twisted nematic tn lcd panel brands
TN stands for twisted nematic. This is a type of LED (a form of LCD) panel display technology. TN panels are characterized as being the fastest and cheapest among the other main types of display panels, VA (vertical alignment)and IPS (in-plane switching). As such, they work great for gaming monitors and gaming laptops. However, TN panels also offer the worst viewing angles and color when compared to VA and IPS panels.
PerformanceFastest: low response times, highest refresh rates, minimal motion blur; Low input lagLongest response times typically; Higher refresh rates possibleSlower response times than TN, faster response times than VA; Gaming-quality refresh rates are rare
DisplayWorst viewing angles;Worst colorViewing angles typically better than TN, worse than IPS; Good color; Best contrast;Best image depthBest viewing angles; Best color
The Nematic liquid crystal state is a unique state not included in the above 3 states. It is a state between the crystalline (solid) and isotropic (liquid) states. Even in the state of liquid crystals, there are several types of liquid crystal states, as below.
The nematic liquid crystal phase is characterized by molecules maintain the general order of tending to point in the same direction. It has one dimensional order. See Fig.1
In smectic phase, molecules show two-dimensional order not present in the nematic. The molecules maintain the general orientationally of nematic, but also tend to align themselves in layers or planes. It is the state between nematic (one-dimensional order) and solid state (three-dimensional order). See Fig.1.
The cholesteric (or chiral nematic) liquid crystal phase is typically the molecules are directionally oriented and stacked in a helical pattern, with each layer rotated at a slight angle to the ones above and below it. See Fig.1.
TN displays have a 90° or less twist (the rotation of the molecules from one plane of the display to the other). All passive direct drive, active matrix, and most passive low level (x2 to x32) multiplexed LCDs have a 90° twist.
The basic Twisted Nematic (TN) LCD consists of a layer of liquid crystal material supported by two glass plates. The liquid crystal material is a mixture of long, cylindrically shaped molecules with different electrical and optical properties, depending on direction.
The TN technology comes in a single coloration; it is Black characters on a gray background. It is the least expensive, but has the lowest visual quality, primarily in viewing angle.
A type of LCD panel technology. In this type of panel, when no electric current is running through the liquid crystal cells, the cells naturally align in a twisted form between two substrate panes of glass which blocks the transmission of light from the backlight. This renders the crystals opaque and results in a black display screen. When an electric current is applied, the liquid crystal cells untwist allowing light to pass through resulting in a white display screen. TN panels have relatively narrow viewing angles especially in the vertical direction and color reproduction is poor; however, they are economical and suitable for a wide-range of general uses, particularly with office tasks (e.g. word processing).
The point when liquid crystals, in response to application of a magnetic field along the axes of their molecules, become parallel; is being refined to a degree that permits the manufacture of projectors, monitors and or video panels that allow 3-D perceptions by human observation. This enhancement is a necessary improvement to enable remote visual communications that replicate personal interactions. Such a technology will present realistic imagery that conveys all the visual cues entailed in interpersonal associations.
The future of human existence may depend on energy reduction strategies that could incorporate remote 3-D video to provide personal interactions without necessitating travel. Such alternatives would need to accommodate normal mobility issues as commonly provided by smartphones and tablet PCs today. Twisted nematic LCD displays currently produced provide scalable solutions for rudimentary dimensional presentations that require headsets for perception of the 3-D effects.
As scientists perfected polymer buffering and magnetic switching characteristics of the controlling electronics, expectations for greater brilliance and wider viewing angels are achieved at significantly lower production cost. These factors have gradually increased the competiveness of LCD products utilizing active matrix technology. Demand for more precise definition in display resolutions drives research in the use of twisted nematics liquid crystals and presents promising prospects for future production of cost effective products with even more realistic presentations.
Most of the advances in monitors and displays are in reference to color and resolution. Conversely, the issues of quality that determine superiority for consumption purposes are viewing angle, image quality, increased brightness, and lower production line costs.
The high cost of building factories to produce competitive thin film transistors liquid crystal displays (TFT-LCD) pushes production of the less costly to produce twisted nematic (TN) into the general display panel market. The product line includes display components for digital televisions, computer monitors, mobile phones, handheld video games, and PDAs and navigation systems. This push also segments the marketplace into quality demanding commercial sells and the less exacting one-off brand name markets.
Screen brightness, as perceptively distinguishable by the human eye, is a result of lessening the scattering of light with respect to the directional movement of the crystal molecules. Improvements to this lessening effect combined with patented faster switching techniques improved image quality by addressing the color gamut with higher luminosity, which corrected color shift errors and deviations.
Over time, several major manufacturers have entered into partnerships and joint ventures that resulted in increasing pixel counts while speeding up switching to yield faster response timing at lower production cost. Developments in alternative technologies for vertical and patterned alignments of pixels lowered distortions in off-perpendicular viewing common in twisted nematic panels. The resulting better viewing angles have since been enhanced with continuously rotating sub-pixels that produce dramatic improvements to viewing angles.
Nine manufacturers produce the world’s supply of TN-LCD display products. Quality is a matter of performance testing of the product as it comes off the assembly lines. Segmented fulfillment is determined by very practical quality factors that sort the destination of the production according to superiority of its performance. The best product goes to commercial channels and the worst is disposed of in the off-brand market. Everything in between is branded by the manufacturers for general consumption.
Twisted nematic or TN LCD is a type of thin-film transistor liquid crystal display or TFT-LCD that is commonly used in an array of consumer electronic devices such as digital watches and calculators, as well as computer monitors and mobile phones. Note that it is the most common type of LCD technology because of its lowered manufacturing cost than IPS LCD.
1.One advantage of twisted nematic or TN LCD over other display technologies such as IPS LCD, VA display, and OLED is affordability. The technology behind TN LCDs is easier to implement, thus translating to inexpensive manufacturing cost and affordable market price.
2.Energy efficiency is another strength of twisted nematic LCD when compared to IPS LCD and VA display. It can run under low operating voltages and does not require a current flow to operate. Hence, TN LCDs are suitable for low-powered devices.
3.Another notable advantage of twisted nematic LCD is that it has the fastest pixel response rate and highest refresh rate than its counterpart display technologies, particularly IPS LCD and to some extent, OLED display. These characteristics make TNs a favorite in the gaming community.
1.Limited viewing angle is a main disadvantage of twisted nematic LCD. To be specific, when viewed from an angle, images appear darker and color seems less vivid on a TN LCDs. Viewing experience suffers due to this.
2.Another disadvantage of TNs is that it has the poorest color reproduction among the different types of LCD technologies, such as IPS LCD and VA LCD. TNs only have a color depth of 262,144 possible colors.
3.Quality is also an issue. The quality of a particular twisted nematic LCD panel depends on its manufacturer. However, because twisted nematic is generally cheap to manufacture, there are low-end models that severely highlights the disadvantages of TN LCD.
Everyday, we look at LCD display, TV, cell phone, monitor. It becomes a necessity in modern society. LCD panel is the most important part of an LCD display. It determines LCD screen"s performance, e.g. brightness, contrast, color and viewing angle. Therefore, picking the right type of LCD panel is critical to your application.
These names reflect the alignment of crystal molecules inside the LCD, and how they change when they are charged electrically. All liquid crystal displays change the alignment of liquid crystal molecules to work, but the manner in which they do so can drastically affect the image quality and response time. Each panel type has its advantages and disadvantages. The easiest way to choose between them is to decide which attributes are most important to your project. It mainly depends on what you use your LCD display for, and your budget.
TN is the most mature technology in LCD panel manufacturing. When there is no voltage difference between the two transparent electrodes, liquid crystal molecules are twisted 90 degrees, in combination of upper and bottom polarizers, allows light to pass through LCD. As voltage applied, crystal molecules are untwisted and aligned to the same direction, blocking light.
In IPS panel, crystal molecules are parallel to the glass substrates at initial stage, LCD is off. When the in-plane electrodes is charged, crystal molecules are rotated, modifying light"s direction. Which lights up the LCD display.
As its name suggests, VA panel"s liquid crystals are aligned vertically without charged. When a voltage is applied, the molecules tilt and modifying light direction.
So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a perpendicular alignment and tilt. These difference create LCD display with distinctive performance.
IPS LCD is the clear winner in this aspect. It has 178/178 viewing angle ratings. Which means you can look at IPS LCD display from any angle without the image shifting in color and contrast. VA LCD has pretty wide viewing angle, too. But it has contrast shifts at off-center angles. As for TN LCD, viewing angle is its weakest point.
Most TN LCDs have 6-bits colors. Manufacturers use frame rate control (FRC) to enhance its color performance. For IPS and VA panels, you can still find 6-bits entry level LCD. But most of them are 8-bits. And IPS technology can provide natively 10-bits colors.
Color gamut is another part that VA and IPS panels shine at. The best TN LCD can reach sRGB gamut. VA panels typically start with full sRGB coverage, and get to around 90% DCI-P3 coverage. With IPS LCD panel, you could find the best ones full DCI-P3 and Adobe RGB coverage. That is why you see most professional grade LCD displays use IPS panel.
There is no inherent differences among the three panel technologies, because LCD backlight is the main factor here. However, there is a big gap in terms of contrast ratio. TN LCD panel tends to have the lowest value among the three. IPS LCD screen sits in the middle can reach 1500:1. For VA panel, the best one can exceed 4500:1 easily. VA LCD display provides far darker screen than TN & IPS. That is why they are used in vehicle dashboard.
TN panel does have an advantage when it comes to refresh rate. The panel offers the best refresh rate and response time. This is the reason why most gaming LCD monitors are made of TN panel.
TN LCD provides the best refresh rate and economic solution. If your application requires wide viewing angles and good color presentation, VA panel is probably the choice. While IPS has the best overall visual performance, in general it is more expensive than the other two.
In this article we will explore the different types of display panel types available on the market. We will cover the most popular and some very niche or near obsolete options to give our fans a good overview.
TN or Twisted Nematic, In-Plane Switching or IPS, and Vertical Alignment or VA. TN is most common on computer monitors although IPS is also very common, while VA is most common on low-end TVs, but is slowly gaining ground in PC monitor spaces.
LCD technology has some real and inherent disadvantages when compared to CRT, Plasma, and OLED, mostly because of the fact that LCDs rely on backlighting (either edge-lit like all computer monitors, or literally backlit on higher end TVs) while CRT, Plasma, OLED produce light on the surface for each and every pixel. This means that those other display types have superior contrast ratios, deeper blacks, more pure whites, far richer and fuller colors. For example, blacks are only true blacks on CRT/Plasma/OLED, not LCD, since the pixel actually has no light on these unlike LCD. LCDs also use sample and hold which leads to a lot more motion blur especially compared to CRT and SED/FED.
TN panels have two large advantages over other types. Cost and response time. It should be noted that even though inferior to IPS and VA for colour critical work, a good, high-end TN monitor with good calibration can still look quite decent for most use cases. It won’t beat decent VA or IPS, but it can still offer a nice visual experience. Good response times and low motion blur can make a TN look great in action.
This is the panel type used in many slightly older HDTVs. Overall it is a very nice and increasingly popular LCD panel type although the potential has yet to be fully realized in computer monitors.
- Inconsistent response times. Most VA displays have at least a few very slow transitions. Black to dark grey or just black to grey are the most common culprits, even if other transitions are good or even fast. As a result, VAs offer better minimum response times than IPS, but worse average and maximum response times than IPS. It should be noted that some higher end panels seem to have this issue mostly figured out though.
- “Black crush” which causes a loss in black detail (e.g., grey detail lost in black content). Compared to TN’s dark grey blacks and IPS’s white blacks, this isn’t a cause for concern save for color critical work, but it is a real con.
IPS is the most used panel type for photo editing, because of all LCD panels it has the best color accuracy. It is becoming more and more common and may eventually overtake TN panels.
- The best potential color accuracy of all LCD panels. Especially for professional panels, but even normal IPS monitors still have far better color accuracy than typical TN monitors though.
IPS is a very good LCD panel type and it has many advantages, but it is not the end all be all of monitors. Still, we believe that it and VA are overall tied in their pros and cons. But remember, the specific panel and product (and price!) always matter more than the technology it is based off!
The image above is based on slightly older monitors, but it shows the difference in blacks in a similar scene.IPS (far left), TN (middle), and VA (right).
CRT monitors have gone out of fashion and very few are still in any sort of production. Any CRT monitors one finds are likely to be used or old stock. We mostly expect only really hardcore competitive gamers to use such monitors thanks to their response time advantage, but the truth is that modern ultra-high end LCDs with blur reduction can offer a good alternative here.
This tech was prominent in HDTVs for a while, before LCD became the big thing. We are covering it in case you find an old plasma TV and are wondering if it would be a good fit. It has excellent contrast ration, good blacks and no backlight. Viewing angles are also very good and there is almost no motion blur.
Like CRT and plasma, the light source is on the screen surface itself, hence the much better image. An OLED powers each and every subpixel. OLED may have the potential to be the best panel type for everything, but there are still some longevity concerns on many models and its higher cost is still an issue.
- They use sample and hold just like LCD technology, so motion blur still exists. However, there is already a blur reduction technique for it, used by Oculus Rift (black frame insertion).
- While colour accuracy is good, it is hard to make it excellent. Lots of calibration is needed on the manufacturer’s side and probably on the user’s side too. It will easily surpass all other panels, except a perfectly calibrated CRT.
So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.
TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.
IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.
In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.
IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.
While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.
Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.
Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.
One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.
VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.
In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”
VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.
Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.
For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.
When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.
Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.
LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.
Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.
Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.
Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.
Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.
Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.
Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.
If you can, check out the monitor you’re interested in in-person before you buy it. You can perform some simple ghosting and motion blur tests by grabbing a window with the mouse and moving it rapidly around the screen. You can also test the brightness, watch some videos, and play with the onscreen display to get a feel for it.
You may be surprised to know that not all LCD panels are created equal. That’s because there’s more than one type of LCD screen. While their differences are subtle, the type of panel technology significantly impacts its image quality and display performance.
In this post, we’ll compare the three types of LCD panel technologies – IPS vs. TN vs. VA – and the pros and cons of each. Knowing the differences is critical to help you find the best type that fits your needs.
The main difference between them is how they arrange and move the liquid crystal display (LCD) molecules in their panels. This, in turn, has a profound effect on image quality, refresh rate, and other performance factors.
A twisted nematic or TN monitor is the oldest and most common type of LCD still used today. It uses a nematic liquid crystal, meaning it has its molecules arranged in parallel, but not on a level plane. These can twist or untwist themselves when a voltage runs through them, hence the name. This twisting effect either allows or blocks light from passing through, turning screen pixels “on” or “off.”
In-panel switching (IPS) panels work similarly to TN monitors, except that the liquid crystal molecules are parallel to the glass panel of the screen. Instead of twisting like in TN monitors, these molecules rotate when a voltage is applied.
Vertical alignment (VA) displays arrange their LCD molecules vertically, perpendicular to the glass panel. When voltage is present, they tilt themselves instead of twisting or rotating.
Being the oldest LCD technology still in use today, TN monitors undoubtedly have their share of benefits, otherwise they wouldn’t have this much longevity! Comparing TN vs. IPS and VA, TN panels are the cheapest and fastest to manufacture. As a result, they are better for the more budget-conscious user. They’re also the most versatile LCD type and have no real-world limits on size, shape, resolution, and refresh rate.
You’ll be hard-pressed to find a TN monitor in a reasonable price range that can display 24-bit (8 bits per channel) color at a wide color gamut, and contrast is limited. The second problem with TN monitors is that because the molecules are not oriented uniformly across the plane, it suffers from a narrow viewing angle. That is, anyone looking at the screen off-axis, such as from a 45-degree angle, will most likely find the image completely un-viewable.
Comparing IPS vs. TN, the former is a drastic improvement over the latter. IPS panels resolve some of the limitations and problems of TN monitors, specifically color accuracy and issues with viewing angles. However, IPS panels suffer from a phenomenon called “IPS glow,” where you can see the display’s backlight clearly if you view it from the side.
Another significant limitation of IPS panels, particularly for gamers, is that they have the lowest refresh rates of any LCD type. And while the color fidelity is fantastic with IPS vs. VA, the latter has superior contrast ratios over the IPS panels.
The biggest strength of VA panels lies in their excellent contrast ratio. Keep in mind that irrespective of the LCD technology used, a backlight is required; this is typically LED. The LCD’s ability to block this light will determine how well it can reproduce blacks, and it’s in this detail where VA excels. That is, blacks are dark and rich in a VA panel vs. IPS. They also lie somewhere in the middle regarding overall image quality, color reproduction, viewing angle, and refresh rate. Overall, VA is a good compromise between TN and IPS.
A drawback of VA vs. IPS and TN is it exhibits an relatively high response time. As such, VA displays are more prone to motion blur and ghosting if you’re viewing fast-moving visuals on a screen, such as when you’re playing a racing game.
It’s worth noting that there is no universal “right” choice for choosing a type of LCD panel. Which one you pick depends on your budget, your intended use, and your expected outcome.
A TN monitor is best if you’re looking for a low-cost, readily available display for tasks that don’t rely on contrast and color accuracy, such as sending emails or typing a document or spreadsheet. They are also the best choice for competitive gamers who want the best refresh rates and response times to give them an edge in online multiplayer games, despite a technically lower image quality.
With their superior color reproduction, IPS panels are best for graphic designers, film editors, photographers, and other visual design professionals. For them, image quality including contrast and color accuracy are more important than refresh rates. IPS panels are also fantastic for casual gamers who want the best visuals and don’t mind the compromise in refresh rate or response time.
Whichever LCD type you choose, make sure you get the right cable, a Premium High Speed HDMI® Cable, or an Ultra High Speed HDMI® Cable to ensure delivery of all the HDMI 2.1 features. Doing this ensures that you’ll get the best experience on your screen.
The above item details were provided by the Target Plus™ Partner. Target does not represent or warrant that this information is accurate or complete. On occasion, manufacturers may modify their items and update their labels.
Boost your productivity while being environmentally friendly with the 17" NEC MultiSync E172M, an eco-conscious LED backlit LCD desktop monitor that enhances your computing experience. The LED backlighting of the E172M allows for lighter weight and increased power savings compared to previous generation models, a carbon footprint meter for tracking the conservation of green gas emissions and Intelligent Power Manager (IPM) system. These advantages, combined with an ergonomic design make this model ideal for corporate environments. 1080p native resolution (1920x1080)High resolution provides detailed display of text, graphics and images. HD video is displayed in 16:9 wide aspect ratio. LED BacklightProvides for industry-leading low power consumption and less hazardous materials. No Touch Auto AdjustAllows the monitor to be automatically adjusted to optimal image settings when initially turned on. XtraView
The Nematic phase is one of the two major phases of liquid crystals, the other being Smetic phase. The Nematic phase is closer to a liquid substance than to a solid substance.
The introduction of TN LCD technology in the 1970s was a breakthrough in display technology to help the commercialization of LCDs in electronic devices.
TN display technology uses nematic liquid crystal placed in the midst of glass substrates dusted with ITO (indium-tin-oxide). The ITO is in turn coated with layers that rub in a direction.
Polarized light manipulation is the underlying principle in TN display technology. As light enters the TN cell, there is a twist in the polarization state with the liquid crystal director.
TN liquid display crystal technology is easy to implement. This means inexpensive manufacturing requirements for industries and an affordable end product for consumers. This has made the use of TN LCD to serve as a good replacement for CRT and LED technologies. It is also a cheaper alternative to newer technologies like AMOLED and IPS.
TN technology does not need any current requirement to function. It operates with low voltages. For this, it can be operated with batteries and other low power sources.
The response time of a pixel is the time lapse required for a pixel to change from a state to another. The unit of measurement is milliseconds. The smaller, the better. The refresh rate, in contrast, is the frequency at which the image of a display is refreshed. It is measured in Hertz. The superior refresh rate and pixel response time give the Twisted Nematic LCD technology the capability to display faster images in a short period of time.
The viewing angle of TN LCD technology is low. A user has to look up from a 90-degree range for a maximum visual experience and good performance. In a lower angle range view, colors tend to be duller while images will be darker.
Unlike LCD’s IPS and VA panels, using TN panels produces poor color reproduction. This negative aspect of TN LCD may have resulted from the restricted viewing angle. The bad color reproduction also translates to inaccuracy in color production from the TN panels. This makes TN LCD not suitable for image-oriented works such as a graphic design, video editing, and photo editing.
Twisted Nematic LCD panels vary in quality from different producers. When a low-quality product is adopted, the other disadvantages will be more pronounced in the output of the implementation such as the color implementation and the viewing angle. Cheaper and poor quality TN panels can also bring out another demerit of susceptibility of dead pixels.
Its affordability and the change it brings into display technology are however being outshined by the incoming of superior display technologies such as IPS LCD, OLED and other latest development in display technology of today.