adafruit st7735 tft display price

Hi guys, welcome to today’s tutorial. Today, we will look on how to use the 1.8″ ST7735  colored TFT display with Arduino. The past few tutorials have been focused on how to use the Nokia 5110 LCD display extensively but there will be a time when we will need to use a colored display or something bigger with additional features, that’s where the 1.8″ ST7735 TFT display comes in.

The ST7735 TFT display is a 1.8″ display with a resolution of 128×160 pixels and can display a wide range of colors ( full 18-bit color, 262,144 shades!). The display uses the SPI protocol for communication and has its own pixel-addressable frame buffer which means it can be used with all kinds of microcontroller and you only need 4 i/o pins. To complement the display, it also comes with an SD card slot on which colored bitmaps can be loaded and easily displayed on the screen.

The schematics for this project is fairly easy as the only thing we will be connecting to the Arduino is the display. Connect the display to the Arduino as shown in the schematics below.

Due to variation in display pin out from different manufacturers and for clarity, the pin connection between the Arduino and the TFT display is mapped out below:

We will use two libraries from Adafruit to help us easily communicate with the LCD. The libraries include the Adafruit GFX library which can be downloaded here and the Adafruit ST7735 Library which can be downloaded here.

We will use two example sketches to demonstrate the use of the ST7735 TFT display. The first example is the lightweight TFT Display text example sketch from the Adafruit TFT examples. It can be accessed by going to examples -> TFT -> Arduino -> TFTDisplaytext. This example displays the analog value of pin A0 on the display. It is one of the easiest examples that can be used to demonstrate the ability of this display.

The second example is the graphics test example from the more capable and heavier Adafruit ST7735 Arduino library. I will explain this particular example as it features the use of the display for diverse purposes including the display of text and “animated” graphics. With the Adafruit ST7735 library installed, this example can be accessed by going to examples -> Adafruit ST7735 library -> graphics test.

Next, we move to the void setup function where we initialize the screen and call different test functions to display certain texts or images.  These functions can be edited to display what you want based on your project needs.

testdrawtext("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ", ST7735_WHITE);

Uploading the code to the Arduino board brings a flash of different shapes and text with different colors on the display. I captured one and its shown in the image below.

That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions as regards this project.

adafruit st7735 tft display price

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.

The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.

This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.

The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.

In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.

The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:

Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.

In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

adafruit st7735 tft display price

Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available! The 1.9" display has 320x170 16-bit full-color pixels and is an IPS display, so the color looks great up to 80 degrees off-axis in any direction. The TFT driver (ST7789) is very similar to the popular ST7735, and tthe Arduino library supports it well.

The breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as an ultra-low-dropout 3.3V regulator, auto-reset circuitry, and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. Adafruit also had a little extra space, so they placed a microSD card holder so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card. The microSD card is not included.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - Adafruit have written a full open-source graphics Arduino library that can draw pixels, lines, rectangles, circles, text, and bitmaps as well as example code. The code is written for Arduino but can be easily ported to your favorite microcontroller! Wiring is easy, we strongly encourage using the hardware SPI pins of your Arduino as software SPI is noticeably slower when dealing with this size display. For Raspberry Pi or other Single Board Computer Python users, there is a user-space Pillow-compatible library. For CircuitPython there"s a displayio driver for native support.

This display breakout also features an 18-pin "EYE SPI" standard FPC connector with flip-top connector. You can use an 18-pin 0.5mm pitch FPC cable to connect to all the GPIO pins, for when you want to skip the soldering.

Please note! This display is designed original for smartwatches and similar, where there"s a glass over the screen. Without something gently holding the screen down, the backlight can eventually peel away from the TFT. (It"s not destructive but it"s unattractive) You can prevent this by, ideally, adding a plastic or glass cover/overlay. If using bare, try dabbing a touch of E6000 or similar craft glue on the thin side edges, or using a thin piece of tape to keep the front TFT attached to the backlight.

adafruit st7735 tft display price

Say hello to our 1.14 inch 240x135 Color TFT Display w/ MicroSD Card Breakout – we think it"s T-F-Terrific! It"s the size of your thumbnail, with glorious 240x135 high res pixel color. This very very small display is only 1.14 inch diagonal, packed with RGB pixels, for making very small high-density displays.

We"ve been looking for a display like this for a long time - it"s so small only 1.14 inch diagonal but has a high density 260 ppi, 240x135 pixel display with full-angle viewing. It looks a lot like our 0.96 inch 160x80 display, but has 2.5x as many pixels. We"ve seen displays of this caliber used in smartwatches and small electronic devices but they"ve always been MIPI interface. Finally, we found one that is SPI and has a friendly display driver, so it works with any and all microcontrollers or microcomputers!

This lovely little display breakout is the best way to add a small, colorful and very bright display to any project. Since the display uses 4-wire SPI to communicate and has its own pixel-addressable frame buffer, it can be used with every kind of microcontroller. Even a very small one with low memory and few pins available! The 1.14 inch display has 240x135 16-bit full color pixels and is an IPS display, so the color looks great up to 80 degrees off axis in any direction. The TFT driver (ST7789) is very similar to the popular ST7735, and our Arduino library supports it well.

Our breakout has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so you can use it with 3.3V or 5V power and logic. We also had a little space so we placed a microSD card holder so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card. The microSD card is not included, butyou can pick one up here.