similar to fluorescent and neon lighting. But because these lamps generate heat that can damage a display and aren"t terrible energy-efficient, they"ve pretty much disappeared from today"s TVs.
Instead, they were replaced by one of the biggest innovations in modern TV technology: LED backlighting. With this change, TV manufacturers started calling LCD TVs with LED backlight "LED TVs" to differentiate them from the older CCFL-lit models. But with the last CCFL TVs going off the market a decade ago, it"s just as likely that TV makers have kept the LED nomenclature around to blur the distinction between LCD TVs and OLED panels, which use a very different (and largely superior) display technology.
Today"s TVs use a number of backlighting methods, which we"ll discuss below, but the biggest change has been the introduction of discrete backlighting zones. Instead of illuminating the entire screen, the LED backlights of a TV can be addressed individually, meaning that they can be turned on or off, dimmed or brightened as needed to provide brighter or darker portions of the TV picture.
But there"s a catch. Not every form of backlight offers the same level of control. As a result, not every TV has the same level of capability, even if it supports the same HDR formats.
Edge-lit displays illuminate the LCD panel by setting a row of LEDs along the top and bottom edges of a screen, or ringing the perimeter of the TV frame with LED lights. This light is then distributed across the back of the LCD panel with a special diffuser light guide, a semi-transparent sheet of plastic that allows the light from the LED in the TV bezel to illuminate a larger portion of the display.
It"s a very cost effective way to light a TV, since it uses the least amount of LEDs. It also offers some level of dynamic backlight control for HDR support. On sets that are equipped to do so, portions of the edge lighting strips can be darkened or dimmed to provide deeper blacks, or brightened to accentuate brighter portions of the screen. However, since they don"t directly light the LCD panel from behind, the effect is considerably muted when compared to other backlight technologies.
Both of these methods suffer from the use of broad, diffuse dimming zones, which mute the HDR effect considerably, and will often illuminate unwanted portions of the display, an effect called haloing.
Samsung AU8000 LED 4K Smart TVSamsung"s cheapest models often feature edge lighting, and the Samsung AU8000(opens in new tab) is a prime example of this. The TV"s high contrast ratio offers pretty good clarity and sharpness, but the lack of local dimming means that HDR content won"t look as good as it should, and you"ll see some noticeable elevated black levels.
A variation on edge lighting developed by Samsung and used in some Samsung QLED TVs is called dual LED. Instead of using a single color backlight for the TV, Samsung uses a combination of cool blue and warm yellow LED lights, and alternates between them based on the content of the scene to offer a modest improvement in picture quality.
Samsung Q70T QLED TV (2020 model)Samsung uses dual LED backlight as a half-step between edge lighting and direct-lit LED backlight in it"s better affordable QLED sets, and it shows. The alternating color temperatures do offer some improvement over basic edge lighting, but the result is still a less impressive picture, even with Samsung"s impressive QLED display. Check out our full Samsung Q70T QLED TV (2020 model) review(opens in new tab) for more.
Direct lit LED backlighting uses LED lighting across the back of the TV, directly behind the LCD panel, providing a fairly uniform amount of light across the screen. It also allows for a brighter picture, since it uses more LEDs, and is able to utilize more of the light coming from those LEDs.
However, an all-white back light alone has its limitations. Because the entire LCD panel is lit uniformly, there"s little to no dynamic range offered by the display.
One common problem caused by this uniform backlight approach is that darker portions of the display are still illuminated, resulting in black portions of the screen appearing grey, a phenomenon called "elevated black levels." It"s especially noticeable on letterboxed movies, which will have a distinct unwanted glow in the black bars above and below the picture.
Toshiba C350 Fire TV (2021 model)The Toshiba C350(opens in new tab) is one of the better Amazon Fire smart TVs we"ve reviewed, but the direct LED backlight is something of a double-edged sword. It"s better and brighter than a basic edge-lit LED backlight, and picture is better as a result, but the lack of local dimming means that – despite the TV"s support for Dolby Vision and HDR10 formats – HDR content just doesn"t look very good.
Local dimming zones have become fairly common on TVs across the price spectrum, and more premium TVs have differentiated themselves by offering a greater number of backlighting zones with smaller, more tightly controlled light, which can minimize light blooms and haloing to provide better HDR performance and contrast.
TCL 5-Series Roku TV (S535)When it comes to value in TVs, the TCL name should be one of the first things you look for. The TCL 5-Series Roku TV (S535)(opens in new tab) is a great example of this, offering a QLED screen with full-array local dimming backlight that matches some of the best mid-range TVs, but at a lower price. The result is great picture quality and solid HDR performance.
Local dimming has been further refined with the introduction of mini-LEDs. By shrinking the LED size down to about one-fifth the size – mini-LEDs measure 0.008-inch (200 microns) across – more LEDs can be packed into the backlight panel, and much smaller dimming zones to be used.
Models from Samsung, TCL, and LG all utilize mini LED backlighting for its superior performance, and the combination of mini-LED and QLED color enhancement offers some of the best TV picture quality that"s ever been available.
Samsung QN90A Neo QLED TVWhen it comes to the several TVs on the market that have mini-LED backlight, the Samsung Neo QLED takes the top spot, holding the top position among the best TVs we"ve reviewed. It"s a great TV for many reasons, but the impeccable backlight and HDR performance of the Samsung QN90A Neo QLED TV(opens in new tab) makes it one of the best LCD TVs we"ve ever seen.
Ultimately, the best backlight is no backlight at all. This can be achieved in one of two ways: With current OLED displays or micro-LED technology, the latter of which isn"t yet available to regular consumers.
OLED displays have individual pixels that light up without the need for a separate illumination source, creating a self-emissive display panel that doesn"t need any sort of backlight.
Because illumination can be controlled at the level of individual pixels, OLED technology offers the highest level of contrast and HDR performance, with no light blooming, and true black reproduction as individual pixels go dark.
Sony Bravia XR A80J OLED TVSony"s excellent OLED TVs highlight how awesome OLED can really be, with category-leading picture quality and cutting edge technologies that make the most of the premium TV technology. The Editor"s Choice Sony Bravia XR A80J OLED TV(opens in new tab) does this in spades, providing an excellent premium OLED experience.
Shrinking mini-LEDs down even smaller, you get micro-LED. Measuring as small as 50μm — about 0.002 inches across — micro-LEDs are 1/100th the size of a conventional LED. That"s small enough to cluster them together for individual pixels, creating another form of self-emissive display. The first micro-LED TVs are on sale now, but with prices in the tens of thousands of dollars, they"re not really something the average consumer would even consider.
You can get a more detailed explanation of mini-LED technology in our guide Micro-LED vs. Mini-LED: What"s the difference? or read Micro-LED vs. OLED TV: Which TV tech will win? to see how the two leading self-emissive technologies compare.
Samsung MicroLED TVKnown for a long time as simply "The Wall" Samsung"s first micro-LED TVs are coming this year, and are available for pre-order… in Korea. We"ve seen these displays in person, and they are astonishingly good, but between the wall-sized screens necessary for 4K resolution and the mortgage-sized price tag(opens in new tab), it may be several years before this is a viable technology for the average TV shopper.
But there"s more than one way to approach full array with local dimming, because TVs will offer different numbers of dimming zones and local domain can be achieved with either standard LEDs or mini LEDs.
And there"s a direct relationship between backlight quality and TV price, so what is the best option when you don"t want to pay an extra $1,000 for the category-leading quality of OLED – even the affordable Vizio OLED TV is $1,199(opens in new tab) – or shell out tens of thousands for a giant micro-LED TV?
For most people, we recommend looking for a TV with mini-LED, like the Editor"s Choice Samsung Neo QLED QN90A, or the more affordable TCL 6-Series Roku TV (R635). Mini LED backlighting hits the sweet spot for affordability and improved backlight performance. If you want better than average backlight control without spending the extra money for an old TV, a mini LED TV is the way to go.Our favorite TVs
Most people find themselves entangled in a perplexing situation while choosing the right TV for themselves. Buyers of big brands like Sony, Samsung and LG see their purchase as a safe deal as they are established brands and we have seen their performance for a long time now. However, individuals seeking to choose from amongst the budget offerings are the ones who are more likely to get confused in selecting the right TV that could be the best bang for their buck.
This article will give you an insight into the technical aspects of different TVs and by the end of this write-up, you yourselves would be armed with adequate technical knowledge to choose the best TV for yourself.
Most television companies, as well as sellers, misguide consumers by saying that this particular TV is not LCD but LED. So, first of all, we need to understand that all TVs are basically only
LCDs. What we refer to as LED is simply an update to the existing LCD panels. The panel technology is the same, however, the backlight is entirely different. Those LCDs that use LEDs as a light source are generally termed as LEDs. In short, a LED-backlight is a replacement for the uniform CCFL (Cold Cathode Fluorescent Light) backlight that previously gave LCD TVs its brightness.
Initially, there were only CCFL-backlit LCDs, but with advancement in technology, these CCFL were replaced by LEDs, as not only they dramatically reduced power consumption by over 40 percent compared to conventional CCFL-backlit LCDs, we got more control over the image quality by modulating these individual LEDs.
In the LED-backlit LCDs, LED lights can switch on and off individually, which allows the image to have greater contrast, bright whites and deep black in the same image. Thus, producing a superior picture when compared to CCFL-backlit LCDs. LCD TVs with LEDs also offer better response time in comparison to CCFL-backlit LCDs.
In the traditional LCDs, the CCFL lights were spread all across the surface behind the display screen, but there was no control over them. It means that when we switched on our TV, the entire surface behind the screen used to get illuminated by these CCFL lights that were always ON, and we were unable to control their dimming in specific areas of the screen.
Because of this, even the dark part of the picture used to be illuminated like the rest and we were unable to achieve images with convincing blacks, as light passed through the dark part of the picture and made it appear grey. In other words, the contrast of CCFL-backlit LCD panels isn’t very good. However, a plasma TV doesn’t have this problem as each pixel can light up or switch-off according to the demand of the picture.
Now coming to LCDs that use LEDs as the source of illumination, there are basically three types. One is Full-array backlighting, another is Edge-lit backlighting (ELED) and third is direct-lit LED backlights (DLED).
The term full-array is used where LEDs cover the entire back-side of the LCD panel. Full-array TVs are high-ends TVs that are heavier and often thicker, but they provide better picture quality as all parts of the screen are evenly backlit. They offer the most effective local dimming, as the LEDs are more in number and are spread over the entire back surface of the panel. The independent dimming of each LED in these TV sets helps in achieving perfect blacks. But, as they are costlier to manufacture, they are rare.
Edge LEDs use an array of LED backlights along the outer edges of the screen that use lightguides or diffusers to fire light across into the centre of the screen.
This technology allows the designing and manufacturing of exceptionally thin TV sets. Edge-lit sets also have a cost-benefit over direct, local dimming versions (DLED) as fewer LEDs are used in them. Because of which, they are power efficient too.
However, technically, it is the least effective system in terms of achieving a high contrast ratio as it does not offer ‘local dimming’. The black levels are not as deep and the edge area of the screen has a tendency to be brighter than the centre area of the screen. The Edge TVs not only struggle to produce a high contrast, they can also get affected by Murra Effect, which can cause light to bleed from sides to gradually overpower the entire screen.
Direct-lit LED backlights are an offshoot of full-array backlighting, though they use significantly fewer LEDs across the back of the panel. In this technology, several rows of LEDs are placed behind the entire surface of the screen.
As the LEDs are behind the LCD panel in DLED TVs, dual modulation works far more efficiently and the TVs can have better overall brightness and contrast. Using a feature called local dimming, the LEDs are divided into a number of zones that can be individually controlled, so some portions of the backlight can be dimmed while other remain illuminated.
Direct-lit LEDs can have around 200+ LED lights arranged all over the screen in clusters. Visually it is the most impressive technology, though it’s more expensive and adds extra millimetres to the depth of the TV, these TVs have local dimming that improves the blackness of an image and produce best in class picture quality, with an exceptional contrast ratio of up to 10,000,000:1. They have the ability to implement new levels of peak light output and give superb motion reproduction. Some EDGE LEDs also stake claim to local dimming, but in these TVs, it is hardly able to bring the desired effect.
Apart from being more expensive and adding to the depth of the TV, these DLED TVs might display ‘Halo Effect’ for bright images on a dark background, in which constellations of LED lights from behind the screen can cause bright objects to appear with a slight ring around them.
Though different brand TVs might be using the same DLED or ELED backlighting, their image quality might differ considerably depending on how many lights are used and how they are aligned. In some budget Edge-lit TVs, LEDs are aligned on only one side, either upper or lower edge of the TV panel, while others might have LEDs on both upper and lower edges of the panel. The high end TVs might even have a row of LEDs on all four edges of the panel. Some manufacturers use both Edge and Direct LED systems for LCD TVs. The best professional monitors use direct LEDs.
Though bigger brands like Sony, Samsung and LG also prefer EDGE-lit LED backlighting in their TVs, they complement it with some of their indigenously formulated technology to enhance the picture quality.
TV manufacturers lay more stress on producing TVs with ELED technology as it not only cut down upon their expenditure but allows them the liberty of producing ultra-slim TV sets that can appeal the masses with their aesthetically designed panels.
Modern LCD TVs rely on LED backlighting to produce the visuals you see on the screen. But their picture quality and price can differ based on their backlighting system. So, what are these backlighting systems, and how are they different?
LCD TVs can be grouped into three categories based on the type of LED backlighting system: Direct-lit, edge-lit, and full-array. As the name suggests, direct-lit TVs feature a panel of LEDs placed directly behind the display stack. Full-array TVs have a similar LED placement, but the number of LEDs is significantly more, and these LEDs are divided into different zones. But unlike both direct-lit and full-array TVs, edge-lit TVs have LEDs on the perimeter, and depending on the TV, these LEDs may or may not be grouped into multiple zones.
The LED backlight zones in full array and edge-lit TVs are significant as they enable the manufacturers to implement a feature called local dimming. It allows TVs to control the backlight on a scene-by-scene basis. So the TV can turn off LED backlighting in parts of the screen where it’s supposed to be darker while keeping other parts lit. As a result, LCD TVs with local dimming can produce deep, uniform blacks and have a better contrast ratio than the LCD TVs that don’t have this feature.
Direct lighting is the newest of the three types backlighting in LCD TVs. The first commercial direct-lit LCD TVs emerged around 2012 and are essentially an off-shoot of the full-array TVs.
As direct-lit TVs require fewer LEDs and no backlight control, they are cheaper to produce and thus typically limited to the entry-level and mid-range segments of a TV manufacturer’s portfolio.
But, the lower number of LEDs also means they have to be placed farther away from the screen to offer sufficient light coverage across the panel. As a result, direct-lit TVs are usually thicker than TVs with other backlighting systems.
Additionally, the lack of backlight control limits the contrast ratio of direct-lit LCD TVs to the native contrast ratio of the panel. So if a direct-lit TV uses a VA-type LCD panel, it will have a reasonable contrast ratio, but TVs with IPS-type panels have a poor contrast ratio.
Sony X85J is a direct-lit 4K LCD TV. It uses a VA-type panel and comes with features like HDMI 2.1 ports, VRR support, and Android TV operating system.
Edge LED backlighting first appeared in TVs in 2008, allowing for a thinner profile than LCD TVs with other backlighting solutions. But as the LEDs are placed on the rim of the screen, edge-lit TVs require a diffuser to light up the entire display adequately. This adds to their cost, making them slightly more expensive than direct-lit TVs. But given that backlighting is just one part of an LCD TV’s cost, you will find both cheap and costly edge-lit TVs on the market.
Some edge-lit TVs also come with local dimming support. But the number of backlight zones is typically far lower than in full-array TVs, and the individual LEDs are responsible for lighting up entire columns of the screen. So edge-lit local dimming is much less precise, and the benefit in terms of contrast ratio is minimal.
Full-array TVs have the best backlight implementation among LCD TVs. Not only do these TVs have a large number of LEDs, but the LEDs are also divided into multiple zones for dynamic backlight control. So, depending on the number of backlight zones and local dimming implementation, full-array TVs can have modest to excellent improvement over the native contrast ratio of the LCD panel.
Unfortunately, LCD TVs with full-array local dimming can also suffer from various screen artifacts, such as blooming and black crush, depending on the number of backlight zones and the overall local dimming implementation.
The Samsung QN90A is one of the best LCD TVs on the market and it uses full-array local dimming. The TV has 4K resolution, HDMI 2.1 port, and a 120Hz VA-type panel.
If you are shopping for a new TV and curious about its backlighting system, you can consult the TV’s specifications. Manufacturers generally mention whether an LCD TV is direct lit, edge lit, or full array. In the case of full-array TVs, the number of local dimming or backlight control zones is also listed in the TV’s specifications. This number is usually different for different sizes of a particular TV and can impact the amount of contrast ratio gain you can expect.
OLED TVs are self-emissive and don’t need a backlight, unlike LCD TVs. Instead, each pixel of an OLED panel can generate its own light and be switched off to display the perfect black color. So, OLED TVs essentially offer pixel-level local dimming. As a result, they have a near-infinite contrast ratio and are generally considered to have the best picture quality. But they are also typically more expensive than LCD TVs and can suffer from burn-in.
All-in-all, the backlight system of an LCD TV can impact its picture performance. And if you are shopping for a new TV, full-array TVs generally have the best picture quality. But if you are restricted by your budget, direct and edge-lit TVs can also deliver good visual performance. But make sure to read expert reviews to get a better idea about the overall quality of a particular television.
During the Consumer Electronics Show back in January, we noticed that some TV manufacturers were debuting LCD TVs with a new type of LED backlight, a direct-lit LED backlight.
At the time we didn"t know a lot about direct-lit LED backlights, but based on where these TVs were positioned in the manufacturer"s lineup—typically in or close to the entry-level series—it appeared that direct-lit LED backlight technology was able to bridge the price gap between lower-cost CCFL (fluorescent) backlights and the newer edge LED backlights that have become increasingly common in many LCD TVs. This year, for example, both Samsung (EH series) and LG (LS3400 series) are offering lower-priced LCD TVs with direct-lit LED backlights.
Most of the LCD TVs in our TV Ratings now come with edge LED backlights, where the LEDs are arrayed around the perimeter—typically the sides—of the TV. A waveguide (or lightguide, or diffuser) then spreads the light across the entire panel, hopefully in a uniform fashion.
The other type of LED-based backlighting we"ve seen—now less common—is a full-array LED backlight, where rows of LEDs are spread across the entire back panel of the TV. Using a feature called local dimming, the LEDs are divided into a number of zones that can be individually controlled, so some portions of the backlight can be dimmed while other remain illuminated. In some instances, we"ve seen this improve contrast and black levels. Some edge LEDs also have a form of local dimming, but this has had a negligible effect on contrast or black levels on most of the TVs we"ve tested.
Direct-lit LED backlights are an offshoot of full-array backlighting, in that they use LEDs spread across the entire back panel of the TV. (The TV"s spec page may just refer to these TVs as having a full-array backlight.) However, there are a few key differences compared to the more expensive full-array LED sets we"ve tested previously. One is that they use significantly fewer LEDs across the back of the panel. Another is that these sets lack the local dimming feature.
In addition, these TVs are much deeper than previous LED-backlit models, especially the ultra-thin edge LED sets. In fact, they more closely resemble LCD TVs with CCFL backlights. The reason: Because fewer LEDs are used, they have to be moved farther away from the screen to provide adequate light coverage across the panel, much the way the beam of a flashlight gets wider as you move it away from an object.
But the primary reason we"re seeing direct-lit LED backlights is price. Though they do cost a bit more than CCFL models, they"re less expensive than edge LED models, since they don"t require the lightguide plates. And in a tough economy, this lets manufacturers offer less-expensive models without having to forgo what has become perceived as a key LCD feature—an LED backlight. Although direct-lit LED backlights are no slimmer than CCFL-based LCD TVs, they do offer an advantage over models with fluorescent lights: better energy efficiency.
We"re currently testing a few Samsung models that use direct-lit LED backlights, so make sure to check out our TV Ratings in the next week or so to see how these sets fared. We"ll also be watching the market to see if more manufacturers embrace this type of backlight in their lower-priced LCD TV models.
The Hisense U8H matches the excellent brightness and color performance of much pricier LCD TVs, and its Google TV smart platform is a welcome addition. But it’s available in only three screen sizes.
The Hisense U8H is the best LCD/LED TV for most people because it delivers the performance of a much pricier TV yet starts at under $1,000, for the smallest (55-inch) screen size. This TV utilizes quantum dots, a full-array backlight with mini-LEDs, and a 120 Hz refresh rate to deliver a great-looking 4K HDR image. It’s compatible with every major HDR format. And it’s equipped with two full-bandwidth HDMI 2.1 inputs to support 4K 120 Hz gaming from the newest Xbox and PlayStation consoles. Add in the intuitive, fully featured Google TV smart-TV platform, and the U8H’s price-to-performance ratio is of inarguable value.
Key to this functionality is the U8H’s employment of mini-LED backlighting with local dimming, which allows this TV to produce very bright light while still maintaining satisfyingly deep black levels that are typically free of blooming (or light bleed that’s visible around bright objects against a dark backdrop). This not only ensures impressive image contrast, it also makes the U8H a viable choice for most rooms, whether they’re brighter than average or dimmed down like a movie theater.
That’s not to say the U8H has pixel-precise light control—it’s not an OLED TV, after all—but it does a terrific job most of the time. In fact, in our tests, the U8H bested last year’s upgrade pick, the Samsung QN90A, in certain scenarios: The intro to Guillermo del Toro’s Cabinet of Curiosities on Netflix features the filmmaker against a pitch-black backdrop. Though last year’s QN90A failed to maintain perfect control over dimming elements during this scene (the black backdrop brightened distractingly once a sufficient amount of brighter content appeared on screen), the U8H did not. (For the record, the newer QN90B also passed this test.) The U8H’s mini-LEDs also help the screen look uniformly bright: Although the U8H is still not as good as an OLED TV in this respect, it shows very little indication of being a backlight-driven display, even during tricky scenes with large swaths of dim lighting.
The U8H’s brightness, black-level integrity, and local-dimming abilities make this an excellent TV for watching HDR content. The U8H is capable of playing HDR content in all of the major formats (HDR10, HDR10+, Dolby Vision, and HLG), but when it comes to impressive HDR, what’s under the hood is much more important than format compatibility. The most crucial thing for good HDR is high brightness and deep color saturation, and the U8H’s quantum dots achieve the latter. It’s not as simple as just having quantum dots, however: While many TVs (even the budget options) have quantum dots nowadays, what is often not taken into account is that brightness directly affects color saturation. For example, both the 2022 TCL 6-Series and the Hisense U8H are equipped with quantum dots, mini-LED backlights, and local dimming. But because the U8H is notably brighter than the 6-Series, it also achieves a higher total color volume. During our color-volume testing, the U8H exhibited color ranges at more than 100% of the DCI-P3 color space (the range of color needed to properly display HDR content), and it is capable of roughly 10% more total color volume compared with the 6-Series.
What does this mean in real-world terms? It means that the Hisense U8H truly excels as a modern 4K HDR TV, whether you’re watching the latest episode of Rings of Power or playing Overwatch 2. While watching HDR content side by side on the U8H and on our upgrade pick, the Samsung QN90B, I was truly surprised by how similar they looked at times, given that our upgrade pick is much more expensive. That said, though the U8H achieves impressive results where light output and color volume are concerned, it also exhibited some occasional video processing and upscaling issues (see Flaws but not dealbreakers), which videophiles and AV enthusiasts may take umbrage with. But in general, the picture quality punches well above its weight, metaphorically speaking.
And thanks to Hisense’s inclusion of Filmmaker Mode, it’s easy to rein in the U8H’s brightness abilities for a more-subdued and filmic experience in a darker room. Our measurements revealed that this mode has a very accurate white balance, mostly accurate colors (green is a bit oversaturated, but not egregiously so), and a perfect “dark room” gamma (which controls how quickly the video signal transitions from dark to light). Additionally, the TV’s 120 Hz refresh rate means it can play Blu-ray discs at 24 fps without the judder that’s usually present on TVs with 60 Hz refresh rates.
In terms of design, the Hisense U8H is not as svelte as our upgrade pick, but it’s plenty sturdy and doesn’t look or feel cheap. Two narrow, metal feet jut out from beneath the panel and steadily hold the TV. They can be attached in two separate spots, either closer in toward the middle of the panel or out toward the edges, to account for different-size TV stands. The feet are also equipped with cable organization clasps—a nice touch for keeping your TV stand free of cable clutter. Though the TV is primarily plastic, its bezels are lined with metal strips, providing a bit more durability in the long run. I moved it around my home, and it was no worse for wear, but we’ll know more after doing some long-term testing.
The Hisense U8H has some difficulties with banding, or areas of uneven gradation, where transitions that should appear smooth instead look like “bands” of color (sometimes also called posterization). Like many current 4K HDR TVs, the U8H uses an 8-bit panel rather than a 10-bit panel, which affects the color decoding and color presentation process. This is usually relevant only with HDR video and games. When playing games on the PlayStation 5 and Xbox Series X, I saw a few instances where the content wasn’t rendered correctly and displayed ugly splotches of color on the screen. However, this almost always occurred during static screens (such as a pause menu or loading screen); I rarely spotted it during actual gameplay. Hisense has stated that it would address the problem in a future firmware update, but at the time of writing it was still present. This is a flaw that may give dedicated gamers pause, but we don’t consider it to be a dealbreaker for most people.
I also saw occasional instances of banding with TV shows and movies, though they were few and far between. The U8H isn’t the best at upscaling sub-4K content, so videos with a 1080p or lower resolution looked a little soft. You can get better overall video processing and upscaling by springing for our upgrade pick (this is one reason it’s more expensive, after all).
Finally, like most TVs that use vertical alignment (VA) LCD panels, the U8H has a limited horizontal viewing angle, which may be a bit annoying if you’re hoping to entertain a large crowd. Our upgrade pick uses a special wide-angle technology to address this.
For gaming, use the game picture mode (the TV should switch into this mode automatically when paired with the newer game consoles), and then go into the Gaming submenu to make sure the right settings (VRR) are enabled. We recommend leaving the HDMI setting in “auto,” unless you notice that your game console is incorrectly identified.