1.8 st7735r spi tft lcd display module in stock

Specification:Driver IC: ST7735RResolution: 128 x 160 pixelsFeatures:- Can help you to get rid of the Arduino serial monitor.- Some tests and provide UTFT library, AdaFruit Library and instruction on DropBox.- Tested with Latest Arduino 1.6.5.IO interface:1. RESET --directly to the microcontroller IO2. CS --directly to the microcontroller IO3. A0 --IO control registers select4. SDA --IO control data transmission5. SCL --IO control SPI bus6. BL--High Level 3.3V backlight onNote:Please contact us for documents and driver if you need. Please noted this LCD is 3.3V, which can not receive 5V signals from the Arduino, so please use a 1k series resistors between GPIO lines on a 5V arduino and this LCD, power this LCD with 5V but drive it with "level shifted resistor" GPIO lines.Besides, you could use mcifriend 2.8 inch TFT LCD library to get it to work, it will work fine with the Mega or Uno.

1.8 st7735r spi tft lcd display module in stock

The 1.8inch LCD uses the PH2.0 8PIN interface, which can be connected to the Raspberry Pi according to the above table: (Please connect according to the pin definition table. The color of the wiring in the picture is for reference only, and the actual color shall prevail.)

ST7735S is a 132*162 pixel LCD, and this product is a 128*160 pixel LCD, so some processing has been done on the display: the display starts from the second pixel in the horizontal direction, and the first pixel in the vertical direction. Start to display, so as to ensure that the position corresponding to the RAM in the LCD is consistent with the actual position when displayed.

The LCD supports 12-bit, 16-bit and 18-bit input color formats per pixel, namely RGB444, RGB565, RGB666 three color formats, this routine uses RGB565 color format, which is also a commonly used RGB format

Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

Framebuffer uses a video output device to drive a video display device from a memory buffer containing complete frame data. Simply put, a memory area is used to store the display content, and the display content can be changed by changing the data in the memory.

If you need to draw pictures, or display Chinese and English characters, we provide some basic functions here about some graphics processing in the directory RaspberryPi\c\lib\GUI\GUI_Paint.c(.h).

Set points of the display position and color in the buffer: here is the core GUI function, processing points display position and color in the buffer.

The fill color of a certain window in the image buffer: the image buffer part of the window filled with a certain color, usually used to fresh the screen into blank, often used for time display, fresh the last second of the screen.

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.;

2. The module_init() function is automatically called in the INIT () initializer on the LCD, but the module_exit() function needs to be called by itself

Python has an image library PIL official library link, it do not need to write code from the logical layer like C, can directly call to the image library for image processing. The following will take 1.54inch LCD as an example, we provide a brief description for the demo.

Note: Each character library contains different characters; If some characters cannot be displayed, it is recommended that you can refer to the encoding set ro used.

The first parameter is a tuple of 2 elements, with (40, 50) as the left vertex, the font is Font2, and the fill is the font color. You can directly make fill = "WHITE", because the regular color value is already defined Well, of course, you can also use fill = (128,255,128), the parentheses correspond to the values of the three RGB colors so that you can precisely control the color you want. The second sentence shows Micro Snow Electronics, using Font3, the font color is white.

The demo is developed based on the HAL library. Download the demo, find the STM32 program file directory, and open the LCD_demo.uvprojx in the STM32\STM32F103RBT6\MDK-ARM directory to check the program.

For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory STM32\STM32F103RB\User\GUI_DEV\GUI_Paint.c(.h)

Image buffer part of the window filling color: the image buffer part of the window filled with a certain color, generally as a window whitewashing function, often used for time display, whitewashing on a second

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.

DEV_Config.cpp(.h): It is the hardware interface definition, which encapsulates the read and write pin levels, SPI transmission data, and pin initialization;

image.cpp(.h): is the image data, which can convert any BMP image into a 16-bit true color image array through Img2Lcd (downloadable in the development data).

The hardware interface is defined in the two files DEV_Config.cpp(.h), and functions such as read and write pin level, delay, and SPI transmission are encapsulated.

For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory GUI_Paint.c(.h)

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.

1.8 st7735r spi tft lcd display module in stock

Specification:Driver IC: ST7735RResolution: 128 x 160 pixelsFeatures:- Can help you to get rid of the Arduino serial monitor.- Some tests and provide UTFT library, AdaFruit Library and instruction on DropBox.- Tested with Latest Arduino 1.6.5.IO interface:1. RESET --directly to the microcontroller IO2. CS --directly to the microcontroller IO3. A0 --IO control registers select4. SDA --IO control data transmission5. SCL --IO control SPI bus6. BL--High Level 3.3V backlight onNote:Please contact us for documents and driver if you need. Please noted this LCD is 3.3V, which can not receive 5V signals from the Arduino, so please use a 1k series resistors between GPIO lines on a 5V arduino and this LCD, power this LCD with 5V but drive it with "level shifted resistor" GPIO lines.Besides, you could use mcifriend 2.8 inch TFT LCD library to get it to work, it will work fine with the Mega or Uno.

1.8 st7735r spi tft lcd display module in stock

Description:The ST7735R full color TFT display module is an SPI protocol based display with a resolution of 128*160 pixels and 1.8 inch size. It displays up to 262,144 different colors. The module has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller with only 4 i/o pins. This module also comes by an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.The TFT Display communicates with the microcontroller over SPI protocol, so you need to connect it to the SPI pins of the Arduino. Before connecting it directly to the 5v logic level of the Arduino, ensure that has a voltage regulator. Because the display may be destroyed if the version of the display you have does not have the regulator. If the display does not have a voltage regulator, you can use any logic level converter between the display and the Arduino

1.8 st7735r spi tft lcd display module in stock

The 1.8inch LCD uses the PH2.0 8PIN interface, which can be connected to the Raspberry Pi according to the above table: (Please connect according to the pin definition table. The color of the wiring in the picture is for reference only, and the actual color shall prevail.)

ST7735S is a 132*162 pixel LCD, and this product is a 128*160 pixel LCD, so some processing has been done on the display: the display starts from the second pixel in the horizontal direction, and the first pixel in the vertical direction. Start to display, so as to ensure that the position corresponding to the RAM in the LCD is consistent with the actual position when displayed.

The LCD supports 12-bit, 16-bit and 18-bit input color formats per pixel, namely RGB444, RGB565, RGB666 three color formats, this routine uses RGB565 color format, which is also a commonly used RGB format

Note: Different from the traditional SPI protocol, the data line from the slave to the master is hidden since the device only has display requirement.

Framebuffer uses a video output device to drive a video display device from a memory buffer containing complete frame data. Simply put, a memory area is used to store the display content, and the display content can be changed by changing the data in the memory.

If you need to draw pictures, or display Chinese and English characters, we provide some basic functions here about some graphics processing in the directory RaspberryPi\c\lib\GUI\GUI_Paint.c(.h).

Set points of the display position and color in the buffer: here is the core GUI function, processing points display position and color in the buffer.

The fill color of a certain window in the image buffer: the image buffer part of the window filled with a certain color, usually used to fresh the screen into blank, often used for time display, fresh the last second of the screen.

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.;

2. The module_init() function is automatically called in the INIT () initializer on the LCD, but the module_exit() function needs to be called by itself

Python has an image library PIL official library link, it do not need to write code from the logical layer like C, can directly call to the image library for image processing. The following will take 1.54inch LCD as an example, we provide a brief description for the demo.

Note: Each character library contains different characters; If some characters cannot be displayed, it is recommended that you can refer to the encoding set ro used.

The first parameter is a tuple of 2 elements, with (40, 50) as the left vertex, the font is Font2, and the fill is the font color. You can directly make fill = "WHITE", because the regular color value is already defined Well, of course, you can also use fill = (128,255,128), the parentheses correspond to the values of the three RGB colors so that you can precisely control the color you want. The second sentence shows Micro Snow Electronics, using Font3, the font color is white.

The demo is developed based on the HAL library. Download the demo, find the STM32 program file directory, and open the LCD_demo.uvprojx in the STM32\STM32F103RBT6\MDK-ARM directory to check the program.

For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory STM32\STM32F103RB\User\GUI_DEV\GUI_Paint.c(.h)

Image buffer part of the window filling color: the image buffer part of the window filled with a certain color, generally as a window whitewashing function, often used for time display, whitewashing on a second

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.

DEV_Config.cpp(.h): It is the hardware interface definition, which encapsulates the read and write pin levels, SPI transmission data, and pin initialization;

image.cpp(.h): is the image data, which can convert any BMP image into a 16-bit true color image array through Img2Lcd (downloadable in the development data).

The hardware interface is defined in the two files DEV_Config.cpp(.h), and functions such as read and write pin level, delay, and SPI transmission are encapsulated.

For the screen, if you need to draw pictures, display Chinese and English characters, display pictures, etc., you can use the upper application to do, and we provide some basic functions here about some graphics processing in the directory GUI_Paint.c(.h)

Display time: in the image buffer,use (Xstart Ystart) as the left vertex, display time,you can choose Ascii visual character font, font foreground color, font background color.

1.8 st7735r spi tft lcd display module in stock

We just love this little 1.8" TFT display, with true TFT color (up to 18-bits per pixel!), fine 160x128 resolution, two white LED backlight that runs on 3.3V and a very easy SPI interface that requires only 4 or 5 digital pins to send pixels to the display.

Please note! This is just the raw display, not attached to a PCB or for use with a breadboard. If you want to use this out of the box with no surface mount soldering, check out our fully assembled 1.8" TFT breakout board with microSD card holder. This display is for experts who are comfortable soldering a surface mount display using fine pitch soldering techniques! This display also is for 3.3V use only, so be sure to use a level shifter if you"re going to use it with 5.0V microcontrollers.