tft lcd 2.4 mcufriend stm32f103 for sale
This note introduces a low-cost Thin Film Transistor (TFT) display to enhance the operation and usefulness of Liquid Crystal Display(LCD) devices. TFT technology controls the pixel element on the glass surface thereby greatly reducing image blurring and improving viewing angles.
The test board chosen for this exercise is the Elegoo Arduino UNO board from the corresponding Super Starter Kit. The kit already has several simple numeric and text displays. The TFT display may perhaps provide better ways to interact in applications.
The controller for the illustrated model of the TFT display is SSD1297.This information is important because the display (owing to its low cost and high popularity) has many different manufacturers who may not leverage the same controller instruction set. The specification of the controller in the coding exercises is examined in the Appendix section of this note.
The output from the diagnostic program, LCD_ID_reading.ino, is shown below:Read Registers on MCUFRIEND UNO shieldcontrollers either read as single 16-bite.g. the ID is at readReg(0)or as a sequence of 8-bit valuesin special locations (first is dummy)reg(0x0000) 97 97ID: ILI9320, ILI9325, ILI9335, ...reg(0x0004) 97 97 97 97Manufacturer IDreg(0x0009) 97 97 97 97 97Status Registerreg(0x000A) 97 97Get Power Modereg(0x000C) 97 97Get Pixel Formatreg(0x0061) 97 97RDID1 HX8347-Greg(0x0062) 97 97RDID2 HX8347-Greg(0x0063) 97 97RDID3 HX8347-Greg(0x0064) 97 97RDID1 HX8347-Areg(0x0065) 97 97RDID2 HX8347-Areg(0x0066) 97 97RDID3 HX8347-Areg(0x0067) 97 97RDID Himax HX8347-Areg(0x0070) 97 97Panel Himax HX8347-Areg(0x00A1) 97 97 97 97 97RD_DDB SSD1963reg(0x00B0) 97 97RGB Interface Signal Controlreg(0x00B4) 97 97Inversion Controlreg(0x00B6) 97 97 97 97 97Display Controlreg(0x00B7) 97 97Entry Mode Setreg(0x00BF) 97 97 97 97 97 97ILI9481, HX8357-Breg(0x00C0) 97 97 97 97 97 97 97 97 97Panel Controlreg(0x00C8) 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMAreg(0x00CC) 97 97Panel Controlreg(0x00D0) 97 97 97Power Controlreg(0x00D2) 97 97 97 97 97NVM Readreg(0x00D3) 97 97 97 97ILI9341, ILI9488reg(0x00D4) 97 97 97 97Novatek IDreg(0x00DA) 97 97RDID1reg(0x00DB) 97 97RDID2reg(0x00DC) 97 97RDID3reg(0x00E0) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Preg(0x00E1) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Nreg(0x00EF) 97 97 97 97 97 97ILI9327reg(0x00F2) 97 97 97 97 97 97 97 97 97 97 97 97Adjust Control 2reg(0x00F6) 97 97 97 97Interface Control
Before I start, I want to mention that I did not write this code. This is a PORT from the mcufriend’s arduino code, which can be found HERE. I merely made some changes, so that it can be used with the CubeMx with a little modifications.
According to the Setup, the LCD_D2 is connected to the PA15. So if I want to write the DATA to the LCD_D2 pin, first I will select the 2nd bit of the data (d & (1<<2)), and than shift this by 13 using <<13. This will be like adding 2 with 13 to make a total of 15, and that’s where the LCD_D2 is connected to.
Similarly, LCD_D7 is connected to PA5. So to write the data, first we will select the 7th bit of the data (d & (1<<7)), and this time shift it RIGHT by 2 (>>2). This is like subtracting 7-2=5. And that’s where, the D7 is connected to.
The process here remains the same. Except, we have to first select the GPIO Pin, and than shift it according to the position of the LCD Pin, that it is connected to. In the function above, we are first selecting the PB0 pin, and as it is connected to LCD_D0, we don’t need to shift it anywhere. Same for the PB1 also.
Next, we are selecting PA15, and as this one is connected to the LCD_D2, we need to shift it by 13 to the right ( >>13). This process continues for all other pins too.
After all the Pins work is done, we still need to select the delays according to our clock frequency. As I am using STM32F103C8 at72 MHz, I am going to uncomment the respective code as shown below.
I am trying to interface a touch scren lcd with stm32 board. I have an mcufriend 2.4" touch screen lcd and i intend to interface it with nucleo-f303re board. I ,unfortunately, am not able to find a datasheet for the lcd. I know that the lcd can be interfaced with spi. but as i mentioned i do not have any datasheet for the lcd. Does anyone has any information on where to find the datasheet or a library for the lcd?
Joao Lopes’s library above uses a modified version of the Adafruit TFT library for the hardware layer. The Adafruit TFT library was originally for controlling ILIxxxx series of IC, but this guy modified it for the 8 bit interface of SPFD508.
Now, I’ve seen working code examples for STM32 for the ILIxxxx on Andy’s Workshop blog http://andybrown.me.uk/2012/01/01/stm32 … ft-driver/. So I’m tracking where Joao changed the Adafruit library to try and figure out how to modify an STM32 driver for this TFT.
Okay, I did a git diff on the SPFD5408 library and the Adafruit TFTLCD (for ILI9325 in 8 bit mode) library. Only one thing has been changed, and that is the readID function (it reads a register to identify the chip) which isn’t a big change at all. So I think an STM32 8 bit interface library for ILI9325 should work for the SPFD5408 as well. I’ll look for one or modify andy’s workshop code.
martinayotte wrote:I have an 3.5″ LCD from MCUFriend which looks almost the same as the one above, and I used some parallel 8bits code which use ILI9327 commands.
And also developed a touch screen lib which has some nice features (repeated touch, double touch), check the tftpaint.ino example of the touch library for details.
Theoretically they should give 2500mAh, I will be satisfied if I get 1500mAh out of them, this would mean 12h of 120mA (current consumption of TFT+blue pill).
The same thing happens when I use dfu-util to upload to the STM32F4 using its own built in hardware USB DFU bootloader, and I also get the same error using other people’s bootloaders (like the BlackMagic Probe dfu updater)
If you post the defines that you have used in LCD_ID_readreg, I will know your wiring scheme and that it works! I can post a SPECIAL for you. And you can test it. The MapleMini is supported by both Roger’s MapleCore and the Core from ST.
I would get familiar with the basic TFT and GFX methods first. The existing TouchScreen libraries all have issues with Due, Zero, STM32, Teensy, … generally due to pinMode() and digitalWrite() “optimisations”.
I have a tft lcd shield. when I run it use arduino uno, it show me that identifier is ili9325 and works well but when I run it use STM32 blue pill, and this library:
I have run STM32F103 on IteadMaple, Nucleo-F103, and two BluePills. One of the BluePills has its data bus on PA0-PA7. And the Write Cycle is as short as the STM32F103 can possibly make it.
it do not show until you READ ID of screen. Use LCD_ID_readreg.ino Paste your LCD_ID_readreg.ino example and make photo of your connection to blue pill.
The MCUFRIEND_kbv library is designed for 8-bit Shields. I know that LCD_RD is plugged into Analog #0 pin. Hence my list of #defines in the Readreg sketch.
The MCUFRIEND_kbv library is designed for 8-bit Shields. I know that LCD_RD is plugged into Analog #0 pin. Hence my list of #defines in the Readreg sketch.
From memory, I posted a SPECIAL for golpesar123. So I would expect MCUFRIEND_kbv to work out of the box. Note that you should enable support for ILI9326 and SPFD5420:
It make sense to feed the display with 5V because the regulator on blue pill is not strong enough to deliver the necessary current for the background light of the LCD.
Only US$8.99, buy best 2.4 inch tft lcd shield ili9341 hx8347 240*320 touch board 65k rgb color display module with touch pen for uno geekcreit for arduino - products that work with official arduino boards sale online store at wholesale price.
A while ago I bought this 2.4"" Inch TFT LCD Touch Display Shield for Arduino UNO, but only recently I came up with a project where I could make use of this piece of hardware.
Then, instead of calling the method tft.clor565, a call to the newly created function fixed_color565 made sure that images got displayed correctly from now on..