tft lcd 2.4 mcufriend stm32f103 in stock
From what I have seen so far, I suspect that this might not be an issue specific to GUIslice -- instead I think it may be bringing to light a known incompatibility between Adafruit_TouchScreen library and the pin-sharing parallel 4-wire touch displays (common for mcufriend). This is the combination selected by the config: stm32-adagfx-mcufriend-simple. On the other hand, you have observed mcufriend + TouchScreen operates successfully, so there could be other differences at play.
Your particular setup is utilizing an mcufriend parallel display with 4-wire touch handling provided by Adafruit_TouchScreen. It is important to note that Adafruit"s 4-wire resistive touchscreen library (Adafruit_TouchScreen) is not generally compatible with many of the 4-wire touch mcufriend displays as it fails to restore pin state after reading the touch interface. Since these mcufriend displays often share the touch pins with the TFT pins, corruption is common. The mcufriend displays with integrated XPT2046 touch drivers won"t have this issue.
I have now uploaded an STM32 config (stm32-adagfx-mcufriend-notouch) that provides a no-touch option. I believe it may work better on your setup and would be interested in hearing if it paints the controls properly for you.
Enabling the touch handler (stm32-adagfx-mcufriend-simple) may result in the issues you observed due to the potential conflict between the Adafruit_TouchScreen library & the pin-sharing TFT (as the "-simple" config leverages the default Adafruit_TouchScreen library).
You had mentioned that mcufriend_kbv + TouchScreen worked in your testing. This is a good sign as it indicates that we should be able to enable the same combo for GUIslice too.
Were you running mcufriend_kbv/TouchScreen_Calibr_native or Touch_shield_new? (Did you modify the example other than to update the XP/YP/etc. pinout?)
I am able to get the mcufriend_kbv + TouchScreen to work correctly if I modify Touch_shield_new to use David"s hacked version of the Adafruit_TouchScreen library (TouchScreen_kbv) included in the examples/Touch_Calibr_native directory.
That said, it is possible that there is an altogether different issue you"re observing within the GUI, but given my prior experience with Adafruit_TouchScreen on these mcufriend displays, I"d like to rule out the above potential compatibility issue first.
Before I start, I want to mention that I did not write this code. This is a PORT from the mcufriend’s arduino code, which can be found HERE. I merely made some changes, so that it can be used with the CubeMx with a little modifications.
According to the Setup, the LCD_D2 is connected to the PA15. So if I want to write the DATA to the LCD_D2 pin, first I will select the 2nd bit of the data (d & (1<<2)), and than shift this by 13 using <<13. This will be like adding 2 with 13 to make a total of 15, and that’s where the LCD_D2 is connected to.
Similarly, LCD_D7 is connected to PA5. So to write the data, first we will select the 7th bit of the data (d & (1<<7)), and this time shift it RIGHT by 2 (>>2). This is like subtracting 7-2=5. And that’s where, the D7 is connected to.
The process here remains the same. Except, we have to first select the GPIO Pin, and than shift it according to the position of the LCD Pin, that it is connected to. In the function above, we are first selecting the PB0 pin, and as it is connected to LCD_D0, we don’t need to shift it anywhere. Same for the PB1 also.
Next, we are selecting PA15, and as this one is connected to the LCD_D2, we need to shift it by 13 to the right ( >>13). This process continues for all other pins too.
After all the Pins work is done, we still need to select the delays according to our clock frequency. As I am using STM32F103C8 at72 MHz, I am going to uncomment the respective code as shown below.
I am trying to interface a touch scren lcd with stm32 board. I have an mcufriend 2.4" touch screen lcd and i intend to interface it with nucleo-f303re board. I ,unfortunately, am not able to find a datasheet for the lcd. I know that the lcd can be interfaced with spi. but as i mentioned i do not have any datasheet for the lcd. Does anyone has any information on where to find the datasheet or a library for the lcd?
This note introduces a low-cost Thin Film Transistor (TFT) display to enhance the operation and usefulness of Liquid Crystal Display(LCD) devices. TFT technology controls the pixel element on the glass surface thereby greatly reducing image blurring and improving viewing angles.
The test board chosen for this exercise is the Elegoo Arduino UNO board from the corresponding Super Starter Kit. The kit already has several simple numeric and text displays. The TFT display may perhaps provide better ways to interact in applications.
The controller for the illustrated model of the TFT display is SSD1297.This information is important because the display (owing to its low cost and high popularity) has many different manufacturers who may not leverage the same controller instruction set. The specification of the controller in the coding exercises is examined in the Appendix section of this note.
The output from the diagnostic program, LCD_ID_reading.ino, is shown below:Read Registers on MCUFRIEND UNO shieldcontrollers either read as single 16-bite.g. the ID is at readReg(0)or as a sequence of 8-bit valuesin special locations (first is dummy)reg(0x0000) 97 97ID: ILI9320, ILI9325, ILI9335, ...reg(0x0004) 97 97 97 97Manufacturer IDreg(0x0009) 97 97 97 97 97Status Registerreg(0x000A) 97 97Get Power Modereg(0x000C) 97 97Get Pixel Formatreg(0x0061) 97 97RDID1 HX8347-Greg(0x0062) 97 97RDID2 HX8347-Greg(0x0063) 97 97RDID3 HX8347-Greg(0x0064) 97 97RDID1 HX8347-Areg(0x0065) 97 97RDID2 HX8347-Areg(0x0066) 97 97RDID3 HX8347-Areg(0x0067) 97 97RDID Himax HX8347-Areg(0x0070) 97 97Panel Himax HX8347-Areg(0x00A1) 97 97 97 97 97RD_DDB SSD1963reg(0x00B0) 97 97RGB Interface Signal Controlreg(0x00B4) 97 97Inversion Controlreg(0x00B6) 97 97 97 97 97Display Controlreg(0x00B7) 97 97Entry Mode Setreg(0x00BF) 97 97 97 97 97 97ILI9481, HX8357-Breg(0x00C0) 97 97 97 97 97 97 97 97 97Panel Controlreg(0x00C8) 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMAreg(0x00CC) 97 97Panel Controlreg(0x00D0) 97 97 97Power Controlreg(0x00D2) 97 97 97 97 97NVM Readreg(0x00D3) 97 97 97 97ILI9341, ILI9488reg(0x00D4) 97 97 97 97Novatek IDreg(0x00DA) 97 97RDID1reg(0x00DB) 97 97RDID2reg(0x00DC) 97 97RDID3reg(0x00E0) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Preg(0x00E1) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Nreg(0x00EF) 97 97 97 97 97 97ILI9327reg(0x00F2) 97 97 97 97 97 97 97 97 97 97 97 97Adjust Control 2reg(0x00F6) 97 97 97 97Interface Control
Im new to Arduino myself but i do have the same screen which works perfect,your problem is probably that the TFT shield is shorting off the top off the arduino usb put something non conductive there and reset. if your still having trouble, try removing the shield and watch each pin as you insert it to make sure they are all inserted in the correct pins, LCD_02 should be in Dig pin 2.
This library enables you to use ISR-based PWM channels on AVR ATmega164, ATmega324, ATmega644, ATmega1284 with MCUdude MightyCore, to create and output PWM any GPIO pin
Simple Async HTTP Request library, supporting GET, POST, PUT, PATCH, DELETE and HEAD, on top of AsyncTCP_RP2040W library for RASPBERRY_PI_PICO_W with CYW43439 WiFi.
This library enables you to use Hardware-based PWM channels on AVR-based boards, such as Nano, UNO, Mega, Leonardo, 32u4, etc., to create and output PWM.
Simple Ethernet Manager for MultiBlynk for Teensy, SAM DUE, SAMD21, SAMD51, nRF52, ESP32, ESP8266, RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO) boards, etc. with or without SSL, configuration data saved in ESP8266/ESP32 LittleFS, SPIFFS, nRF52/RP2040 LittleFS/InternalFS, EEPROM, DueFlashStorage or SAMD FlashStorage.
Simple WiFiManager for Blynk with MultiWiFi Credentials, for Mega, SAM DUE, SAMD21, SAMD51, nRF52, STM32F/L/H/G/WB/MP1, Teensy, RP2040-based RASPBERRY_PI_PICO, etc. boards running ESP8266/ESP32-AT shields. Configuration data saved in EEPROM, EEPROM-emulated FlashStorage_STM32 or FlashStorage_SAMD, SAM-DUE DueFlashStorage or nRF52/TP2040 LittleFS.
Simple WiFiManager for Blynk and Mega, UNO WiFi Rev2, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, RP2040-based boards, etc. using WiFiNINA shields, configuration data saved in EEPROM, FlashStorage_SAMD, FlashStorage_STM32, DueFlashStorage, nRF52/RP2040 LittleFS
DDNS Update Client Library for SAM DUE, nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, AVR Mega, megaAVR, Teensy, RP2040-based RASPBERRY_PI_PICO, WT32_ETH01, Portenta_H7, etc. besides ESP8266/ESP32, using ESP8266-AT/ESP32-AT WiFi, WiFiNINA, Ethernet W5x00, ENC28J60, LAN8742A or Teensy NativeEthernet
Library to detect a double reset, using EEPROM, DueFlashStorage, FlashStorage_SAMD, FlashStorage_RTL8720, FlashStorage_STM32 or LittleFS/InternalFS. For AVR, Teensy, SAM DUE, SAMD, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, RTL8720DN, MBED nRF52840-based Nano_33_BLE, Portenta_H7, etc. boards. Now using efficient FlashStorage_STM32 library and supporting new RP2040-based Nano_RP2040_Connect, Portenta_H7, RASPBERRY_PI_PICO and STM32 core v2.0.0
Simple WebServer library for AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, SIPEED_MAIX_DUINO and RP2040-based (RASPBERRY_PI_PICO) boards using ESP8266/ESP32 AT-command shields with functions similar to those of ESP8266/ESP32 WebServer libraries
An ESP8266/ESP32-AT library for Arduino providing an easy-to-use way to control ESP8266-AT/ESP32-AT WiFi shields using AT-commands. For AVR, Teensy, SAM DUE, SAMD21, SAMD51, STM32, nRF52, SIPEED_MAIX_DUINO and RP2040-based (Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc.) boards using ESP8266/ESP32 AT-command shields.
WiFi/Credentials Manager for nRF52, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc. boards using ESP8266/ESP32-AT-command shields with fallback web configuration portal. Credentials are saved in EEPROM, SAMD FlashStorage, DueFlashStorage or nRF52/RP2040 LittleFS.
Light-Weight WiFi/Credentials Manager for AVR Mega, SAM DUE, SAMD, nRF52, STM32, RP2040-based Nano_RP2040_connect, RASPBERRY_PI_PICO boards, etc. using ESP8266/ESP32-AT-command shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.
Simple Ethernet Manager for Teensy, SAM DUE, SAMD, nRF52, ESP32 (including ESP32-S2/C3), ESP8266, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, etc. boards. Config data saved in ESP LittleFS, SPIFFS or EEPROM, nRF52 LittleFS, EEPROM, DueFlashStorage or SAMD FlashStorage.
FTP Client for Generic boards such as AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, ESP32/ESP8266, etc.)
Enables GSM/GRPS network connection using the Generic GSM shields/modules. Supporting ESP32 (including ESP32-S2, ESP32-C3), ESP8266, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based boards, etc.
Convinient way to map a push-button to a keyboard key. This library utilize the ability of 32u4-based Arduino-compatible boards to emulate USB-keyboard.
This library enables you to use ISR-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with Arduino-mbed (mbed_nano or mbed_rp2040) core to create and output PWM any GPIO pin.
mDNS Library for ESP32, ESP8266, nRF52, SAMD21, SAMD51, SAM DUE, STM32F/L/H/G/WB/MP1, Portenta_H7, AVR Mega, RP2040-based boards, etc. using Ethernet W5x00, ESP WiFi, WiFiNINA or ESP8266-AT shields
Library to detect a multi reset, using EEPROM, DueFlashStorage, FlashStorage_SAMD, FlashStorage_RTL8720, FlashStorage_STM32 or LittleFS/InternalFS. For AVR, Teensy, SAM DUE, SAMD, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO, RTL8720DN, MBED nRF52840-based Nano_33_BLE, Portenta_H7, etc. boards. Now using efficient FlashStorage_STM32 library and supporting new RP2040-based Nano_RP2040_Connect, RASPBERRY_PI_PICO and STM32 core v2.0.0
Connects to MySQL or MariaDB using ESP8266/ESP32, WT32_ETH01 (ESP32 + LAN8720A), nRF52, SAMD21/SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, Mega, RP2040-based boards, Portenta_H7, etc. with W5x00, ENC28J60 Ethernet, Teensy 4.1 NativeEthernet/QNEthernet, WiFiNINA modules/shields or Portenta_H7 WiFi/Ethernet. W5x00 can use Ethernet_Generic library. ENC28J60 can use either EthernetENC or UIPEthernet Library.
This library enables you to use ISR-based PWM channels on an nRF52-based board using Adafruit_nRF52_Arduino core such as Itsy-Bitsy nRF52840 to create and output PWM any GPIO pin.
his library enables you to use Hardware-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with either Arduino-mbed (mbed_nano or mbed_rp2040) or arduino-pico core to create and output PWM to any GPIO pin.
This library enables you to use SPI SD cards with RP2040-based boards such as Nano_RP2040_Connect, RASPBERRY_PI_PICO using either RP2040 Arduino-mbed or arduino-pico core.
This library enables you to use ISR-based PWM channels on RP2040-based boards, such as ADAFRUIT_FEATHER_RP2040, RASPBERRY_PI_PICO, etc., with arduino-pico core to create and output PWM any GPIO pin.
Adds tcUnicode UTF-8 support to Adafruit_GFX, U8G2, tcMenu, and TFT_eSPI graphics libraries with a graphical font creation utility available. Works with existing libraries
This library enables you to use Interrupt from Hardware Timers on an Arduino, Adafruit or Sparkfun AVR board, such as Nano, UNO, Mega, Leonardo, YUN, Teensy, Feather_32u4, Feather_328P, Pro Micro, etc.
This library enables you to use Interrupt from Hardware Timers on supported Arduino boards such as AVR, Mega-AVR, ESP8266, ESP32, SAMD, SAM DUE, nRF52, STM32F/L/H/G/WB/MP1, Teensy, Nano-33-BLE, RP2040-based boards, etc.
Monochrome LCD, OLED and eInk Library. Display controller: SSD1305, SSD1306, SSD1309, SSD1312, SSD1316, SSD1318, SSD1320, SSD1322, SSD1325, SSD1327, SSD1329, SSD1606, SSD1607, SH1106, SH1107, SH1108, SH1122, T6963, RA8835, LC7981, PCD8544, PCF8812, HX1230, UC1601, UC1604, UC1608, UC1610, UC1611, UC1617, UC1638, UC1701, ST7511, ST7528, ST7565, ST7567, ST7571, ST7586, ST7588, ST75160, ST75256, ST75320, NT7534, ST7920, IST3020, IST3088, IST7920, LD7032, KS0108, KS0713, HD44102, T7932, SED1520, SBN1661, IL3820, MAX7219, GP1287, GP1247, GU800. Interfaces: I2C, SPI, Parallel.
True color TFT and OLED library, Up to 18 Bit color depth. Supported display controller: ST7735, ILI9163, ILI9325, ILI9341, ILI9486,LD50T6160, PCF8833, SEPS225, SSD1331, SSD1351, HX8352C.
RFC6455-based WebSockets Server and Client for Arduino boards, such as nRF52, Portenta_H7, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, Teensy, SAM DUE, RP2040-based boards, besides ESP8266/ESP32 (ESP32, ESP32_S2, ESP32_S3 and ESP32_C3) and WT32_ETH01. Ethernet shields W5100, W5200, W5500, ENC28J60, Teensy 4.1 NativeEthernet/QNEthernet or Portenta_H7 WiFi/Ethernet. Supporting websocket only mode for Socket.IO. Ethernet_Generic library is used as default for W5x00. Now supporting RP2040W
Light-Weight MultiWiFi/Credentials Manager for AVR Mega, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano RP2040 Connect, RASPBERRY_PI_PICO) boards, etc. using u-blox WiFiNINA / WiFi101 modules/shields. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.
MultiWiFi/Credentials Manager for RP2040W boards using built-in CYW43439 WiFi. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.
Light-Weight MultiWiFi/Credentials Manager for RP2040W boards using built-in CYW43439 WiFi. Powerful-yet-simple-to-use feature to enable adding dynamic custom parameters.
Enables network connection (local and Internet) and WiFiStorage for SAM DUE, SAMD21, SAMD51, Teensy, AVR (328P, 32u4, 16u4, etc.), Mega, STM32F/L/H/G/WB/MP1, nRF52, NINA_B302_ublox, NINA_B112_ublox, RP2040-based boards, etc. in addition to Arduino MKR WiFi 1010, Arduino MKR VIDOR 4000, Arduino UNO WiFi Rev.2, Nano 33 IoT, Nano RP2040 Connect. Now with fix of severe limitation to permit sending much larger data than total 4K and using new WiFi101_Generic library
Simple WiFiWebServer, HTTP Client and WebSocket Client library for AVR Mega, megaAVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52, RP2040-based (Nano-RP2040-Connect, RASPBERRY_PI_PICO, RASPBERRY_PI_PICO_W, ESP32/ESP8266, etc.) boards using WiFi, such as WiFiNINA, WiFi101, CYW43439, U-Blox W101, W102, ESP8266/ESP32-AT modules/shields, with functions similar to those of ESP8266/ESP32 WebServer libraries.
Simple WiFiWebServer, HTTP Client, MQTT and WebSocket Client library for Realtek RTL8720DN, RTL8722DM, RTM8722CSM boards using WiFi. Supporting WiFi at 2.4GHz and 5GHz
I am trying to interface a touch scren lcd with stm32 board. I have an mcufriend 2.4" touch screen lcd and i intend to interface it with nucleo-f303re board. I ,unfortunately, am not able to find a datasheet for the lcd. I know that the lcd can be interfaced with spi. but as i mentioned i do not have any datasheet for the lcd. Does anyone has any information on where to find the datasheet or a library for the lcd?
A while ago I bought this 2.4"" Inch TFT LCD Touch Display Shield for Arduino UNO, but only recently I came up with a project where I could make use of this piece of hardware.
Then, instead of calling the method tft.clor565, a call to the newly created function fixed_color565 made sure that images got displayed correctly from now on..
In this tutorial we are going to learn how to make Arduino Calculator with TFT Display. Our calculator’s precision is up to two decimal points and you can add, subtract, multiply or divide up to 4 digit per number. Obviously you can add more number of digits if you want.
You have to just add number by touching on screen, maximum digits per number allowable is 4 and then select operator and add again second number, press on equal. Finally, you got the result on screen, Congratulation you have made your own Arduino Calculator with TFT Display.