space engineers lcd panel no panels found made in china
The various LCD Panel blocks are a great way to add a human touch to a ship or base by displaying useful images or text. For LCD configuration and usage, see LCD Surface Options.
Note: Some functional blocks, such as Cockpits, Programmable Blocks, Custom Turret Controllers, and Button Panels, have customizable LCD surfaces built in that work the same way as LCD Panel blocks, which are also discussed in detail under LCD Surface Options.
LCD Panels need to be built on a powered grid to work. Without power, they display an "Offline" text. While powered without having a text, image, or script set up, they display "Online".
LCD Panel blocks come in a variety of sizes from tiny to huge (see list below) and are available for large and small grid sizes. Note that LCD Panel blocks all have connections on their backs, and very few also on a second side.
All LCD Panels and LCD surfaces work with the same principle: They are capable of displaying dynamic scripts, or few inbuilt static images accompanied by editable text. Access the ship"s Control Panel Screen to configure LCD Panels or LCD surfaces; or face the LCD Panel block and press "K".
A Text Panel, despite its name, can also display images. On large grid, it is rectangular and does not fully cover the side of a 1x1x1 block. On small grid it is 1x1x1, the smallest possible LCD block in game.
On large grid, you choose the Text Panel when you need something that has rectangular dimensions that make it look like a wall-mounted TV or computer screen. If you want to display images, this one works best with the built-in posters whose names end in "H" or "V" (for horizontal or vertical rotation). On Small grid, you place these tiny display surfaces so you can see them well while seated in a cockpit or control seat, to create a custom display array of flight and status information around you.
Corner LCDs are much smaller display panels that typically hold a few lines of text. They don"t cover the block you place them on and are best suited as signage for doors, passages, or containers. They are less suitable for displaying images, even though it"s possible. If you enable the "Keep aspect ratio" option, the image will take up less than a third of the available space.
These huge Sci-Fi LCD Panels come in sizes of 5x5, 5x3, and 3x3 blocks, and can be built on large grids only. These panels are only available to build if you purchase the "Sparks of the Future" pack DLC.
They work the same as all other LCD Panels, the only difference is that they are very large. In the scenario that comes with the free "Sparks of the Future" update, they are used prominently as advertisement boards on an asteroid station.
This LCD panel can be built on large and small grids. The transparent LCD is basically a 1x1x1 framed window that displays images and text. It is part of the paid "Decorative Blocks Pack #2" DLC.
What is special about them is that if you set the background color to black, this panel becomes a transparent window with a built-in display. In contrast to other LCD Panels it has no solid backside, which makes it ideal to construct transparent cockpit HUDs, or simply as cosmetic decoration.
While configuring an LCD Panel, the GUI covers up the display in-world and you can"t see how the text or images comes out. In the UI Options, you can lower the UI Background opacity to be translucent, so you can watch what you are doing more easily.
Over the course of the past half decade, the television has gradually become a standard American household item, to the point where it is not uncommon for a household to own more than one television. As with any object made for human consumption, the television requires materials from an earth that can only provide a finite amount of such things. These materials come from many different sources, from many different areas of the world, and are all assembled into the different working parts that make up a television. The materials as they are found raw in nature range from argon gas to platinum ore, and many raw materials are then combined into other secondary materials that are then assembled into the parts of the television. Televisions depend on a wide range of these naturally found materials to be produced, but the main kinds of materials that make up a television are secondary materials produced from the combination of various raw materials, which makes the different parts of the life cycle of a television each more complex.
The raw materials that are extracted for use in a television come from many different sources, which makes the beginning of the television’s life cycle one that starts at many different places. One of the main types of materials used in televisions are plastics, namely thermoplastics such as polyethylene. Thermoplastics like polyethylene are used because they can be melted down and remolded repeatedly, which is part of the process in making the exterior casing of a television. Polyethylene is made from the polymerization of ethylene. Ethylene is produced from the cracking of ethane gas, which can be separated from natural gas. When the polyethylene is ready, it is molded into the specific shape that is required to encase a television, and is then set into that shape by using a thermoset. The thermoset is used to fix the meltable plastic in the shape that the plastic has been molded in, meaning that once the thermoset is fixed onto the plastic, the plastic cannot be melted again. The fixing of thermosets is necessary for electronic appliances like televisions that produce a significant amount of heat, so that the plastic that encases the television will not melt down. The most common thermoset used in televisions is urea formaldehyde. Urea formaldehyde is made by obtaining urea, a solid crystal, from ammonia gas, and by obtaining formaldehyde from methane gas. The two are then chemically combined to make the resin-like material that is used as a thermoset. Another main material that is used in most television is glass. Glass is the essential material that makes up the screen of a television, and is made from the chemical compound silicon oxide. All these materials are extracted and made in factories spread throughout the world, adding to the complexity of manufacturing televisions.
While plastics and glass are the main materials that make up the exterior of a television, the interior parts of a television are made up of a greater range of materials. Plastics are also used in the interior of a television, but inside of a television are also found gases and minerals. Gases such as argon, neon, and xenon gas fill the television screen for the purpose of projecting colors into the screen, and are made visible by the phosphor coating that coats the inside of a television screen. Glass and lead are also found inside of a television screen. These two materials make up cathode ray tubes, which are the video display components of a television. Other components that are found inside of a television also require thermoplastics like polyethylene, including components such as light valves, which work together with cathode ray tubes to enable the electrons inside to be visible on screen. The main electrical components on the interior of a television require a large amount of silicon; these include components such as the logic board, circuit boards, and capacitors. Once again, these materials are extracted and processed on several different continents. Silicon can be found in many different places, but a large supply comes from California. Meanwhile, many plastics are manufactured in China, while factories in the United States manufacture glass. These materials can be manufactured or extracted in other countries as well, which also helps to make the life cycle of a television a complex and global circle.
After these materials are all extracted, they must be processed so that they can make up a television. The main process that affects the raw material usage of a television is the injection molding process. This process is where all the plastics, specifically thermoplastics, that are used in a television are put together and shaped, essentially bringing many of the materials that were extracted for use in the television together. The plastics that will be shaped into television parts are ran through an assembly line of sorts in a factory. They are then melted down into molten plastic and poured into a mold matching the shape that the plastic is desired to conform to. Once that plastic has set in the mold, the thermoset is applied to ensure that the plastic will not melt down again. Thus, much of the materials that eventually go towards use in a television are applied and shaped into their desired form during this process. However, many more materials still need to be added in order to make the final product, and while plastics make up a large part of a television, there are still gases, minerals, and additional synthetic materials such as glass that must come together. The large spread of materials that need to be extracted to make up a television, and the array of locations that those materials are extracted and processed in, contribute towards making the life cycle of a television difficult to track.
Once the materials that will make up the television have been extracted and processed, the assembled television is ready to be distributed. Once again, the distribution process of televisions is spread out all around the world. In the case of Americans, televisions are no longer manufactured in the United States. This means that the televisions must be shipped oversea to the United States, which is done by both plane and boat. Thus, the diesel fuel used to power both planes and cargo boats are used as raw materials in the life cycle of a television. The diesel fuel used in planes and cargo boats are usually kerosene based, which is obtained by distilling petroleum. Additionally, when the televisions get to the United States, they must be distributed by means of shipping trucks, which means the natural gasoline that they use are another addition to the raw materials that are involved in the life cycle of a television. As a final step in the distribution process, the televisions are usually packaged in cardboard boxes, which are commonly made from recycled paper. More plastic is then used to protect the television in the form of protective wrap such as bubble wrap. Bubble wrap is also made from the polyethylene that makes up many components of the television, making plastic a material that is essential to every stage thus far of the life cycle of a television, as well as being a material that makes the life cycle difficult to analyze.
Once the televisions reach the home of Americans, an additional stage of raw materials usage takes place. To install and properly use a television, additional items must be used in tandem with the aforementioned television. The television must be plugged into power using wires and power outlets, which use metal and polyethylene plastic, respectively. Specifically, most wires that power televisions are made from copper, as copper is a relatively cheap conductive metal. Televisions are also commonly used in tandem with TV remotes and DVD players. TV remotes are also mainly made from plastic. The plastic most commonly used in TV remotes is a thermoplastic polycarbonate made from acrylic plastic, which is turn derived from a chemical compound made out of carbon, hydrogen, and oxygen that produces acrylic acid. The additional components used in a TV remote use largely the same materials as the additional components in the main television, such as silicon. On the same note, DVD players use largely the same materials as a television. DVD players use a fair amount of thermoplastics as well for the outer casing, as well silicon for many of the interior components. Here again, plastic made all over the world is one of the main materials used to fuel the life cycle of a television, leading to the diffusion of many specifics regarding how exactly a televisions’ life cycle comes together.
After installation and the acquirement of accessories, televisions can last for a relatively long time without the need for frequent maintenance. However, when it is time for a television to be replaced, the process of doing away with the old television can be messy. Televisions are illegal to place into dumps in many states because of the hazardous mixture of gases and lead that they contain. Because of this toxic mixture of gases and lead, the majority of televisions are unable to be recycled. The specific way that the materials are combined do not allow for recycling without significant health risks to those people handling the recycling. Due to the hazards that recycling televisions pose, many televisions end up either being placed in dumps with nothing being done to them or being unused around homes. Currently, there are many researchers and research institutes attempting to try and solve this problem, such as a recent experiment done at Purdue University trying to extract the toxic materials out of the television in a cost-effective and efficient manner that still preserves the plastic for recycling. Many of these studies were done about three to five years ago, and as of yet, there is still no concrete solution to the problem of recycling electronic waste such as a television. However, progress in the form of ongoing experimentation is still being made toward a solution for effective electronic waste management.
Televisions are globally one of the dominant selling products in the technology sector. China is the primary manufacturer, being home to many of the preeminent selling TV companies such as TCL, Skyworth and others that partner with Chinese manufacturers such as Samsung and LG. Although the number of televisions that are produced per year is not a record the public has access to, it is estimated that there are seven-hundred and fifty-nine point three million TV sets connected worldwide in 2018 [14]. The cradle-to-grave of television production has five steps: the acquisition of raw and synthetic materials, the manufacturing process, the distribution and transportation, the use of televisions, and the disposal and recycling [9]. Energy application is present in each of the five stages of the complete life cycle of televisions, specifically the Liquid Crystal Display (LCD) model. The entire life cycle of televisions uses and produces energy that is not environmentally safe to human and animal health and the atmosphere. Even though television companies claim to be decreasing the environmental consequences, the immense presence of energy use throughout the cradle-to-grave of television production continue to result in hazardous effects.
The first step of the television life cycle, the acquisition of the materials, produces and uses the largest amount of energy of the steps. The acquiring process of the materials includes obtainment, collection, extraction, combination, and transformation of the raw and synthetic materials. The main materials are plastics, circuits, circuit boards, glass, metals and various materials such as indium-tin oxide and liquid crystal. Plastics make up the exterior pieces and layout of the television, as well as a fewer small pieces inside. Plastic is formed from crude oil or natural gas like fossil fuels, which have to first be mined from the earth’s core and then must be processed before the polymerisation process can be carried out. This process is used to chemically combine carbon monomers in order to form carbon polymers which make up plastic and give it it’s individual properties. Overall, plastics require motion energy and electricity to be mined and chemical energy to turn oil or natural gas into plastic. Circuits make up the various circuit boards along with minor metal or plastic pieces. The circuits are originally made of silicon dioxide, or silica, which must be extracted from the earth’s crust. More modernly, silica is being replaced by quartz by some manufacturing companies. Silica and quartz are both extracted from the earth using electricity and thermal energy through mining and extraction. Silicon dioxide is used in the circuit boards because it is a semiconductor, so it must be processed with drilling or thermal techniques to obtain the desired shape and form. The obtainment of materials for the circuits involves thermal energy and electricity through the multiple steps. Silicon dioxide is also the main component in glass which is made from heating sand or quartz with waste glass and soda ash into a liquid mixture to be molded into the desired solid shape. Thermal energy is the prime energy source in the transformation process of glass, but also the minor electricity source for the silica. The various metals that are found scattered through modern televisions include gold, lead and copper. Each of these metals must be mined and extracted from the earth requiring electricity and thermal energy must be applied in order to change the form into liquid to modify the shape for parts. Liquid crystal that is used in the Liquid Crystal Display (LCD) panels is found in various mineral forms and must be extracted using electricity. Indium-tin oxide (ITO) is “a scattered and rare element” that is found in the Earth’s crust, but is “challenging to [extract]” [4]. It actually does not exist as an ore itself but it is “mainly produced as a by-product of zinc mining” or lead mining [11]. The zinc and lead are mined using electricity and then using smelting techniques, which apply thermal energy, indium-tin oxide is processed out of the ores. The collection of the materials involves the extensive energy application of the varying types of energy. Once the materials are acquired, the manufacturing stage begins and the precarious energy utilization continues to grow.
The manufacturing phase applies the second most impactful energy use behind the first step, emitting hazardous effects in large, concentrated volumes. The production processes vary by manufacturer, but they generally contain assembly lines, machine tools and technology, automated robots and packaging. The plastic parts found throughout the structure and the inner parts are made using the well-adopted injection molding process. This process uses thermal energy to liquify plastic in order to be injected into the definite molds [5]. After they cool, they must be cut and sized-down to perfection with saws and cleaned manually for safety as well as appeal [5]. This requires electricity to function the saws and kinetic energy in human movements for the manual work [9]. The LCD panels are composed of a variety of substances and materials, the most prominent being indium-tin oxide, liquid crystal and metal pieces [2]. The panels are manually made adding the liquid crystal layer, the ITO layer and a few other metal and glass layers using either adhesives or screws to connect them all together. This process of building the LCDs exerts immense kinetic and mechanical energy by human labor. The glass flat screen for the television must be laser-cut to shape utilizing thermal energy and electricity. All of this electricity and thermal energy that is used in manufacturing requires incredible amounts of coal or fossil fuel consumption. The greenhouse gas emissions (GHG) resulting from the energy application are inordinately unsafe for the Earth in the short and long term. They are destroying our atmosphere which can damage plant life and harm the human and animal health. The manufacturing phase, although it is the second step most in energy consumption and emission, the concentrated levels of emission make it detrimental nonetheless. This stage includes the packaging and loading of the finished television sets in order to be ready for the next step, transportation and distribution worldwide.
Television companies sell their products across their country, continent and even overseas; the transportation systems used to accomplish this apply a sizable quantity of energy consumption. Aircrafts, automobiles, and ships are the most efficient means of distributing televisions to consumers. Fossil fuels, ranging in quantity, are what fuel the combustion engines inside all of the transportation services. Chemical energy is applied inside the engines to convert the fuel into mechanical energy to propel the truck, ship or airplane forward [8]. Efficient fuel consumption is still being studied for vehicles, airplanes and ships in order to decrease the energy intensiveness (EI) [8]. The EI includes many factors such as speed, to travel longer distances, carry more weight and be as environmentally safe as possible[8]. Combustion engines release GHG emissions dire to the atmosphere causing problems related to the health of the populations on Earth. Human labor is the other, non GHG emitting, component to move the TV products the shorter distances such as from the manufacturing factory to the trucks to the plane or ships to the stores that then sells them to consumers. The human interaction with the transportation stage only entails kinetic energy. Transportation is also employed in the acquisition of materials stage to move the inputs from the site to factories and the disposal and recycling stage from consumers to the facilities. Energy conservation of means of transportation is intensively studied to lower the consumed energy and the GHG emissions, but a permanently sustainable solution has not been discovered yet.
Televisions notoriously require electricity to function, which entails an incomparable utilization of coal, natural gas or solar sources. The average household in developed countries has at least one connected television set, but many have numerous. Televisions are used in many other settings such as public places like hospitals, restaurants, schools, stores, salons, arenas and even transportation services more modernly, like airplanes, cars and trains. The absurd amount of TVs used around the world necessitates the massive ratio of natural gas and coal. Solar power for electricity is accessible but is not a widely adopted method. The burning of natural gases and coal for electricity exudes GHG emissions, obviously detrimental consequences to the environment. The consumer use stage, though it’s embodied energy is hazardous to Earth and its inhabitants, it is minor in the comparison of manufacturing and procurement of materials. A larger concern with televisions is the end-of-life care after consumers desire upgrades or replacements.
TV sets inevitably must be replaced, but disposal techniques are still being experimented in terms of safety, procurement of materials and the energy application, including the effects. If televisions are not recycled and disposed properly, the materials can leak into the ground contaminating clean water systems and the plant life or harm humans who do not disassemble the TVs safely [6]. The best method for dismantling has proven to be to retrace the manufacturing process backwards to disassemble it most cost-effectively and with the most recovery of materials [12]. A comprehensive study by Ardente and Mathieux (2014) initiated an ideal method that consists of five steps to dismantle LCD panels as well as other electronic devices: “reusability, recyclability, recoverability, recycled and use of hazardous substance” [15]. Experiments to retrieve and reuse all of the materials have yet to be successful, but a few of the materials have favorable results including plastics, precious metals, glass and ITO. The basis of the disassembly from LCD panels has the highest efficiency when dismantled and extracted manually rather than mechanically which applies large amounts of kinetic and mechanical energy [1]. The numerous plastic parts are best recycled using two techniques: energy recovery (or thermal recycling) and mechanical recycling (or material recycling) [10]. Energy recovery is incineration of plastic waste to be used as electricity involving kinetic and mechanical energy by manual labor, but mostly uses electricity and thermal energy to incinerate the plastics[10]. Mechanical recycling is plastic waste being recycled into other resources utilizing kinetic or mechanical energy by manual labor as well as potential energy and gravitational energy of the materials [10]. Precious metals and glass both use kinetic, mechanical and thermal energies to be extracted manually, crushed down and then typically sold to be melted down to reform for other products. Indium-tin oxide is the most recycled raw material in LCD panels and can be fully extracted by numerous techniques encompassing leaching [11], sorption [4], and pyrolysis [1]. These each include exposing the LCD panels to varying chemicals, high temperatures and a range of pressures [4]. Overall, the recovery of ITO by means of recycling involves intensive chemical, thermal and pressure energies. This final stage of disposal and recycling of LCD televisions has the most exposure to research and experimenting. It encompasses the second highest levels of energy application, relatively identical to the manufacturing phase, but there is vast potential to lower this energy consumption and waste to a more environmentally friendly approach.
The life cycle analysis of televisions is years from being complete; the manufacturer companies do not give public access to the details of each step yet and there has not been an abundance of research. The embodied energy is the least investigated aspect of the life cycle of television sets. Televisions, being abundantly produced and sold to consumers, are constantly being upgraded in terms of design, environmentally friendly, and energy capacity. Recycling of the raw materials, as well as plastics and glass, is being experimented with the most. Indium is the most prominent to be extracted and reused for more technology since indium is being mined at a rate that is running out. Television companies are competing to find safer procedure to carry out all five steps of the cradle-to-grave of TV sets. The main take away from this analysis: energy that is used and produced from the life cycle is still hazardous to the environment and the health of humans and animals. If TV manufacturer companies do not find new techniques for the acquisition of raw and synthetic materials, the manufacturing process, the distribution and transportation, the use of televisions, and the disposal and recycling, we will run out of materials and further destroy the atmosphere and the human and animal health.
[4]Assefi, Mohammad, et al. "Selective recovery of indium from scrap LCD panels using macroporous resins." Journal of Cleaner Production 180 (2018): 814-822.
[12]Ryan, Alan, Liam O’Donoghue, and Huw Lewis. "Characterising components of liquid crystal displays to facilitate disassembly." Journal of cleaner Production 19.9-10 (2011): 1066-1071.
The manufacturing of televisions has continuously been monitored as a part of the life cycle assessment in the modern day society. A television is simply a machine powered by electricity that displays images on a screen and sounds out of the speakers. Current models of TVs are mainly focused on the LCD TV, which is a liquid crystal display television. LEDs, light-emitting diodes, are the source for illuminating light by the movement of electrons on a semiconductor that gives off the variation of colors behind the display. Creating the televisions by incorporating LEDs and additional metal elements into a contained liquid crystal display with a plastic frame is the main concept for the TV. During the production of an LCD TV, the detrimental effects to the environment of the waste and emissions such as greenhouse gases from the materials of the metals can be observed through the assembly process of the television and the disposal of the substances.
As the amount of TVs are increasing for demand, the air pollution worsens in relations to the increase of metals for compact designs of the monitors. In the initial phase, the screen is created with silicon oxide and indium tin oxide that are used for polishing the glass layers. The silicon oxide is a colorless material consisting of quartz as the main ingredient while the indium tin oxide is a yellow colored substance that acts as a coating for clearness. According to the Laboratory Chemical Safety Summary, the National Institutes of Health states that silicon dioxide “may cause mechanical irritation to the eyes, respiratory tract and skin” (U.S. National Library of Medicine, 2008). The substance is hazardous as a solid form of dust particles that can be inhaled through the air. Though, silicon dioxide is applied to the glass screens in a liquid form ,which is not toxic to the workers, to smoothen the surface and correctly position the liquid crystals. Air borne inhalation of the chemical is not as harmful as the physical contact with the substance itself. Therefore, factories enforce workers to wear protective gear from the head to feet to prevent exposure to the liquids. Likewise, the indium tin oxide is cautioned with safety equipment and masks. In the Chemical Information Profile by the U.S. Department of Health and Human Services, indium tin oxide, ITO for short, also “may cause severe irritation and burns to the skin or eyes” (U.S. Department of Health and Human Services, 2009). Similarly, the substance is effective in a powdered form that may cause lung infection through inhalation. The screen is then made more transparent with ITO in a liquid state. Both substances obtain a fine quality of a glass screen and are not considered devastating to the surrounding. However, ingesting and direct contact with the chemicals can be severe with the side effects in mind. Refining the glass is not the most detrimental of the process but still requires attentive measures to prevent a high accumulation of the liquids.
Another substance that is harmful to the environment within the procedure mainly revolves around the nitrogen trifluoride on the LCD television. Nitrogen trifluoride is the main component for allowing the surfaces of the TV to be water and fingerprint resistant. The substance is physically applied by the hands of human workers. By adding on the substance to the screen, the fumes released in the factories are vacated through vacuums that lets the gas into the atmosphere of the earth. Otherwise, the chemicals may be trapped within the factories during production. The National Institutes of Health evaluated that the symptoms of inhaling nitrogen fluoride affects the “blood, liver, and kidneys” and targets humans and animals such as “dogs, monkeys, and rats” (U.S. National Library of Medicine, 2018). While workers wear a suit and gloves to protect themselves from the fumes in the factories, the concentration of the gas remains toxic to wildlife that breathe on land. Although the process of coating the glass pieces are done in a sealed room to prevent leakage of the scent from the nitrogen trifluoride to the rest of the factory, the outer perimeter of the buildings are not safe to breathe. In The Guardian, a report from Michael Prather, the director of the environment institute at the University of California, Irvine notes that “as a driver of global warming, nitrogen trifluoride is 17,000 times more potent than carbon dioxide” (Sample, 2008). Carbon dioxide is already a major role played in polluting the atmosphere including the carbon emissions of the trucks during the shipment process. The amount of nitrogen trifluoride released is not a widespread issue with the concentration from the substance being contained. However, the growth is noticeable that nitrogen trifluoride is listed as a major “greenhouse gas” reported from Michael Prather in the Four Materials Illustrate Hazards Of Electronics Manufacturing (Gordon, 2017). Additionally, the composition of the air quality depicts a growing accumulation of the gas as the development of monitors of the television continue to flourish. Nitrogen trifluoride is a crucial factor to protecting and prolonging the televisions’ lifespan but contains a cost that endangers humans and animals.
In the creation of the LCD TV, there are waste factors that take place in removing the product after its lifespan. The plastic frame of the television is salvageable such that the product can be melted and reused again. But, metal components and chemicals that are built upon the circuit boards and monitors remain difficult to reattain the materials. In fact, recycling the flat-screen TV is not possible with another material within the components of the circuit boards, which is mercury. Denise Wilson of the WEEE: Waste Electrical and Electronic Equipmentreports that “inhaling mercury can lead to a myriad of behavioral and neurological problems such as insomnia, memory loss, tremors, and cognitive dysfunction” (Wilson, 2016). Even a low concentration of mercury is fatal for humans to take in while attempting to dismantle the television for deconstruction. Since the materials are not replaceable through recycling the LCD TVs, material costs are risen due to the rarity of finding the natural raw materials such as gold, silver, and copper for the circuit boards. Other materials that include indium tin oxide are nonrenewable which also limits the maximum amount of TVs produced. Furthermore, removing the metals from the television has a drawback of releasing toxicity. Wilson adds that dioxins exposed from deconstructing LCD TVs “lead to impairment of the endocrine, immune and reproductive systems as well as alter liver function” (Wilson, 2016). Dioxins are a pollutant to the air that is toxic for humans to inhale. The collective chemicals can be seen through both the production for the screen and the elimination of the product after usage. To prevent the releases of the gases into the air, depleted televisions are brought into specialized recyclers to harvest the remains of the electronics. Despite the efforts of replenishing the components, factories that melt away the components are still in existence to removing the waste. According to the author of Recycle Nation, Sophia Bennett states that “as televisions are run over by crushing equipment in a landfill, or burned in an incinerator, they release those heavy metals that can seriously affect human health” (Bennett, 2014). The physical process of “crushing” the materials is a wasteful method of removing the scarce resources from the circuit boards. Meanwhile, the chemical process of burning the metals secretes carbon and dioxin emissions and leaves solid wastes of mineral compounds. With that in mind, the electronic device must carefully be readjusted to contain friendly environmental substances that are reusable and reduce the harmful symptoms to the atmosphere.
Transporting the product of the LCD TVs also contributes to the pollution of the environment with greenhouse gases after the assembly is finished. In the delivery phase, the televisions are encased in large cardboard boxes and can be shipped to designated locations on land, water, and air. Trucks, ships, and planes all produce carbon dioxide as fuel is burned within the respective engines for the mobile vehicles. For instance, the internal combustion engine for trucks burns diesel fuel to power the pistons while the ships use coal to supply energy to the propulsion engines. Planes have the similar effect with the design of an engine that requires diesel fuel or gas. The modes of transportation mentioned beforehand increase in relations to the rising production of LCD TVs for consumers which results in a higher output of carbon dioxide as well. Thus, the carbon emissions from transporting the television is observed as a factor of damaging the ecosystem from the shipment process of the vehicles.
In essence, acknowledging the existence of the chemical substances released into the atmosphere from the waste and emissions of manufacturing and deconstructing an LCD TV is crucial for an understanding of the environmental impact it has on humans and the wildlife. As the production of televisions continue to develop the flat screen panels that incorporate toxic materials, more waste is produced as a result of the amount of TVs needed for the increase in supply and demand. In fact, electronic devices that focus heavily upon the usage of the chemical substances involves not only televisions but any creations with screens and monitors. Recording the findings of the symptoms from the chemical activities within the factories and the atmosphere allow producers and consumers to identify safer and more reliable resources that reduces the harm to the environment and life on earth. The life cycle of the television remains as an important subject for careful observations of the advancements developed upon electronic devices towards the future.
“Chemical Information Profile.” National Toxicology Program, U.S. Department of Health and Human Services, June 2009, ntp.niehs.nih.gov/ntp/noms/support_docs/ito060309_508.pdf.
“F-GHG Emissions Reduction Efforts: Flat Panel Display Supplier Profiles.” F-GHG Emissions Reduction Efforts: Flat Panel Display Supplier Profiles, U.S. Environmental Protection Agency, May 2013, www.epa.gov/sites/production/files/2017-09/documents/supplier_profiles_fy2011.pdf.
Larsen, Rasmus. “How a Screen Is Manufactured and Assembled.” How a Screen Is Manufactured & Assembled - FlatpanelsHD, 30 June 2010, www.flatpanelshd.com/focus.php?id=1277885543&subaction=showfull.
“Nitrogen Trifluoride.” National Center for Biotechnology Information. PubChem Compound Database, U.S. National Library of Medicine, pubchem.ncbi.nlm.nih.gov/compound/nitrogen_trifluoride#section=Top.
Rouse, Margaret. “What Is Flat-Panel TV Guide? - Definition from WhatIs.com.” WhatIs.com, Dec. 2010, whatis.techtarget.com/definition/Flat-panel-TV-Guide.
“Silicon Dioxide.” National Center for Biotechnology Information. PubChem Compound Database, U.S. National Library of Medicine, pubchem.ncbi.nlm.nih.gov/compound/Silica#datasheet=lcss§ion=Threshold-Limit-Values.
Siemens has extended its system range of completely IP65-protected HMI devices by SIMATIC HMI Comfort Panels PRO (PROtected) for visualization and automation without control cabinets.
The panels with 12-, 15-, 19-, and 22-inch screen diagonals are equipped with the high protection type IP65, just like the PRO devices in the Simatic IFP and IPC series.
With the benefit of the flexible installation options – directly on the machine through special adapters, on a supporting foot, or on a bracket system – the user can easily operate the panels and always has the perfect view of both the panel and the process.
Components that can be installed on the PRO devices – consisting of basic device, expansion component, installation adapter, optional keyboard, and keyboard tray – now offer even more operation options. With customized system solutions with standard components, they make trouble-free adjustments to individual customer desires possible and convince with their simple installation and commissioning, easy engineering, and efficient operation.
Our products for sale include world-renowned LCD brands such as LG.PHILIPS, AUO, CMO, SHARP, NEC, SAMSUNG, CPT, MITSUBISHI, BOE.HYDIS, CHIMEI and HANNSTAR.
We emphasize product quality and reasonable prices for the products and work hard at establishing a product supply chain for all brands, so that non-bulk purchasers and research and development personnel can more easily acquire LCD panels.
Flat-panel displays usually come together with semiconductor chips as they are both considered basic elements of the most of the electronic devices in the world.
But with the Yoon Suk-yeol administration placing its policy focus on semiconductor chips and as Yoon pivots toward “economic security” based on the Korea-United States alliance, South Korea’s display panel business has largely been sidelined.
Experts say such shift could end up endangering Korea’s foothold in the display panel industry, as it already faces tough competition from Chinese competitors in the market, and as Beijing seeks to dominate control of the electronic goods supply chain globally.
It would not be difficult for them to jump ship either, another expert said, given that the skill sets required for engineers in the flat-panel display industry and those in the semiconductor industry are similar.
“Flat-panel display engineers have relatively fewer hurdles in landing a new job in the semiconductor industry, and the imminent state support for chip industry might accelerate the career transition,” said Moon Dae-gyu, material science and engineering professor at Soonchunhyang University.
Flat-panel display business entities in Korea are currently provided at least 3 percent tax credit for facility investment, as the display business here is recognized as ”new growth engines and source technologies“ under the Restriction Of Special Taxation Act.
Those entities will be able to receive greater state support, should the display business be recognized as a ”national strategic technology“ -- which doubles the minimum tax credit for investment.
A visitor tries a futuristic car cabin experience with LG Omnipod, which uses LG‘s cutting-edge flat-panel display technology, at NextRise 2022 in Coex, Seoul, in June. (Yonhap)
Korea is home to LG Display, which makes white-OLED panels for TVs and LCD panels for electronic devices like smartphones or laptops, as well as Samsung Display, dedicated to small and midsize OLED panels for IT devices.
The domestic industry also faces increasing competition from China. Some Korean firms have had to exit the LCD panel business entirely, as they are no match for rivals such as BOE Technology and China Star Optoelectronics Technology that have the Chinese government’s full, unwavering support.
Chang Jung-hoon, an analyst of Samsung Securities ,cited an oversupply of flat-panel displays that is causing an increase in order backlog across all applications from mobile phones to TVs.
On the other hand, Chinese competitors are ramping up its push for OLED technologies, with companies like BOE having showcased their latest OLED panel technologies with various form factors like “slidables” at the SID 2022 event in May.
In order for Korean firms to stand a winning chance, experts said more investment would be needed in developing and commercializing cutting-edge technologies that competitors cannot imitate.
“More aggressive support to flat-panel display industry, especially in the field of OLED technologies, is essential to keep the competitive edge of OLED panels and avoid sharing the same fate as their predecessors, LCD panels,” said Calvin Lee, senior director at Display Supply Chain Consultants.
“With Chinese firms taking over the LCD market in the world, the OLED technology development, OLED-related intellectual property retention, joint research on new materials and facilities with partners, investment in large panel production lines and prevention of talent outflow would allow Korean firms to stay ahead in the competition.”
Although the Korean display panel industry has so far maintained an edge over Chinese firms in terms of form factors and lighting technologies, it might be pushed to the threat of extinction unless further investments are made, experts warned.
“On the economic security front, (China’s dominance in the flat-panel display industry) will be a problem not only for Korea, but also for other parts of the world,” Park said. To Korea, the China dominance in the panel industry also means the death of Korean suppliers as 7 out of 10 parts for display panels are domestically produced, Park added.
“It will be of no use for the US to keep the semiconductor chip supply chain in check, once China takes control of the display panel industry,” Yi of UBI Research said. “Korea must recognize the strategic importance of the display panel industry, and the government seems to be far from being encouraged to do so.”
TOKYO (Reuters) - Japan’s Sharp Corp, a leading supplier of displays to Apple Inc, said Thursday it will form a $2.9 billion alliance with state-owned China Electronics Corp that includes an agreement by Sharp to license its advanced power-saving IGZO screen technology.
The new venture will be 92 percent owned by China Electronics, also known as CEC, which supplies equipment to China’s military. The venture will set up a an LCD plant with the goal of mass-producing panel displays for televisions, notebook PCs and tablets in 2015.
Licensing IGZO, or indium gallium zinc oxide displays, fits into a strategy by cash-strapped Sharp to leverage its technology to bolster its finances. Sharp, in December, signed a pact with Qualcomm Inc, selling the U.S. company an equity stake for $120 million and agreeing to develop new screens based on IGZO technology.
IGZO screens boast power consumption as low as a tenth of conventional LCDs, high resolutions and faster reaction speeds. While an agreement to license the technology to a Chinese military-linked state company may raise eyebrows, Sharp does not exclusively own the technology, only being the first to commercialize it.
The agreement, which is a revised version of one agreed to with CEC in 2009, may instead represent a retreat by the Chinese company to win access to Sharp’s more advanced tenth-generation LCD manufacturing techniques. CEC is planning to build an 8.5 generation facility.
Sharp is the only panel maker in the world to have built a tenth generation factory able to fabricate liquid crystal sandwiched in glass sheets thinner than a credit card that are 3.13 meters long by 2.88 meters wide. Smaller 8.5 generation sheets measure 2.2 meters by 2.5 meters.
CEC in November blamed deteriorating ties between Japan and China over their territorial spat in the East China Sea for shelving cooperation with Sharp to build a tenth-generation facility. Sharp, which sold a stake in its advanced LCD plant to Taiwan’s Hon Hai Precision Industry last year, says no such agreement ever existed.
Thursday’s deal, including the construction of the 8.5 generation factory in Nanjing, represents one of the highest-profile transactions between a Chinese and Japanese company since tensions flared last year over a chain of disputed islands known as the Senkakus in Japan and the Diaoyu in China.
A Sharp spokesman declined to say how much in royalties the company expected to receive for the technology transfer. A portion of those proceeds will be used to fund Sharp’s 8 percent stake in the joint venture, the spokesman said.
China has been the source of many innovations, scientific discoveries and inventions.papermaking, the compass, gunpowder, and printing (both woodblock and movable type). The list below contains these and other inventions in ancient and modern China attested by archaeological or historical evidence, excluding prehistoric inventions of Neolithic and early Bronze Age China.
The historical region now known as China experienced a history involving mechanics, hydraulics and mathematics applied to horology, metallurgy, astronomy, agriculture, engineering, music theory, craftsmanship, naval architecture and warfare. Use of the plow during the Neolithic period Longshan culture (c. 3000–c. 2000 BC) allowed for high agricultural production yields and rise of Chinese civilization during the Shang Dynasty (c. 1600–c. 1050 BC).multiple-tube seed drill and the heavy moldboard iron plow enabled China to sustain a much larger population through improvements in agricultural output.
By the Warring States period (403–221 BC), inhabitants of China had advanced metallurgic technology, including the blast furnace and cupola furnace, while the finery forge and puddling process were known by the Han Dynasty (202 BC–AD 220). A sophisticated economic system in imperial China gave birth to inventions such as paper money during the Song Dynasty (960–1279). The invention of gunpowder in the mid 9th century during the Tang dynasty led to an array of inventions such as the fire lance, land mine, naval mine, hand cannon, exploding cannonballs, multistage rocket and rocket bombs with aerodynamic wings and explosive payloads. Differential gears (first used in the Greek Antikythera mechanism)south-pointing chariot for terrestrial navigation by the 3rd century during the Three Kingdoms. With the navigational aid of the 11th century compass and ability to steer at sea with the 1st century sternpost rudder, premodern Chinese sailors sailed as far as East Africa.escapement mechanism since the 8th century and the endless power-transmitting chain drive in the 11th century. They also made large mechanical puppet theaters driven by waterwheels and carriage wheels and wine-serving automatons driven by paddle wheel boats.
For the purposes of this list, inventions are regarded as technological firsts developed in China, and as such does not include foreign technologies which the Chinese acquired through contact, such as the windmill from the Middle East or the telescope from early modern Europe. It also does not include technologies developed elsewhere and later invented separately by the Chinese, such as the odometer, water wheel, and chain pump. Scientific, mathematical or natural discoveries made by the Chinese, changes in minor concepts of design or style and artistic innovations do not appear on the list.
The following is a list of the Four Great Inventions—as designated by Joseph Needham (1900–1995), a British scientist, author and sinologist known for his research on the history of Chinese science and technology.
Although it is recorded that the Han Dynasty (202 BC – AD 220) court eunuch Cai Lun (50 AD – AD 121) invented the pulp papermaking process and established the use of new materials used in making paper, ancient padding and wrapping paper artifacts dating to the 2nd century BC have been found in China, the oldest example of pulp papermaking being a map from Fangmatan, Tianshui;was in widespread use, replacing traditional but more expensive writing mediums such as strips of bamboo rolled into threaded scrolls, strips of silk, wet clay tablets hardened later in a furnace, and wooden tablets.Alxa League, where Han Dynasty troops had deserted their position in AD 110 following a Xiongnu attack.mulberry tree bark, hemp, old linens and fish nets created a pulp that was pounded into paste and stirred with water; a wooden frame sieve with a mat of sewn reeds was then dunked into the mixture, which was then shaken and then dried into sheets of paper that were bleached under the exposure of sunlight; K.S. Tom says this process was gradually improved through leaching, polishing and glazing to produce a smooth, strong paper.
Sanskrit that was printed on hemp paper between 650 and 670 AD; it was unearthed in 1974 from a Tang tomb near Xi"an.dharani Buddhist sutra discovered in 1966, bearing extinct Chinese writing characters used only during the reign of China"s only self-ruling empress, Wu Zetian (r. 690–705), is dated no earlier than 704 and preserved in a Silla Korean temple stupa built-in 751.Kaiyuan Za Bao was made available in AD 713. However, the earliest known book printed at regular size is the Tang Dynasty (618–907), a 5.18 m (17 ft) long scroll which bears the date 868 AD.Tsien Tsuen-hsuin write that the cutting and printing techniques used for the delicate calligraphy of the Diamond Sutra book are much more advanced and refined than the miniature Dharani sutra printed earlier.
Although an ancient hematite artifact from the Olmec era in Mexico dating to roughly 1000 BC indicates the possible use of the lodestone compass long before it was described in China, the Olmecs did not have iron which the Chinese would discover could be magnetised by contact with lodestone.Guanzi, compasses for divination and geomancy and not yet for navigation.Wang Chong (27 – c. 100 AD) stated in chapter 52: "This instrument resembles a spoon and when it is placed on a plate on the ground, the handle points to the south".Lunheng.Shen Kuo (1031–1095) of the Song Dynasty (960–1279) was the first to accurately describe both magnetic declination (in discerning true north) and the magnetic needle compass in his Zhu Yu (fl. 12th century) was the first to mention use of the compass specifically for navigation at sea in his book published in 1119.thermoremanence compass of heated iron or steel shaped as a fish and placed in a bowl of water which produced a weak magnetic force via remanence and induction; the Wujing Zongyao recorded that it was used as a pathfinder along with the mechanical south-pointing chariot.
traditional Chinese medicinal practice of inserting needles into specific points of the body for therapeutic purposes and relieving pain, was first mentioned in the Warring States period to Han Dynasty).gold, found in the tomb of Liu Sheng (d. 113 BC), date to the Western Han (203 BC – 9 AD); the oldest known stone-carved depiction of acupuncture was made during the Eastern Han (25–220 AD); the oldest known bronze statue of an acupuncture mannequin dates to 1027 during the Song Dynasty (960–1279).
Hipparchus (c. 190 – c. 120 BC)Eratosthenes (276–194 BC) as the first to invent the armillary sphere representing the celestial sphere. However, the Chinese astronomer Geng Shouchang of the Han Dynasty (202 BC – 220 AD) invented it separately in China in 52 BC, while the Han dynasty polymath Zhang Heng (78–139 AD) was the first to apply motive power to the rotating armillary sphere by a set of complex gears rotated by a waterwheel which in turn was powered by the constant pressure head of an inflow clepsydra clock, the latter of which he improved with an extra compensating tank between the reservoir and the inflow vessel.
An illustration of furnace bellows operated by waterwheels, from the Nong Shu, by Chinese mechanical engineer and inventor Wang Zhen, 1313 AD, during the Yuan Dynasty.
The Spinning Wheel, by Northern Song (960–1127) artist Wang Juzheng. The Chinese invented the belt drive by the 1st century BC for silk quilling devices.
first developed in China. Its roots were in merchant receipts of deposit during the Tang Dynasty (618–907), as merchants and wholesalers desired to avoid the heavy bulk of copper coinage in large commercial transactions.monopolized salt industry, but a gradual reduction in copper production—due to closed mines and an enormous outflow of Song-minted copper currency into the Japanese, Southeast Asian, Western Xia and Liao Dynasty economies—encouraged the Song government in the early 12th century to issue government-printed paper currency alongside copper to ease the demand on their state mints and debase the value of copper.banks to issue notes of exchange in Sichuan, but in 1023 the government commandeered this enterprise and set up an agency to supervise the manufacture of banknotes there. The earliest paper currency was limited to certain regions and could not be used outside specified bounds, but once paper was securely backed by gold and silver stores, the Song Dynasty government initiated a nationwide paper currency, between 1265 and 1274.Jin Dynasty (1115–1234) also printed paper banknotes by at least 1214.
Plants of the Southern Regions) (ca. 304 AD), attributed to Western Jin dynasty botanist Ji Han (嵇含, 263–307), in which it is mentioned that "Jiaozhi people sell ants and their nests attached to twigs looking like thin cotton envelopes, the reddish-yellow ant being larger than normal. Without such ants, southern citrus fruits will be severely insect-damaged".huang gan (huang = yellow, gan = citrus) ants (Tang Dynasty or Early Five Dynasties), in Ji Le Pian by Zhuang Jisu (Southern Song Dynasty), in the Book of Tree Planting by Yu Zhen Mu (Ming Dynasty), in the book Guangdong Xing Yu (17th century), Lingnan by Wu Zhen Fang (Qing Dynasty), in Nanyue Miscellanies by Li Diao Yuan, and others.
cast iron tools and weapons have been found in China dating to the 5th century BC, the earliest discovered Chinese blast furnaces, which produced pig iron that could be remelted and refined as cast iron in the cupola furnace, date to the 3rd and 2nd centuries BC, while the vast majority of early blast furnace sites discovered date to the Han Dynasty (202 BC – 220 AD) period immediately following 117 BC with the establishment of state monopolies over the salt and iron industries during the reign of Emperor Wu of Han (r. 141 – 87 BC); most ironwork sites discovered dating before 117 BC acted merely as foundries which made castings for iron that had been smelted in blast furnaces elsewhere in remote areas far from population centres.
Jin Dynasty (1115–1234) naval battle of 1231 against the Mongols.Subutai (1176–1248) descended on the Jin stronghold of Kaifeng, the defenders had a "thunder-crash bomb" which "consisted of gunpowder put into an iron container ... then when the fuse was lit (and the projectile shot off) there was a great explosion the noise whereof was like thunder, audible for more than a hundred half a mou. When hit, even iron armour was quite pierced through."arsenals should have several hundred thousand iron bomb shells available and that when he was in Jingzhou, about one to two thousand were produced each month for dispatch of ten to twenty thousand at a time to Xiangyang and Yingzhou.Joseph Needham states, is that a "high-nitrate gunpowder mixture had been reached at last, since nothing less would have burst the iron casing."
Hongzhi Emperor (r. 1487–1505) of the Ming Dynasty (1368–1644); it also adds that the toothbrush was not mass-produced until 1780, when they were sold by a William Addis of Clerkenwell, London, England.ancient Egypt in the form of a twig that was frayed at the end.
Garden of Strange Things by Liu Jingshu mentioned that a ship could allow water to enter the bottom without sinking, while the Song Dynasty author Zhu Yu (fl. 12th century) wrote in his book of 1119 that the hulls of Chinese ships had a bulkhead build; these pieces of literary evidence for bulkhead partitions are confirmed by archaeological evidence of a 24 m (78 ft) long Song Dynasty ship dredged from the waters off the southern coast of China in 1973, the hull of the ship divided into twelve walled compartmental sections built watertight, dated to about 1277.Marco Polo (1254–1324), to Niccolò Da Conti (1395–1469), to Benjamin Franklin (1706–1790) commented on bulkhead partitions, which they viewed as an original aspect of Chinese shipbuilding, as Western shipbuilding did not incorporate this hull arrangement until the early 19th century.
Candidates gathering around the wall where the civil service examination results are posted. This announcement was known as "releasing the roll" (放榜). (c. 1540, by Ming Dynasty painter Qiu Ying)
Dazu Rock Carvings in Sichuan dated to 1128,Wuwei Bronze Cannon dated to 1227, the Heilongjiang hand cannon dated to 1288, and the Xanadu Gun dated to 1298. However, only the Xanadu gun contains an inscription bearing a date of production, so it is considered the earliest confirmed extant cannon. The Xanadu Gun is 34.7 cm in length and weighs 6.2 kg. The other cannons are dated using contextual evidence.bombard can be found in the Chinese town of Ta-tsu. In 1985, the Canadian historian Robin Yates visited the Buddhist cave temples when he saw a sculpture on the wall depicting a demon holding a hand-held bombard. The muzzle seems to have a blast and flames coming from it which some believe is proof of some type of super gun. Yates examined the cave and believed the drawings dated back to the late 12th century.
pig iron, was developed in China by the early 5th century BC during the Zhou Dynasty (1122–256 BC), the oldest specimens found in a tomb of Luhe County in Jiangsu province; despite this, most of the early blast furnaces and cupola furnaces discovered in China date after the state iron monopoly under Emperor Wu (r. 141–87 BC) was established in 117 BC, during the Han Dynasty (202 BC – 220 AD); Donald Wagner states that a possible reason why no ancient Chinese bloomery process has been discovered thus far is because the iron monopoly, which lasted until the 1st century AD when it was abolished for private entrepreneurship and local administrative use, wiped out any need for continuing the less-efficient bloomery process that continued in use in other parts of the world.malleable iron in the 4th century BC, which enhanced the mechanical properties of cast iron through an annealing process.iron military weapons were made of more costly wrought iron and steel, signifying that "high performance was essential" and preferred for the latter.
Named after a pale-tinted spring green colour, Chinese archaeologist Wang Zhongshu (1982) asserts that shards having this type of ceramic glaze have been recovered from Eastern Han Dynasty (25–220 AD) tomb excavations in Zhejiang; he also asserts that this type of ceramic became well known during the Three Kingdoms (220–265).Northern Song Dynasty (960–1127).iron oxide"s transformation from ferric to ferrous iron (Fe2O3 → FeO) during the firing process.Longquan celadon wares, which the archeologist Nigel Wood at the University of Oxford writes were first made during the Northern Song, had bluish, blue-green, and olive green glazes and high silica and alkali contents which resembled later porcelain wares made at Jingdezhen and Dehua rather than stonewares.
Philon of Byzantium (3rd or 2nd century BC)chain drive and windlass used in the operation of a polybolos (a repeating ballista),chain pumps which had been known in China since at least the Han Dynasty (202 BC – 220 AD) when they were mentioned by the Han dynasty philosopher Wang Chong (27 – c. 100 AD),clock tower built at Kaifeng in 1090 by the Song Chinese politician, mathematician and astronomer Su Song (1020–1101).
Terracotta Army was interred at a site not far from modern Xi"an; modern archaeologists discovered that bronze-tipped crossbow bolts at the site showed no sign of corrosion after more than 2,000 years, because they had been coated in chromium. Chromium was not used anywhere else until the experiments of French pharmacist and chemist Louis Nicolas Vauquelin (1763–1829) in the late 1790s.
Imperial Academy to train potential candidates for office and some offices required its candidates to pass formal written tests before appointment.Sui Dynasty (581–618) that civil service examinations became open to all adult males not belonging to the merchant class (although civil service examinations was a path to social advancement in Imperial Chinese society to candidates regardless of wealth, social status, or family background) and were used as a universal prerequisite for appointments to office, at least in theory.gentry families from throughout the country.European missionaries and diplomats, and encouraged the British East India Company to use a similar method to select prospective employees. Following the initial success in that company, the British government adopted a similar testing system for screening civil servants in 1855.
Joseph Needham speculates that it could have existed beforehand, the first clear written evidence of the fusion of wrought iron and cast iron to make steel comes from the 6th century AD in regards to the Daoist swordsmith Qiwu Huaiwen, who was put in charge of the arsenal of Norther