lcd displays do not in stock
This nearly $4.9 billion company is a Taiwanese manufacturer of flat panel displays used in a wide variety of consumer electronics products such as high-def televisions, smartphones, notebook computers, and the touch-screen technology now being used in automobiles and payment-processing terminals.
Roughly 20% of large thin-film transistor LCD (TFT) panels in the world are produced by AU Optronics. Almost all Sonyundefined televisions in 2014 used AU Optronics flat panels, while Panasonic, LG(, Toshiba, Philips
With worldwide television, laptop, smartphone, and car display sales continuing to rise, AU Optronics is well-positioned to grow sales over the long run. However, the company"s stock has been beaten down in 2015 due to a 0.7% year-to-date sales decline versus 2014.
But Piotroski wants to know that the reason a company is trading at less than book value is not due to declining performance, so he also wants to see that it is still financially healthy. For that reason he demands that the company have a positive return on assets, which AU Optronics does with an return of 3.7%.
At the moment AUO does not pay a dividend, and it probably won"t in the near future as it feels it can earn a higher return on that cash by reinvesting it into the growth of its core business.
Regardless, you can confidently acquire AU Optronics now for a strong gain, with good downside protection, as the market brings the the company"s stock price in line with its book value.
One of the problems with old CRT monitors, over time, was a condition called burn-in. This phenomenon resulted in an imprint of an image onto the display that was permanent, caused by the continuous display of a particular picture on the screen for extended periods. A breakdown in phosphors on the CRT results in the image being burned into the screen, hence the term. Is there such a thing as LCD screen burn-in?
LCD monitors use a different method for producing the image on the screen and are immune to this burn-in effect. Rather than phosphors generating light and color, an LCD uses a white light behind the screen with polarizers and crystals to filter the light to specific colors. While LCDs are not susceptible to burn-in the same way CRT monitors are, LCDs suffer from what manufacturers call image persistence.
Like the burn-in on CRTs, image persistence on LCD monitors is caused by the continuous display of static graphics on the screen for extended periods. Long-term-static images prompt the LCD crystals to develop a memory for their location to generate the colors of that graphic. When a different color appears in that location, the color will be off and will display a faint image of what was previously displayed.
The persistence is the result of how the crystals in the display work. The crystals move from a position allowing all light through to one that doesn"t allow any. It"s almost like a shutter on a window. When the screen displays an image for an extremely long time, the crystals can switch to a particular position. It may shift a bit to alter the color, but not completely, resulting in a display other than the one intended.
This problem is most common for elements of the display that do not change. Items that are likely to generate a persistent image are the taskbar, desktop icons, and background images. These tend to be static in their location and displayed on the screen for an extended period. Once other graphics load over these locations, it might be possible to see a faint outline or image of the previous graphic.
In most cases, no. The crystals have a natural state and could shift depending on the amount of current used to generate the desired color. As long as these colors change periodically, the crystals at that pixel should fluctuate enough, so the image doesn"t imprint into the crystals permanently. However, if the screen is always on the image that doesn"t change, the crystals could obtain a permanent memory.
Set the screen to turn off after a few minutes of idle time. Turning off the monitor display prevents images from appearing for extended periods. Setting the monitor to do this when the computer is idle for 15 to 30 minutes can make a difference. These values appear in the Mac Energy Saver settings or Windows Power Management.
Using these items can prevent the image persistence problem from cropping up on a monitor. If the monitor displays image persistence problems, here are a few steps that can be used to correct it:
I always finding it interesting when a new customer of ours calls to let us know that they can find cheap LCD displays, the same LCD we supply, for almost half the price. After all, cheap LCD displays are the same no matter where you purchase it. Right?
Let me assure you that the phrase, ‘You get what you pay for’ is just as true for LCD displays as it is for insurance, fine jewelry, car repairs and open heart surgery. You will always be able to find a lower cost product or service, but many times you are not comparing apples to apples.
When I was in college I was as close to broke as one could be, but I needed a ratchet set to make repairs on the car. At first, I looked at the Craftsman brand of tools. They were steel, not Aluminum with a life time guarantee that any Sears store would honor. Then, I found another ratchet set at a drug store. It was next to the school supplies and hair products. The drugstore"s tool set was 1/3 of the cost. They were cheap, but hey, I am not a full-time mechanic; why invest in something I will only use a few times?
After talking to a friend at school who highly suggested spending the extra money and investing in the quality, I knew the choice to make. I bought smart instead of cheap and to make a long story short, 20+ years later my Craftsman tools are going strong. They have survived rain, grease, and teenagers. Not so ironically the drug store doesn’t exist anymore and I’m confident their products wouldn’t either had I purchased them long ago.
I now have an attitude that you need to look at each purchase as either an ‘investment’ or expendable item. Identifying an item as expendable is not bad, but you need to choose what is and what is not expendable. For me paper towels, razors, duct tape are all expendable items; whereas reading glasses, car tires, and smoke detectors are an investment.
There is a reason why some things cost more, you are buying the quality and support that come with the set of wrenches or tires or whatever the product. It may sound a bit capitalistic, but if the manufacturer is not making a solid profit, then there is a good chance they will not be around in a year to support you.
The word “cheap” is so polarized in that in one instance you can revel in the victory of finding that super low price and yet simultaneously it is no victory at all if someone looks at your product and says, “Wow, that looks cheap.” So, let’s talk about Cheap LCD displays.
The long and short of it is that LCD’s are in investment. In many cases, they are the most expensive component in your product, but you need to balance that with the fact that they are also what the customer looks at the most. If you are building a hand held device that measures the PH of pool water, it’s a safe bet that people will be looking at the display far more than the battery compartment on the back of the unit. The cheap LCD display may save you a fraction of what other suppliers are quoting, but what is it costing you? Return customers. Good online reviews. Word-of-mouth advertising.
There is a rule of thumb statistic that says it costs a company 7 times more money to earn a new customer, than it does to keep a current customer. So why would you save 20% or even 40% off the cost of an LCD and in return lose your current customers. The savings will not offset the increased advertising cost to bring in new customers.
There are three main fluids used in a monochrome LCD module. They are TN, STN and FSTN. Each fluid has its own niche in which it operates well. One of the main factors impacted by the different fluids is acceptable viewing angle of the display.
An example of a TN display is the display found on gas pumps. You can easily read the gallons and dollars as they quickly fly by. Since most people see the display straight on, there is no need for a higher cost fluid. TN is the right choice and keeps the cost of the product down.
FSTN, film super-twisted nematic displays, are on the other end of the spectrum. They are more expensive than TN and STN, but it offers a sharper contrast and a much wider viewing angle. If you are building a portable device that measures radiation, you want to make sure you can see the numbers on the display from as wide of viewing able as possible. Using a TN in the application may save you as much as 15% on the cost of the display, but is this type of product an investment or expendable?
LCD displays are quite diverse when it comes to the temperatures in which they can operate well. Some even have as much and more than 100 degrees window of successful operation. There are three main temperature ranges of an LCD unit:Normal temperature (indoor temps—think of your living room)
Take for instance one customer of ours who needed the display to work properly on oil rigs near the North Pole. Their product monitors the safety equipment on the rig. Is it worth spending the extra $5 on a display that can survive working in all conditions? Is the LCD display an investment or expendable?
When a supplier is promising you the cheapest deal out there, you need to make sure that you are again dealing with an apples-to-apples comparison. Make sure that they aren’t saving you money by offering you a display that has the cheapest temperature range or the narrowest viewing angle, especially when those aren’t what will suit your product and your situation. They may just be choosing the cheapest alternatives of all the many options available, all to have you wind up with a unusable or inferior product. Then, you not only have a product you aren’t thrilled about but you face the problem of shipping the product back to the foreign country from which it came. This is not a convenient way to deal with the fallout from the “cheap” product! There is a real advantage to buying a product that has American support and part of that advantage is simply the convenience of speaking the same language and being within one shipping day apart from your customer support.
Another primary issue—and one that has become a sensitive topic in recent years with widespread outsourcing—is service. When you are calling for help with an issue, the likelihood is that you are already a little frustrated and just want the customer service representative to solve your problem with a quick, clear, and intelligible 2 minute conversation. When you spend a painstaking 20 or 30 minutes trying to explain the problem and understand the representative after you already spent 20 minutes in a phone tree or on hold waiting to talk to someone that is an intolerable situation.
We understand that frustration and at Focus Display Solutions we offer uncompromising customer service and we provide it in a way that we would want to be served. We strive to pick up the phone on the first ring. We can talk to you about the products from a knowledge based on years of experience and not from a script that someone else wrote to troubleshoot only the most common problems. When you call us you talk to humans, not machines. We offer personal service to get the product right the first time and we do it in a way that works with your personal style.
Some customers want to talk on the phone, some only like email. We cater to both. And by the way, we do not believe in the weekly ‘email blast’. This may have been helpful at one time, but when you receive 50 to 100 emails a day. You don’t need to read about, “A one day sale on yellow/green LED backlights. Call today and mention savings code 123!”
The engineer took our price and specs and called back a few days later saying that another LCD vendor came in with a similar product that would cost in the low $5 range. Red flags immediately went up in my mind. Something was not right about this cheap LCD display. The display was similar, but upon inspection there were some ‘strings’ attached.
This is critical if you plan to build your product for the next few years. You will need to purchase more of these exact LCD displays in the future. When that time comes and you find out that the LCD modules are discontinued, you are in deep trouble. Your only option is to redesign your product for the current LCD.
Redesigns are not only very costly, but they also take a good deal of time. All this time your assembly lines are stalled and your sales people have nothing to sell.
Keep in mind that if you plan to repair your customer’s product, it is critical to have a supply of the original LCD. You cannot use a new LCD in an old product in the same way you cannot use a VHS tape (for those of you over the age of 20) in a blue ray player.
A simple tip is to do a little research on the product. Google can be your best friend. When someone offers you a screaming deal on a cheap LCD display, type in the part # and manufacture into Google; you may quickly find out why the prices are so cheap.
There are companies that contact us to buy our surplus/returns. These companies are providing a valuable service by keeping displays out of the landfills. If you need to be able to purchase the exact same LCD in the future, stay away from refurbished units. Once they are gone, there are no rain checks. Many of these displays can be found on eBay and other online auctions.
FOB means Freight On Board. In other words, when it comes time to pay the freight bill, how much will it cost? Are you paying to bring in the parts all the way from the Far East? Or does the quote include the cost to bring them to your door step.
Focus Displays Solutions prefers to include the cost of the freight of those component parts from the Far East to Chandler, AZ. This way the customer only has to pay for the shipping from Arizona to their location.
That engineer quickly realized that asking the three critical questions makes all the difference in the price of the product! Getting cheap LCD displays is not always a mistake, just remember to ask questions and really think through whether this is an investment or an expendable item.
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals. Liquid crystals do not emit light directly, instead using a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images (as in a general-purpose computer display) or fixed images with low information content, which can be displayed or hidden, such as preset words, digits, and seven-segment displays, as in a digital clock. They use the same basic technology, except that arbitrary images are made up of a large number of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.
LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in portable consumer devices such as digital cameras, watches, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to increase the lifespan of LCDs are quantum dot displays, which offer similar performance as an OLED display, but the Quantum dot sheet that gives these displays their characteristics can not yet be recycled.
Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence. The LCD screen is more energy-efficient and can be disposed of more safely than a CRT can. Its low electrical power consumption enables it to be used in battery-powered electronic equipment more efficiently than CRTs can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.
Many Apple products use liquid crystal displays (LCD). LCD technology uses rows and columns of addressable points (pixels) that render text and images on the screen. Each pixel has three separate subpixels—red, green and blue—that allow an image to render in full color. Each subpixel has a corresponding transistor responsible for turning that subpixel on and off.
Depending on the display size, there can be thousands or millions of subpixels on the LCD panel. For example, the LCD panel used in the iMac (Retina 5K, 27-inch, 2019) has a display resolution of 5120 x 2880, which means there are over 14.7 million pixels. Each pixel is made up of a red, a green, and a blue subpixel, resulting in over 44 million individual picture elements on the 27-inch display. Occasionally, a transistor may not work perfectly, which results in the affected subpixel remaining off (dark) or on (bright). With the millions of subpixels on a display, it is possible to have a low number of such transistors on an LCD. In some cases a small piece of dust or other foreign material may appear to be a pixel anomaly. Apple strives to use the highest quality LCD panels in its products, however pixel anomalies can occur in a small percentage of panels.
In many cases pixel anomalies are caused by a piece of foreign material that is trapped somewhere in the display or on the front surface of the glass panel. Foreign material is typically irregular in shape and is usually most noticeable when viewed against a white background. Foreign material that is on the front surface of the glass panel can be easily removed using a lint free cloth. Foreign material that is trapped within the screen must be removed by an Apple Authorized Service Provider or Apple Retail Store.
Creating an array of the best LCD Monitors for Stock Traders is one of the many ways you can make money on your PC. Unlike gaming rigs which require high-speed refresh rates and response times, you will only need clarity and a perfectly sized display to cater to your needs. This niche can involve a lot of different software at any given time, so your best bet is probably a multi-display machine. You want a set up that allows you scan multiple markets at the same time, decreases eye fatigue, offers high resolution, maximizes speed and keeps costs down. The setups below are more affordable and responsive than your standard Bloomberg terminal monitor. Users of TradeStation, Thinkorswim, and eSignal will benefit from the expansive real estate of a multi-monitor setup.
Setting up a command center-styled system can get tricky or expensive, but there are practical solutions you can easily purchase and build yourself. Determining how many displays you will require maximizing efficiency and productivity is key.
However, if your stock market business runs several windows which monitor different markets, clients, brokers or you just need the extra viewing space, you can opt to utilize a mounting mechanism which can hold up to six different displays
The cheapest solution we can find and recommend is the VIVO Hex LCD Monitor Stand, which can hold up to six 24-inch monitors via their 75 x 75 or 100 x 100 VESA mounting holes. This mechanism is made of high-grade steel and aluminum for durability.
Each arm will provide -15 to +15 degrees of tilt, and 360 degrees of swivel and pivot, giving you absolute control over how you would want to position each screen to get the perfect view angle. You also won’t need to worry about messy wires, since the VIVO Hex LCD Monitor Stand also includes an integrated cable management system.
The IPS panel in the AOC I2369VM is capable of excellent contrast ratio, gamma, and panel uniformity ensuring your work is visibly clear and precise even if viewed at an off angle. You also get a pixel response time of 5ms, so you need not worry about ghosting or interlacing while your programs continually update their content.
If multiple monitors for stock trading isn’t your cup of tea, there are products which are suitable for the job. Having a lone monitor on your desk can be practical in both cost and upkeep, plus you don’t have to deal with messy cabling or assembly.
Another excellent behemoth is the Philips BDM4350UC, a 43-inch professional monitor with an IPS panel. This model almost looks like your 4K TV in the living room with thin bezels, making it look like a gorgeous centerpiece for your office or workspace. Just like the Del P4317Q above, this screen can also serve as a multi-client device. The 4K resolution of the big screen also enables you to open multiple apps and widgets simultaneously, ensuring your workflow is efficient.
The Philips BDM4350UC carries a high-quality IPS panel with eye-popping color and detail, plus our review unit did not display any severe backlight bleeding or poor uniformity, which is quite rare for big screens. This option is excellent for designing and movies, and we can’t imagine why it shouldn’t be included as one of the best monitors for stock trading.
If you want something bigger and better than the previous entry, the next best thing is the LG 38UC99 which has a whopping 3840 x 1600 resolution which is enough to display three or four windows side by side. Like most of LG’s high-end monitors, the 38UC99 is able to output 99% sRGB coverage for excellent vibrancy and accuracy.
Choosing the best monitors for day trading does not need to be tricky or difficult, since the market is full of several solutions which are suitable for different needs and budgets. The seven recommended products here represent benchmarks according to our rating, tastes, and experience so you can gauge how to build a setup for trading of your own.
On non-touch LCDs apply no pressure to the LCD surface and ensure no impact can be made by end users to it. There is no specification for pressure or impact on non-touch LCDs.
Avoid excessive and pointed force on the back of the chassis of the LCD which can damage the backlight structure and cause hot spots on the display or permanent damage to the unit
If the LCD glass breaks and the LCD liquid materials escape, avoid contact with bare skin. Wash exposed skin with soap and water immediately and dispose of the product according to local materials handling procedures.
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
Take this category with a grain of salt. Both TV types are very bright and can look good in even a sunny room, let alone more moderate indoor lighting situations or the dark rooms that make TV images look their best. When it comes down to it, no modern TV could ever be considered "dim."
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.
Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.
In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.
The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.
LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.
Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.
OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.
If you want something even brighter, and don"t mind spending a literal fortune to get it, Samsung, Sony, and LG all sell direct-view LED displays. In most cases these are
You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.
LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
copied the firmware.bin that came on the SD card. Inserted, nothing. Didn"t rename the file. when I looked closer, I noticed that my file was named, FIRMWARE.bin. All caps name, lowercase extension. Made extension all caps, inserted. Flashed back to original firmware that came with the board.
Then I noticed that the firmware.bin and firmware_bltouch.bin that I downloaded from github, via right-click, save as was only 82KB. While the firmware that came with the board was 209KB. This didn"t seem right, so I went back to github and instead of downloading via right click, I clicked on the firmware_blthouch.bin. This loaded a page that said the file ws 226KB, with a download button. Clicked download. Verified that the file was indeed 226KB when downloaded. Renamed it to FIRMWARE.BIN, inserted into SD Slot, turned on printer. 15 seconds later, the screen loads and says I"m on the newer version of Marlin (2.0.6, I think).
So, I am a bit of a dumbass, but in case it might help others, make sure your downloaded file is 200+KB in size, and not 82KB. And renaming to all caps fixed my restore, so I didn"t even try the new firmware.bin file lowercase, I just made it all uppercase.
Unused electronics are the bane of the modern life. Perfectly functional gadgets sit quietly in a corner of the store room, doing nothing. If you"re wondering what to do with old computer monitors, here are a few easy ideas to repurpose unused screens.
In this guide, it doesn"t matter if your old monitor is still working or not. Even if it isn"t, you can use its parts to make a great new gadget. From turning it into a super-tiny computer or dashboard to refashioning into a smart mirror, here are some of the most productive ways to repurpose a computer monitor.
Perhaps the best thing to do with an old flat-screen monitor is a DIY DAKboard. The DAKboard is a LCD wall display that shows the current time, weather forecast, calendar events, stock quotes, fitness data, and news headlines. It"s all displayed on a soothing photo. You could buy an official DAKboard, but the makers themselves have shown how to build your own wall display with a Raspberry Pi. when you can build one for far less money and a little geeky fun, the choice is obvious.
https://www.anrdoezrs.net/links/7251228/type/dlg/sid/UUmuoUeUpU47675/https://www.youtube.com/supported_browsers?next_url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DzL_HAmWQTgA
To anyone else, it is going to look like a blank white monitor with nothing on it. But wearing a special pair of spectacles, you"ll be able to see things on it like a regular monitor. It"s magic! It"s a tough process, but dimovi"s guide at Instructables is thorough and precise.
Basically, you will be cutting out the polarizing film of the old LCD monitor. This film will then be put on a simple pair of glasses. Now your screen appears white, but the glasses can "see" the content. It"s one of the best ways to keep prying eyes out of your PC.
If you have a broken old LCD monitor, it can be re-purposed into a usable mirror; but if you have a working old LCD monitor, adding a Raspberry Pi can turn it into a smart magic mirror!
If you"re on a tight budget for a first-time DIY project, consider the $100 smart mirror. It"s not the best version of turning an LCD monitor into a smart mirror, but you"ll get the basic features and not spend a bomb.
If you have the space available, the best thing you can do with an extra monitor is to boost your productivity with a dual-monitor setup. A second monitor has many potential purposes, such as extended screen space, a dashboard for your social media or news updates, or a dedicated video conferencing screen.
All desktop operating systems support the ability to use dual monitors. It"s pretty easy to setup dual monitors on Windows, and you can then customize how you use the two spaces. To connect two monitors, you will likely need a graphics card with multiple HDMI ports, or use an HDMI and a VGA port on desktops.
Make it a dedicated screen for Nintendo Wii:The Nintendo Wii can connect to a VGA monitor, so if you don"t have a Wii, buy one. In fact, buy a used one, they"re pretty cheap on Craigslist.
Like any gadget, monitors have a limited shelf life. If you"re looking to upgrade, you now have a few ideas of what to do with your old monitor. And that age should influence which project you chose. For example, given the effort involved in building a smart mirror, don"t go with a screen that"s already shown signs of trouble. The Raspberry Pi-based projects are usually the easiest to keep changing.
The LCD screen is vital for operating the printer. Should you encounter any kind of trouble, such as a dead screen, corrupted text, or other issues, please refer to the guide below.
First of all, unscrew the LCD screen from the printer frame, remove both M3x10 screw holding it the LCD board in the plastic casing, and remove it from the casing. See if the problem still appears when the LCD is not pressed by the casing.
Firmware updates are necessary to keep your printer up to date. However, the installation of incorrect firmware can lead to letter corruption on the LCD screen. There"s an easy fix, though:
There is a small chance the printer"s LCD screen can glitch out by electrostatic discharge when inserting the SD card. Try to turn the printer off and on again.
This problem usually appears only on user-assembled printers. If your printer"s LCD screen remains blank or displays corrupted symbols after you turn on the printer, there is a chance it is caused by incorrect wiring. Follow these steps to fix the issue.
Double-check that all cables are properly seated and they are not visibly damaged. Depending on the model of your printer, please refer to the following guides for information on how to make sure the cables are properly connected: Einsy RAMBo electronics wiring (MK3/MK3S/MK3S+) and Mini RAMBo electronics wiring (MK2S, MK2.5, MK2.5S).
If you suspect that the LCD ribbon cables connectors are not firmly seated in the slots, disconnect the LCD ribbon cables and check the slots for any bent pins. If there are bent pins, you can use tweezers to fix them. However, be very careful not to break the pin(s) completely.
If none of the above resolved the problem, turn the printer off again and try to unplug both of the cables, lay them down on a flat surface and gently stretch them. Then plug them back in and turn on the printer.
The LCD Display Upgrade provides additional information while riding, including Speedometer, Odometer, Trip Odometer, Average Speed, Max Speed, and Pedal Assist (PAS) levels 1-4. This replaces the stock LED display on the RadRunner, RadMission, and RadExpand.
If the display is still blank, try to tilt or move up or down the LCD display and also try a different known working electrical outlet at your location.
Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.
Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:
Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:
MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:
Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.
LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.
"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.
"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.
"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.
Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.
"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.