lcd screen resolution free sample

LCD display doesn’t operate the same way as CRT displays , which fires electrons at a glass screen, a LCD display has individual pixels arranged in a rectangular grid. Each pixel has RGB(Red, Green, Blue) sub-pixel that can be turned on or off. When all of a pixel’s sub-pixels are turned off, it appears black. When all the sub-pixels are turned on 100%, it appears white. By adjusting the individual levels of red, green, and blue light, millions of color combinations are possible

The pixels of the LCD screen were made by circuitry and electrodes of the backplane. Each sub-pixel contains a TFT (Thin Film Transistor) element.  These structures are formed by depositing various materials (metals and silicon) on to the glass substrate that will become one part of the complete display “stack,” and then making them through photolithography. For more information about TFT LCDs, please refer to “

The etched pixels by photolith process are the Native Resolution. Actually, all the flat panel displays, LCD, OLED, Plasma etc.) have native resolution which are different from CRT monitors

HD TV has 1280×720 = 921,600 pixels; Full HD has 1920x 1080=2,073,600 pixels; 8K TV has 7,680×4,320=33,177,600 pixels. he “K” in 8K stands for Kilo (1000), meaning a TV that has achieved a horizonal resolution of about 8,000 pixels.

Although we can define a LCD display with resolution, a Full HD resolution on screen size of a 15” monitor or a 27” monitor will show different. The screen “fineness” is very important for some application, like medical, or even our cell phone. If the display “fineness” is not enough, the display will look “pixelized” which is unable to show details.

DPI stands for dots per inch and refers to the resolution of a printer. It describes the density of ink dots placed on a sheet of paper (or another photographic medium) by a printer to create a physical print.

PPI stands for number of pixels per inch. It is kind of pixel density. PPI describes the resolution of a digital image, not a print. PPI is used to resize images in preparation for printing

But you see other lower resolution available, that is because video cards are doing the trick. A video card can display a lower LCD screen resolution than the LCD’s built-in native resolution. The video cards can combine the pixels and turn a higher resolution into lower resolution, or just use part of the full screen. But video cards can’t do the magic to exceed the native resolution.

Aspect Ratio:  You might hear 4:3 which is full screen, 16:9 is for widescreen; 21:9 is for ultrawide computer monitors and televisions, as well as cinematic widescreen projectors. Some ultrawide monitors are trying to replace dual monitor.

lcd screen resolution free sample

With all the advantages and disadvantages, lcdds are essentially a good choice for those who see the TV starting from 4k smartphone. Nowadays, in addition to the wholesale models, lcdds are essentially a good option for those that don ’ t have the capacity of a device.

lcd screen resolution free sample

Established in 2010, Topfoison has devoted itself to the manufacturing and development of high-quality products for the Wearable device, Smart Watch, VR, Medical device, Industrial LCD display including Color LCD modules/OLED/LCD display/Round lcd screen/Round AMOLED/ Square transflective lcd screen/ IPS full wide display/ 1080p fhd AMOLED and 2K 1440p lcd. Topfoison focus on1.22-7.0 inch small size displays, all the products produced in our company enjoys the most advanced production craft and technology as well as the strictly ISO quality management system.

lcd screen resolution free sample

Screen resolution is crucial for designers, photographers and artists. When you"re working on digital creations, your monitor is one of the most important tools you own since it shows you what"s happening while you work as well as the final result.

The screen resolution of your monitor can have a huge impact on how your work is displayed, and on how comfortably you can work without straining your eyes, so it"s important to know what screen resolution your monitor has, and what screen resolution to choose when you"re upgrading your kit.

If your screen resolution is too high, icons and texts may appear too small and your hardware may be put under additional strain as the monitor struggles to hit the high resolutions. But if your screen resolution is set too low, it can result in poor image quality that takes up too much workspace and can also harm the results of your work.

In this guide, we"ll explain why screen resolution is so important for designers and how it can affect your results, how to check the screen resolution of your current monitor, and how to buy the best monitor for your needs

What do we mean when we talk about screen resolution? The monitor that"s connected to your PC – or built into your laptop – displays images using pixels, which are essentially small squares of light that change colour. Computer screens are made up of thousands of pixels. By changing the colours of those pixels in certain patterns, screens can show images, photos, text and all kinds of graphics.

The numbers that we use when we talk about screen resolution are the number of pixels a screen can show horizontally and vertically. A screen that has a resolution of 1920 x 1080 (a popular resolution often known as 1080p or Full HD), can display 1,080 pixels vertically, and 1,920 pixels horizontally.

The higher the number of pixels a screen can show, the sharper and more detailed the image quality. But, the number of pixels that a screen can show isn"t the only factor involved when it comes to image quality. There"s also pixel density. Monitors come in all kinds of sizes, as well as resolutions. You"ll often find monitors of different sizes that have the same number of pixels, for example a 24-inch monitor and a 32-inch monitor both with a screen resolution of 1920 x 1080. The image quality on the smaller monitor can often look sharper and more vivid because of its pixel density. This is measured in PPI (Pixels Per Inch). The smaller screen will have a higher number of pixels per inch than the larger screen.

The higher the PPI, the better the image quality, so while it might be tempting to choose the largest screen possible, if you"re looking for the best image quality, consider getting a smaller monitor with a higher resolution rather than a larger monitor with a lower resolution.

It"s worth bearing in mind that the screen resolution that your monitor advertises isn"t the only resolution it can display. The published resolution is known as the native resolution of the screen and is the resolution that looks best on the display. You can change the resolution of the screen, although you can only change it to a lower resolution than the native resolution, not higher.

For example, if you buy a 4K (also known as an Ultra High Definition) screen, with a resolution of 3840 x 2160, and you find the resolution is too high, you can set your PC, Mac or laptop to display at a lower resolution, for example 1920 x 1080.

If you want to check the native resolution of your monitor or laptop screen, the process is pretty easy, although it differs depending on whether you use a Windows machine or a Mac or MacBook.

If you use Windows on your PC or laptop, you can check the screen resolution (and change it) by right-clicking on an empty space on the desktop and clicking "Display settings".

In the window that opens, you"ll see "Display resolution" with the current resolution listed underneath. If it says "(Recommended)" next to the resolution, that means it"s the native resolution for your display and the one that will probably look the best.

If you want to change the screen resolution, click the down arrow next to the resolution. This will show a list of all the other display resolutions your screen can handle. Click one, and the resolution will be applied – temporarily at least.

Because changing the resolution to something that your screen doesn"t support can cause problems, Windows will show you what the resolution looks like and ask you if you want to keep it. If you do, click "Keep changes". Otherwise, click "Revert" to change the resolution back to what it was before. You can also choose to do nothing, and after 15 seconds your device will revert to the previous resolution. This is useful if you accidentally choose a resolution that your display can"t handle, leading to it displaying a blank screen. Simply wait 15 seconds, and the old resolution will come back.

The easiest way to find the display resolution on your Mac or MacBook is to click the Apple icon in the top left-hand corner of the screen. On the menu that appears, select "About This Mac". A window will pop up, and at the top you"ll see "Displays." Click there, and you"ll see the size and resolution of your screen.

To change the display resolution on your Mac"s screen, click on "Displays Preferences" in the bottom right-hand corner of the open window. In the new window that pops up, select "Scaled" next to where it says "Resolution". Choose the resolution based on whether you want larger text or more space.

So, what screen resolution should you go for? The answer to that question varies depending on the sort of work you"ll be doing and what kind of machine you"ll be working on.

Let"s start with the kind of work. If you"re a graphic artist or 3D modeller, then the minimum resolution you should opt for is 1360 x 768. However, if you can, we recommend going for 1920 x 1080. That extra resolution will give you a bigger canvas to work on, and it will improve the image quality.

For people working with complex 3D models, such as architects, animators or game developers, going above 1920 x 1080 can begin to put a real strain on your machine"s GPU (Graphics Processing Unit). If you want to go for a higher resolution, make sure your hardware can handle it, otherwise you may find your PC performs very slowly when trying to render at those high resolutions.

For video editors, we recommend 1920 x 1080 as a minimum. This is because 1080p is the standard high-definition resolution for videos, so if you"re working with 1080p video, you"ll want a screen that can display that natively. If you work with 4K video, then go for a screen resolution of 3840 x 2160 since this will allow you to play back 4K footage natively.

For photographers, we"d recommend going for the highest resolution you can afford. Still images don"t require as much graphical grunt to display on high-resolution screens, and most photographs are taken at well above 1080p resolutions. For example, a camera that takes 21-megapixel photos is actually capturing images at 5,104 x 4,092 resolution. Even a 4K monitor won"t display that natively, but the higher the resolution of the screen, the better (and more accurately) your photos will appear.

The resolutions we mention above apply to standard widescreen monitors with a 16:9 aspect ratio. However, some devices have different aspect ratios – and therefore different display resolutions.

For example, the 15-inch MacBook Pro has a 2,880 x 1,800 resolution screen. That makes it a lot sharper than a standard 1080p display. Meanwhile, the Surface Laptop 3(opens in new tab) has a 15-inch display with a 3:2 aspect ratio and 2,496 x 1,664 resolution. Again, that makes it a better display than a standard 1080p screen, though not quite as sharp as the screen on the MacBook Pro.

Other excellent laptops with high screen resolutions recommended for digital creatives include the Surface Book 2(opens in new tab) (with a 3,240 x 2,160 resolution), the Dell XPS 15(opens in new tab), which comes with either a 2,560 x 1,080 screen, or a 3,840 x 2,160 display.

Check out our pick of the best laptops for graphic design(opens in new tab) for more great laptops with high-resolution screens.The best deals on 4k monitors

lcd screen resolution free sample

Many Apple products use liquid crystal displays (LCD). LCD technology uses rows and columns of addressable points (pixels) that render text and images on the screen. Each pixel has three separate subpixels—red, green and blue—that allow an image to render in full color. Each subpixel has a corresponding transistor responsible for turning that subpixel on and off.

Depending on the display size, there can be thousands or millions of subpixels on the LCD panel. For example, the LCD panel used in the iMac (Retina 5K, 27-inch, 2019) has a display resolution of 5120 x 2880, which means there are over 14.7 million pixels. Each pixel is made up of a red, a green, and a blue subpixel, resulting in over 44 million individual picture elements on the 27-inch display. Occasionally, a transistor may not work perfectly, which results in the affected subpixel remaining off (dark) or on (bright). With the millions of subpixels on a display, it is possible to have a low number of such transistors on an LCD. In some cases a small piece of dust or other foreign material may appear to be a pixel anomaly. Apple strives to use the highest quality LCD panels in its products, however pixel anomalies can occur in a small percentage of panels.

In many cases pixel anomalies are caused by a piece of foreign material that is trapped somewhere in the display or on the front surface of the glass panel. Foreign material is typically irregular in shape and is usually most noticeable when viewed against a white background. Foreign material that is on the front surface of the glass panel can be easily removed using a lint free cloth. Foreign material that is trapped within the screen must be removed by an Apple Authorized Service Provider or Apple Retail Store.

lcd screen resolution free sample

For screen sizes (typically in inches, measured on the diagonal), see Display size. For a list of particular display resolutions, see Graphics display resolution.

This chart shows the most common display resolutions, with the color of each resolution type indicating the display ratio (e.g. red indicates a 4:3 ratio).

The display resolution or display modes of a digital television, computer monitor or display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays (including liquid-crystal displays) and projection displays using fixed picture-element (pixel) arrays.

One use of the term display resolution applies to fixed-pixel-array displays such as plasma display panels (PDP), liquid-crystal displays (LCD), Digital Light Processing (DLP) projectors, OLED displays, and similar technologies, and is simply the physical number of columns and rows of pixels creating the display (e.g. 1920 × 1080). A consequence of having a fixed-grid display is that, for multi-format video inputs, all displays need a "scaling engine" (a digital video processor that includes a memory array) to match the incoming picture format to the display.

For device displays such as phones, tablets, monitors and televisions, the use of the term display resolution as defined above is a misnomer, though common. The term display resolution is usually used to mean pixel dimensions, the maximum number of pixels in each dimension (e.g. 1920 × 1080), which does not tell anything about the pixel density of the display on which the image is actually formed: resolution properly refers to the pixel density, the number of pixels per unit distance or area, not the total number of pixels. In digital measurement, the display resolution would be given in pixels per inch (PPI). In analog measurement, if the screen is 10 inches high, then the horizontal resolution is measured across a square 10 inches wide.NTSC TVs can typically display about 340 lines of "per picture height" horizontal resolution from over-the-air sources, which is equivalent to about 440 total lines of actual picture information from left edge to right edge.

Some commentators also use display resolution to indicate a range of input formats that the display"s input electronics will accept and often include formats greater than the screen"s native grid size even though they have to be down-scaled to match the screen"s parameters (e.g. accepting a 1920 × 1080 input on a display with a native 1366 × 768 pixel array). In the case of television inputs, many manufacturers will take the input and zoom it out to "overscan" the display by as much as 5% so input resolution is not necessarily display resolution.

The eye"s perception of display resolution can be affected by a number of factors – see image resolution and optical resolution. One factor is the display screen"s rectangular shape, which is expressed as the ratio of the physical picture width to the physical picture height. This is known as the aspect ratio. A screen"s physical aspect ratio and the individual pixels" aspect ratio may not necessarily be the same. An array of 1280 × 720 on a 16:9 display has square pixels, but an array of 1024 × 768 on a 16:9 display has oblong pixels.

An example of pixel shape affecting "resolution" or perceived sharpness: displaying more information in a smaller area using a higher resolution makes the image much clearer or "sharper". However, most recent screen technologies are fixed at a certain resolution; making the resolution lower on these kinds of screens will greatly decrease sharpness, as an interpolation process is used to "fix" the non-native resolution input into the display"s native resolution output.

While some CRT-based displays may use digital video processing that involves image scaling using memory arrays, ultimately "display resolution" in CRT-type displays is affected by different parameters such as spot size and focus, astigmatic effects in the display corners, the color phosphor pitch shadow mask (such as Trinitron) in color displays, and the video bandwidth.

Most television display manufacturers "overscan" the pictures on their displays (CRTs and PDPs, LCDs etc.), so that the effective on-screen picture may be reduced from 720 × 576 (480) to 680 × 550 (450), for example. The size of the invisible area somewhat depends on the display device. Some HD televisions do this as well, to a similar extent.

Many personal computers introduced in the late 1970s and the 1980s were designed to use television receivers as their display devices, making the resolutions dependent on the television standards in use, including PAL and NTSC. Picture sizes were usually limited to ensure the visibility of all the pixels in the major television standards and the broad range of television sets with varying amounts of over scan. The actual drawable picture area was, therefore, somewhat smaller than the whole screen, and was usually surrounded by a static-colored border (see image to right). Also, the interlace scanning was usually omitted in order to provide more stability to the picture, effectively halving the vertical resolution in progress. 160 × 200, 320 × 200 and 640 × 200 on NTSC were relatively common resolutions in the era (224, 240 or 256 scanlines were also common). In the IBM PC world, these resolutions came to be used by 16-color EGA video cards.

One of the drawbacks of using a classic television is that the computer display resolution is higher than the television could decode. Chroma resolution for NTSC/PAL televisions are bandwidth-limited to a maximum 1.5MHz, or approximately 160 pixels wide, which led to blurring of the color for 320- or 640-wide signals, and made text difficult to read (see example image below). Many users upgraded to higher-quality televisions with S-Video or RGBI inputs that helped eliminate chroma blur and produce more legible displays. The earliest, lowest cost solution to the chroma problem was offered in the Atari 2600 Video Computer System and the Apple II+, both of which offered the option to disable the color and view a legacy black-and-white signal. On the Commodore 64, the GEOS mirrored the Mac OS method of using black-and-white to improve readability.

The 640 × 400i resolution (720 × 480i with borders disabled) was first introduced by home computers such as the Commodore Amiga and, later, Atari Falcon. These computers used interlace to boost the maximum vertical resolution. These modes were only suited to graphics or gaming, as the flickering interlace made reading text in word processor, database, or spreadsheet software difficult. (Modern game consoles solve this problem by pre-filtering the 480i video to a lower resolution. For example, Final Fantasy XII suffers from flicker when the filter is turned off, but stabilizes once filtering is restored. The computers of the 1980s lacked sufficient power to run similar filtering software.)

In the PC world, the IBM PS/2 VGA (multi-color) on-board graphics chips used a non-interlaced (progressive) 640 × 480 × 16 color resolution that was easier to read and thus more useful for office work. It was the standard resolution from 1990 to around 1996.800 × 600 until around 2000. Microsoft Windows XP, released in 2001, was designed to run at 800 × 600 minimum, although it is possible to select the original 640 × 480 in the Advanced Settings window.

Programs designed to mimic older hardware such as Atari, Sega, or Nintendo game consoles (emulators) when attached to multiscan CRTs, routinely use much lower resolutions, such as 160 × 200 or 320 × 400 for greater authenticity, though other emulators have taken advantage of pixelation recognition on circle, square, triangle and other geometric features on a lesser resolution for a more scaled vector rendering. Some emulators, at higher resolutions, can even mimic the aperture grille and shadow masks of CRT monitors.

In 2002, 1024 × 768 eXtended Graphics Array was the most common display resolution. Many web sites and multimedia products were re-designed from the previous 800 × 600 format to the layouts optimized for 1024 × 768.

The availability of inexpensive LCD monitors made the 5∶4 aspect ratio resolution of 1280 × 1024 more popular for desktop usage during the first decade of the 21st century. Many computer users including CAD users, graphic artists and video game players ran their computers at 1600 × 1200 resolution (UXGA) or higher such as 2048 × 1536 QXGA if they had the necessary equipment. Other available resolutions included oversize aspects like 1400 × 1050 SXGA+ and wide aspects like 1280 × 800 WXGA, 1440 × 900 WXGA+, 1680 × 1050 WSXGA+, and 1920 × 1200 WUXGA; monitors built to the 720p and 1080p standard were also not unusual among home media and video game players, due to the perfect screen compatibility with movie and video game releases. A new more-than-HD resolution of 2560 × 1600 WQXGA was released in 30-inch LCD monitors in 2007.

In 2010, 27-inch LCD monitors with the 2560 × 1440 resolution were released by multiple manufacturers, and in 2012, Apple introduced a 2880 × 1800 display on the MacBook Pro. Panels for professional environments, such as medical use and air traffic control, support resolutions up to 4096 × 21602048 × 2048 pixels).

In this image of a Commodore 64 startup screen, the overscan region (the lighter-coloured border) would have been barely visible when shown on a normal television.

The following table lists the usage share of display resolutions from two sources, as of June 2020. The numbers are not representative of computer users in general.

In recent years the 16:9 aspect ratio has become more common in notebook displays. 1366 × 768 (HD) has become popular for most low-cost notebooks, while 1920 × 1080 (FHD) and higher resolutions are available for more premium notebooks.

When a computer display resolution is set higher than the physical screen resolution (native resolution), some video drivers make the virtual screen scrollable over the physical screen thus realizing a two dimensional virtual desktop with its viewport. Most LCD manufacturers do make note of the panel"s native resolution as working in a non-native resolution on LCDs will result in a poorer image, due to dropping of pixels to make the image fit (when using DVI) or insufficient sampling of the analog signal (when using VGA connector). Few CRT manufacturers will quote the true native resolution, because CRTs are analog in nature and can vary their display from as low as 320 × 200 (emulation of older computers or game consoles) to as high as the internal board will allow, or the image becomes too detailed for the vacuum tube to recreate (i.e., analog blur). Thus, CRTs provide a variability in resolution that fixed resolution LCDs cannot provide.

As far as digital cinematography is concerned, video resolution standards depend first on the frames" aspect ratio in the film stock (which is usually scanned for digital intermediate post-production) and then on the actual points" count. Although there is not a unique set of standardized sizes, it is commonplace within the motion picture industry to refer to "nK" image "quality", where n is a (small, usually even) integer number which translates into a set of actual resolutions, depending on the film format. As a reference consider that, for a 4:3 (around 1.33:1) aspect ratio which a film frame (no matter what is its format) is expected to horizontally fit in, n is the multiplier of 1024 such that the horizontal resolution is exactly 1024•n points.2048 × 1536 pixels, whereas 4K reference resolution is 4096 × 3072 pixels. Nevertheless, 2K may also refer to resolutions like 2048 × 1556 (full-aperture), 2048 × 1152 (HDTV, 16:9 aspect ratio) or 2048 × 872 pixels (Cinemascope, 2.35:1 aspect ratio). It is also worth noting that while a frame resolution may be, for example, 3:2 (720 × 480 NTSC), that is not what you will see on-screen (i.e. 4:3 or 16:9 depending on the intended aspect ratio of the original material).

lcd screen resolution free sample

This chart shows the most common display resolutions, with the color of each resolution type indicating the display ratio (e.g. red indicates a 4:3 ratio).

Many of these resolutions are also used for video files that are not broadcast. These may also use other aspect ratios by cropping otherwise black bars at the top and bottom which result from cinema aspect ratios greater than 16∶9, such as 1.85 or 2.35 through 2.40 (dubbed "Cinemascope", "21∶9" etc.), while the standard horizontal resolution, e.g. 1920 pixels, is usually kept. The vertical resolution is usually a multiple of 8 or 16 pixels due to most video codecs processing pixels on such sized blocks. A widescreen FHD video can be 1920 × 800 for a 12∶5 ratio or 1920 × 1040 for roughly 1.85 × 1, for instance.

LCD panels" resolutions are often quoted in terms of raw subpixels, misnamed "pixels" in manufacturer"s specifications. Each real pixel includes one subpixel for each of three colors, so calling subpixels "pixels" inflates the claimed resolution by a factor of three. This bit of marketing obfuscation is calculated as horizontal resolution × vertical resolution × 3. For example: 640 × 480 VGA is 921,600 subpixels, or 307,200 pixels, 800 × 600 SVGA is 1,440,000 subpixels, or 480,000 pixels, and 1024 × 768 XGA is 2,359,296 subpixels, but only 786,432 full-color pixels.