2.8 tft lcd shield adafruit quotation
Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a resistive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.
The Adafruit 2.8in. TFT LCD Touchscreen Display brings QVGA graphics to your next project using only 5 x SPI pins or 12 x GPIO pins if you can spare them. The screen is bright with a 4-LED backlight and can display 18-bits of colour (262,000 colours). There"s a display controller built in so your microcontroller doesn"t need to get involved in refreshing the screen, it just has to write the pixels once then it can move on to other tasks. SPI mode uses less pins but is slower while 8-bit mode uses more pins and is faster, the choice is up to you. Adafruit have software and tutorials to support you whichever mode you decide to use, see the links below. The board also has a micro-SD card socket that you can use to store files and images.
Visit https://learn.adafruit.com where Adafruit provide a free tutorial for the Raspberry Pi, and another tutorial for the Arduino. They also have an open source library to drive the display in 8-bit mode, and another to use SPI mode. Please note that while the screen is capable of 18-bit colour, the Adafruit code uses 16-bits for efficiency. It"s highly unlikely that you"ll ever notice any difference.
ER-TFTM028-4 is 240x320 dots 2.8" color tft lcd module display with ILI9341 controller board,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.
It supports 8080 8-bit /9-bit/16-bit /18-bit parallel ,3-wire,4-wire serial spi interface.Built-in optional microSD card slot, 2.8" 4-wire resistive touch panel with controller XPT2046 and 2.8" capacitive touch panel with controller FT6206. It"s optional for font chip, flash chip and microsd card. We offer two types connection,one is pin header and the another is ZIF connector with flat cable mounting on board by default and suggested. Lanscape mode is also available.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 2.8"TFT Touch Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.
The 2.8" Resistive Touchscreen by Adafruit comes in the form of a shield to help you set up your Arduino projects. It has a high-quality display for immediately viewing your data: images, e-mails, text messages and information of a more technical nature are all perfectly legible!
The shield has a pleasant-sized TFT screen (2.8” diagonal) offering a vast choice of colours with 262,000 shades available in 18-bit mode and a great brightness thanks to a backlight with 4 white LEDs, which can be controlled with a digital pin connection.
You’re no doubt familiar with the shield system: because it’s equipped with all the necessary connectors, already welded to the controller, you can connect your hardware to your programming board in a flash.
In this case, the TFT resistive touchscreen proposed by Adafruit is a true plug-and-play screen; already assembled and tested, it’s ready for use in just 10 minutes after downloading an Arduino code library.
Just wanted to put a note on here for anyone trying to connect the Adafruit 2.8" TFT Resistive Touch Shield to a Photon, through a Particle Shield Shield. I couldn’t get it to work, then figured this out and thought I’d share the knowledge…
The TFT shield is hardwired to use the default hardware SPI pins for Arduino, but on the Shield Shield, these pins actually map to Particle’s SPI1, not SPI (there are two SPI ports on the Particle…I’ve read there is perhaps a third?).
This will have your Particle talking to the correct pins of the TFT shield, through the Shield Shield. And of course, if coming from Arduino, you will need to do the other typical porting changes covered in this and other threads.
The 2.8 inch TFT Touch Screen LCD Module For Arduino is a beautiful large touchscreen display shield with built in microSD card connection. The LCD has excellent vivid color contrast. This TFT display is big (2.8″ diagonal) bright (4 white-LED backlights) and colorful (18-bit 262,000 different shades). 240×320 pixels with individual pixel control. It has way more resolution than a black and white 128×64 display. As a bonus, this display has a resistive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.
As with all Arduino Shields, connecting to the Arduino is simply a matter of plugging the shield in. Take care to align the pins correctly, and ensure the bottom of the shield does not make contact with the Arduino USB port.
Displaying a custom image or graphic on a LCD display is a very useful task as displays are now a premium way of providing feedback to users on any project. With this functionality, we can build projects that display our own logo, or display images that help users better understand a particular task the project is performing, providing an all-round improved User Experience (UX) for your Arduino or ESP8266 based project. Today’s tutorial will focus on how you can display graphics on most Arduino compatible displays.
The procedure described in this tutorial works with all color displays supported by Adafruit’s GFX library and also works for displays supported by the TFTLCD library from Adafruit with little modification. Some of the displays on which this procedure works include:
For this tutorial, we will use the 2.8″ ILI9325 TFT Display which offers a resolution of 320 x 340 pixels and we will display a bitmap image of a car.
To demonstrate how things work, we will use the 2.8″ TFT Display. The 2.8″ TFT display comes as a shield which plugs directly into the Arduino UNO as shown in the image below.
Not all Arduino displays are available as shields, so when working with any of them, connect the display as you would when displaying text (we recommend following the detailed tutorial for the display type you use of the above list). This means no special connection is required to display graphics.
Image2Code is an easy-to-use, small Java utility to convert images into a byte array that can be used as a bitmap on displays that are compatible with the Adafruit-GFX or Adafruit TFTLCD (with little modification) library.
To reduce the amount of code, and stress involved in displaying the graphics, we will use two wonderful libraries; The GFX library and the TFTLCD library from Adafruit.
The Adafruit libraries do not support all of the displays but there are several modifications of the libraries on the internet for more displays. If you are unable to find a modified version of the library suitable for your the display, all you need do is copy the code of the drawBitmap() function from the GFX library and paste it in the Arduino sketch for your project such that it becomes a user-defined function.
As usual, we start writing the sketch by including the libraries required. For this procedure, we will use the TFTLCD library alone, since we are assuming you are using a display that is not supported by the GFX library.
The last section of the code is the drawBitmap function itself, as earlier mentioned, to use the drawbitmap() function with the Adafruit TFTLCD library, we need to copy the function’s code and paste into the Arduino sketch.