3-inch lcd touch screen free sample
Capacitive touch screen to help the emergence of iPhone has changed the world, its principle is to determine the specific location of one or more fingers by detecting the capacitive touch screen surface changes, including support for complex gestures, complete multi touch function, the reaction speed is extremely sensitive, for the user to bring extraordinary experience.
Main business are: large size (10.1-65 inch) projection capacitor screen production and sales, all fit / optical binding (3.5-72 inch) OEM production and large-size fit device design, production and sales of three Large business scope.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Now we need to make the buttons functional so that when we press them they would send us to the appropriate example. In the setup section we set the character ‘0’ to the currentPage variable, which will indicate that we are at the home screen. So if that’s true, and if we press on the screen this if statement would become true and using these lines here we will get the X and Y coordinates where the screen has been pressed. If that’s the area that covers the first button we will call the drawDistanceSensor() custom function which will activate the distance sensor example. Also we will set the character ‘1’ to the variable currentPage which will indicate that we are at the first example. The drawFrame() custom function is used for highlighting the button when it’s pressed. The same procedure goes for the two other buttons.
So the drawDistanceSensor() custom function needs to be called only once when the button is pressed in order to draw all the graphics of this example in similar way as we described for the home screen. However, the getDistance() custom function needs to be called repeatedly in order to print the latest results of the distance measured by the sensor.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
LCD Display Modules└ LEDs, LCDs & Display Modules└ Electronic Components & Semiconductors└ Electrical Equipment & Supplies└ Business & IndustrialAll CategoriesAntiquesArtBabyBooks & MagazinesBusiness & IndustrialCameras & PhotoCell Phones & AccessoriesClothing, Shoes & AccessoriesCoins & Paper MoneyCollectiblesComputers/Tablets & NetworkingConsumer ElectronicsCraftsDolls & BearsMovies & TVEntertainment MemorabiliaGift Cards & CouponsHealth & BeautyHome & GardenJewelry & WatchesMusicMusical Instruments & GearPet SuppliesPottery & GlassReal EstateSpecialty ServicesSporting GoodsSports Mem, Cards & Fan ShopStampsTickets & ExperiencesToys & HobbiesTravelVideo Games & ConsolesEverything Else
The app does what it says it does: it reduces touchscreen lag and adjusts sensitivity. My phone was having issues detecting my taps, either by lagging or by not registering my tap. After using this app, all of the touchscreen-related issues were resolved! Just one issue: there"s ads on this app, one even covering the screen, and considering how infrequently one would use this app, putting in ads just seems like a waste of effort. Regardless, it does what it"s supposed to, and that"s great!
Insert the TF Card to Raspberry Pi, connect the Raspberry Pi and LCD by HDMI cable; connect USB cable to one of the four USB ports of Raspberry Pi, and connect the other end of the USB cable to the USB port of the LCD; then supply power to Raspberry Pi; after that if the display and touch both are OK, it means drive successfully (please use the full 2A for power supply).
After execution, the driver will be installed. The system will automatically restart, and the display screen will rotate 90 degrees to display and touch normally.
An Arduino Uno shield-style display module which comprises a graphic LCD mounted on a carrier board. This module is specifically designed to simply presses onto a controller with the Arduino Uno form factor, making it easy to begin designing with this display.
The Crestron® TST‑902 wireless touch screen is an advanced wireless controller, engineered to deliver ultimate performance, reliability, and customization for controlling a wide range of technologies. Its thin, tablet‑style design is easy to hold and moves effortlessly between portable and stationary use.1 Its large‑capacity, rechargeable battery affords several hours of operation between charges. Dual‑mode wireless performance with roaming capability assures dependable connectivity throughout a commercial facility or home.
Featuring a high‑contrast 8.7 in. capacitive touch screen with Smart Graphics® technology, the TST-902 allows completely customizable control over media presentation and teleconferencing systems, lighting and shades, HVAC, home theater, and a host of other technologies. Additional advanced features include voice commands for controlling touch screen functions, full-motion streaming video from cameras and other sources, Rava® SIP intercom, and an internet browser.2,3
Smart Graphics® technology enables programmers to integrate fluid gesture‑driven controls, animated feedback, rich metadata, embedded apps and widgets, and full-motion video into their user interfaces. Smart Graphics provides dynamic features such as graphical buttons and sliders, lists and toolbars, drag‑and‑drop objects, dashboard widgets, screensavers, and customizable themes.1
Rava SIP Intercom Technology enables hands‑free VoIP communication with other Rava‑enabled touch screens and door stations. Rava works over a network connection, supporting 2-way intercom and paging without requiring any special wiring. Built‑in echo cancellation affords half‑duplex performance for clear, seamless voice communication using the integrated microphone and speakers.2
Customized audio files can be loaded to add another dimension to the touch screen graphics using personalized sounds, button feedback, and voice prompts.
Note: Every TST 902 installation requires a Crestron ER wireless gateway to provide essential wireless capability to the touch screen. The TST 902 will not function over Wi Fi communications alone.
Extended Range RF (Required):Primary functionality is supported via Crestron ER (Extended Range) wireless communications, providing seamless touch screen control with true feedback. A single ER gateway provides dependable wireless performance at a range of up to 200 ft (60 m) indoors.4,5 Roaming capability allows for even greater coverage using up to eight ER gateways.
The TST‑902 has been engineered with Instant‑Waking® technology, where the touch screen display wakes instantly after being touched. Commands are also sent immediately, so spontaneous actions like muting audio, pausing video, or changing a channel can be executed without any waiting.
The TST‑902 includes a table dock for charging its internal battery while simultaneously allowing it to be used as a stationary tabletop touch screen. The table dock holds the TST‑902 firmly at a fixed upright angle while docked, and allows it to be taken off at any time for portable use. Its sleek appearance makes it a perfect fit for any home or office.1
The optional TST‑902‑DSW provides a flush mount, in‑wall docking solution, allowing the TST‑902 to be used as a stationary wall mount touch screen that can be turned into a wireless touch screen at any time.4