data vision lcd display free sample

An import function allows additionally to use Windows fonts. With the FontEditor it is easy to generate for example Cyrillic, Greek and Arabic fonts. The preview function shows immediately the size and style in simulation window. When the testboard EA 9780-2USB is connected to the USB port, you can see the character (or any predefined text) live on the display which is plugged-in!

data vision lcd display free sample

Over the last 20 years our customers have frequently asked us to create "the ultimate display", and we"ve heard dozens of opinions on what this would comprise:

Different applications place importance on different aspects of the stimulus, and the ultimate display would satisfy them all. The dream is alive, but reality, of course, is limited by both technology and budgets. We"ve engineered Display++ to the best possible specification, then made it configurable, so that you can choose how to trade off the available bandwidth, producing the optimum display for your research, at a price that won"t bust your grant.

Cambridge Research Systems ViSaGe and Bits# visual stimulators are ubiquitous in vision labs all over the world and trusted for precise contol of colour, contrast and timing.

Display++ integrates all the benefits of our proven technology with a display device designed from the ground up for science. It"s as easy to use as a normal computer monitor and natively compatible with your favourite community programming tools, like Psychtoolbox-3/MATLAB and PsychoPy/Python. If you prefer, you can even develop your own OpenGL/DirectX based stimulus software. No proprietary software, API or drivers are necessary for any platform! Every unit undergoes a comprehensive colorimetric and spectroradiometric calibration in our factory so it"s ready to use right out of the box. Example scripts and full technical documentation for MATLAB are included too; if you need extra help, just contact our Staff Scientists. They are very familar with the challenges of conducting real research and can deliver a practical workshop for your entire research group or department to get you up-and-running quickly with our technology.

Psykinematix for Display++ is now available. A free trial is included with every unit; you can evaluate the full functionality for up to 15 days. Contact us for details.

data vision lcd display free sample

Data Vision is a manufacturer of LCD (Liquid Crystal Display) modules, established in 1990. Currently, we have manufacturing strongholds in Taiwan and China.

We are recognized as one of most progressive companies in our industry. Data Vision offers broad range of LCD modules, including mono LCM, Intelligent and Integrated LCM and TFT. In which, we provide extensive and complete solutions based on customer needs. Hence, Turnkey service is merely a part of our offerings. To make our competence qualified, we have certification of ISO9001:2008.

Our customers vary in size and industry as well as in the services they require. Today, Data Vision offers an array of services to help our customers improve their bottom lines and time to achieve objectives.

data vision lcd display free sample

The Leonardo DRS Driver’s Vision Enhancer (DVE) Display Control Module (DCM) is a 10.4-inch liquid-crystal display (LCD), with 800 x 600 pixel resolution, offers the best in class rugged display technology for mission-critical situations.

Lightweight and vehicle mounted, the DVE DCM provides situational awareness in a compact form factor with operation during night, low light, daylight conditions. User controls and input/output ports deliver an optimal solution for users requiring reliable and durable video display capability. The DVE DCM display offers flicker-free, constant

A world leader in high-performance display technology, Leonardo DRS products withstand harsh and demanding environments. Leonardo DRS proven and reliable 10.4-inch DVE DCM offers digital technology you can count on.

data vision lcd display free sample

In response to customer demand, General Digital has engineered a multitude of NVIS-compatible LCD display solutions that feature OEM LCD displays and our custom-designed LED backlights (edge-lit and direct-lit), light optimization films and overlay enhancements. Our standard LCD display solutions range in size from 6.5 inch to 24.0 inch. New flat panel display sizes and resolutions, and subsequently, complete LCD monitor models, are being added regularly, or can be engineered upon customer request. Many of our NVIS-compatible solutions are also sunlight readable.

Our enhanced display solutions may be purchased “off the shelf” for integration into your own product designs, or you may opt to have General Digital technicians expertly integrate the display of your choice into almost any of our monitor and display kit products. In addition, we can design and integrate the NVIS-compatible displays into a custom solution to meet customer-supplied design and performance requirements.

Increasingly, LCD manufacturers are producing their LCDs with LED backlights, rather than with the traditional/legacy cold cathode fluorescent lamps (CCFL). Their decision is motivated by the many advantages that LED backlights provide, such as:

If LCD manufacturers are already manufacturing their LCD displays with LED backlights, you may wonder why General Digital produces its own value-add LED backlights. Most LCD manufacturers target large-volume markets for their LCD designs, where they can maximize their return on investment (ROI). Since competitive pressures from other suppliers exist in these markets, their products are designed to meet the bare essential requirements at a minimum cost in an attempt to achieve product acceptance and market competitiveness.

Traditionally, Original Equipment Manufacturers (OEMs) of liquid crystal displays have underserved niche markets (e.g., military, avionics, marine, outdoor usage) that require very specialized display performance, such as extended operating temperatures, sunlight readability, night vision capability and long product life cycle. General Digital prides itself on solving industry problems and providing product solutions to these underserved and specialty markets. Customers find our LED backlights to be necessary to meet one or more of the following application requirements:

To convert a legacy LCD design (that meets a specific need) from a CCFL backlight to a comparable design using less power, with increased durability and efficiency.

To provide a more efficient LED backlight design than the OEM LED backlight that provides customer-required performance at lower power consumption/heat dissipation. This requirement is especially important for display solutions that are housed in fanless or fully sealed enclosures.

To make a display NVIS (Night Vision Imaging System) compatible, General Digital expertly re-engineers the existing display hardware to virtually eliminate the emission of high levels of IR radiation. In some instances, we install entirely new backlighting systems, whether CCFL or LED. Both approaches are fully compliant with the military specification, MIL-STD-3009. By configuring an LCD monitor to be night vision compatible, an NVG user is easily able to view information on a display screen, as well as view their surroundings, while using night vision goggles.

Night vision goggles are very sensitive to reflective ambient light; therefore, light reflecting off of fog or heavy rain amplifies the light in the night vision unit and may degrade its performance.

A few black spots throughout the image area are inherent characteristics of night vision technology. These spots will remain constant and should not increase in size or quantity.

There are many display performance attributes that must be considered when selecting a display to be used in high ambient lighting conditions or in direct sunlight, such as:

Often, users prequalify panels by how bright they are, employing the “if it is brighter, it must be better” mentality. While brightness may indeed be an important performance consideration for many applications, General Digital holds that the display’s contrast is even more important (discussed in an upcoming white paper, Contrasting Opinion; Brighter Isn"t Always Better). Ultimately, it is the user’s ability to discern a difference between colors (contrast) that enables them to properly view information under varying lighting conditions—from total darkness to direct sunlight.

OEMs provide the contrast performance of their LCDs in dark room conditions within their display specifications. While this information is an important indicator for consideration if the LCD is to be used indoors, it provides an inconclusive indication of how well the LCD will perform when exposed to high ambient lighting conditions (read our white paper, Not All Brightness is Created Equal). For this reason, General Digital quantifies the performance of our LED enhanced LCDs in our Optics Laboratory following the guidelines of MIL-STD-3009 (formerly MIL-L-85762-A).

Following these guidelines, General Digital provides our customers with a host of performance metrics, most notably its Weber Contrast, its contrast under 10,000 foot candles of direct light and a Display Class. These metrics allow customers to compare our performance to the military’s standard of approval for display usefulness in direct sunlight, as well as the type of information that can be read under these conditions, ranging from numeric-only to live video. This data also will allow customers to compare our products to competitive alternatives on a level playing field.

General Digital’s Optical Laboratory was created to provide quantification of the optical performance of an LCD under a variety of extreme ambient conditions along with raw intrinsic system characteristics. The data provided by the laboratory tests allows for numerical performance descriptions of each LCD display system. This enables the customer to compare displays across the entire General Digital display catalog and provides the ability to choose the correct product for the target environment while removing guesswork. To ensure accuracy and cross correlation, sunlight and NVIS measurements adhere to procedures and regulations outlined in MIL-L-85762A, and its successor, MIL-STD-3009. Other applicable measurements adhere to procedures and regulations outlined in “Video Electronics Standards Association Display Metrology Committee” (VESA) Flat Panel Display Measurement Standard Version 2.0 (June 1, 2001).

On the NVIS DISPLAYS: SPECIFICATIONS tab, we provide a table that summarizes our LED solutions (see sample below). Within the table, you will find a part number for each display configuration listed. As changes are made to a baseline configuration, General Digital will assign a new and unique part number to the resulting configuration. In addition to the part number, a variety of data is supplied for each display configuration.

Typically, General Digital attempts to standardize its measurements by applying an antireflective film to the surface of the LCD. However, it is not unusual for us to test the displays using a variety of other combinations of overlays (EMI filters, touch screens, vandal shields or films) that may be required to meet a specific application requirement.

Lastly, a link to a photometric report (see sample below) has been provided that will summarize and compare the optical performance of the OEM LCD before our enhancements and improvements, as well as after modification. Much of this data has been acquired under the guidelines of MIL-STD-3009 (formerly MIL-L-85762-A). In some instances, General Digital has also included optical data for other multiple test configurations of the same reference LCD.

The following is a standard list of carefully chosen measurements performed by General Digital’s Optical laboratory that provide all relevant information on dark/night, direct sunlight, ambient sunlight and night vision conditions. These measurements are found on all display and monitor photometric data sheets.

Measured in a dark room at optimal display brightness and contrast providing real world data. This data is provided for real world performance information.

Measured in a dark room at maximum display brightness and contrast, providing maximum brightness; however, display readability is reduced through loss of contrast. This metric is provided for inter-vendor comparisons.

Weber contrast (as defined by MIL-L-85762A) of the display under full diffuser and specular simulation. This simulates an outdoor bright sun condition (10,000 fc) with a secondary reflection of the sun (2,000 fL) off the monitor system.

Contrast ratio of the display under full diffuse and specular simulation sources. This simulates an outdoor bright sun condition (10,000 fc) with a secondary reflection of the sun (2,000 fL) off the monitor system.

Classification of the display usability, 0 being not sunlight readable with text, image or video, black and white or otherwise, and 6 being readable given full color motion video.

Each measurement is performed under a variety of LCD and backlighting drive schemes to provide a diverse and rich data set, allowing the customer the ability to choose the correct product for the target driving scheme, while removing guesswork. These drive conditions are found on all display and monitor photometric data sheets, as outlined below.

Driven with the OEM or General Digital LED backlights at a power equal to the OEM backlights. This provides data on luminance improvements over OEM if equipped with our backlights.

Driven with the OEM or General Digital LED backlights to produce brightness equal to the OEM display brightness. This provides data on power consumption improvements over OEM if equipped with our backlights.

Driven with General Digital LED backlights to determine the maximum output of the display with no active cooling. Many displays can be pushed beyond this threshold; however, active cooling or heat sinks may be required.

The metrics outlined above represent most common conditions; however, due to General Digital’s vast array of capabilities, experience and equipment, many more display measurements can be performed (see XXXX “Display Measurement Report”). Should further assistance be necessary, a Sales Engineer can be consulted for additional clarification.

General Digital also designs and integrates our own line of intelligent LED backlight controllers to provide command, control and status of our LED-equipped, NVIS-enhanced and NVIS/Sunlight Readable-enhanced displays and backlights. Again, these ruggedized products can be purchased from our stock or integrated by General Digital. Additionally, our software engineering staff can tailor our controller firmware to provide the precise performance necessary to meet a customer’s operational requirements. Typical requests include, but are not limited to, the following:

General Digital also designs and assembles standard and custom microelectronic assemblies in house (e.g., embedded display heaters, cooling fans, touch screens, bezel buttons and potentiometers, OSD controls) that may be included in the final configuration. Since these designs are under our control, it is a simple task for us to program or tailor their performance to meet a variety of needs. More information is available on our controller products page or by speaking with a Sales Engineer.

data vision lcd display free sample

Spatial uniformity of displayed luminance can vary widely between different makes and models of LCD, the major determinant of uniformity being the backlight scheme [34] (some older LCDs allowed VGA input and relied on built-in analog-to-digital conversion, also a potential source of noise). Two commonplace schemes are, first, direct backlighting, wherein a spatial array of light-emitting diodes (LEDs) and a diffuser screen sit behind the liquid crystal panel, and, second, edge illumination, wherein light emitted by a linear array of diodes at one of the display’s edges is spatially distributed via lightguide. We quantified the spatial uniformity of the CG247X by presenting low-, medium-, and high-luminance static test patches at nine display positions (Fig 2, inset) and using the LS-110 spot meter to measure the luminance of each patch. At each luminance tested, we calculated the grand average over all display positions, and divisively normalized measurements by that average. As illustrated in Fig 2, at medium- and high-luminance, the CG247X showed greater spatial uniformity than our consumer-grade LCD (Dell U2415b): for the CG247X, spatial variation was 5.1% at medium and 3.5% at high luminance, whereas for the U2415b, variation was 8.1% at medium and 8.5% at high luminance. The uniformity of the two displays was comparable at low luminance (CG247X, 27% versus U2415b, 17%). Prior to normalization, there were, as expected, marked differences between low-, medium-, and high-luminance measurements. For example, at display position 5 (Fig 2, inset) on the CG247X, low-luminance measurements ranged from 0.07 to 0.10 cd/m2, medium-luminance measurements ranged from 57.70 to 57.93 cd/m2, and high-luminance measurements ranged from 113.9 to 114.2 cd/m2 (Table 1). We also quantified spatial surround effects; using a tripod at 1 m, we measured displayed luminance at position 5 comparing large (1920-by-1200 pixels) and small (384-by-384 pixels) 100%-luminance patches. For CG247X, the mean of 10 large-patch measurements was 0.56 cd/m2 greater than that of 10 small-patch measurements (two-sample t-test, p < 0.01), i.e., an increase of 0.50%. For the U2415b, the increase was 0.71 cd/m2, i.e., 0.67% (two-sample t-test, p < 0.01).

In-plane switching (IPS) LCDs, like our CG247X and U2415b, enable larger viewing angles than older LCD technology (e.g., twisted-nematic displays) [23]. To do so, IPS displays interdigitate electrodes (see 23]. For the displays we tested, vendor-issued specifications state a viewing angle of 178 deg, however, in the absence of further details, that derived measure is difficult to assimilate. We measured displayed luminance as a function of viewing angle over a range of azimuth and elevation (±60 deg). We fit a circular von Mises function (Fig 3, the CG247X and U2415b performed comparably in this regard. For the CG247X, the FW90M was 28.6 deg (fitted parameters: α = 1.45, κ = 3.37) and 32.6 deg (α = 1.65, κ = 2.62) for azimuth and elevation, respectively. For the U2415b, the FW90M was 31.2 deg (α = 1.60, κ = 2.85) and 31.0 deg (α = 1.55, κ = 2.90) for azimuth and elevation, respectively. At high-luminance we made a reduced set of measurements, assuming rotational symmetry, varying azimuth or elevation from 0 to 60 deg. These additional measurements yielded similar FW90M estimates. This descriptive model can be used to select a viewing distance with tolerable attenuation due to viewing angle. For example, if the CG247X is viewed from 1 m, a stimulus presented at the top of the display’s vertical meridian (i.e., elevation = 9.2 deg) would, due to viewing angle, undergo luminance attenuation by a factor of 0.97.

We presented a large, static test patch, measuring luminance with the LS-110 spot meter near the display’s center. We used a turntable to rotate the display (

A common misconception among vision researchers and clinicians is that LCDs do not flicker (i.e., that LCDs are temporally uniform). In fact, there are two major sources of flicker that can affect a LCD: first, backlight flicker which usually occurs at temporal frequencies (e.g., 1000 Hz) well beyond the critical flicker fusion frequency (e.g., Elze & Tanner [24], and Ghodrati, Morris, & Price [35]), and, second, the so-called frame response which occurs at the refresh rate of the display (here, 60 Hz) [23, 36]. Frame responses are largely attributable to an LCD’s inversion scheme: a feature of modern displays wherein the polarity of the video signal voltage applied to the liquid crystal material is inverted from one video frame to the next. This inversion minimises long-term degradation, or aging, of the display by minimizing the DC voltage across the liquid crystal elements. Frame inversion schemes typically have fine spatial structure, on the scale of individual pixels, making them mostly imperceptible (e.g., dot inversion schemes [36]). We quantified the temporal uniformity of the CG247X by presenting (nominally) static test patches at display position 5 (Fig 2, inset) and using the linearized photodiode device to measure displayed luminance over time. At each of 11 luminances (0, 10, 20 … 100%) we made 10 one-second recordings, averaging the Fourier amplitude spectra of those 10 recordings. Fig 4 shows the average spectrum at each luminance. The spectra of the CG247X revealed a frame response comprising a 60 Hz component as well as harmonic components at integer multiples of 60 Hz. The response at 60 Hz varied non-monotonically in amplitude with the luminance of the static test patch, peaking at a luminance of 50%. However, the CG247X appeared free of backlight modulations. This absence of backlight modulations freed us of the consequences of said modulations (often desynchronized with the frame refresh signal) on increment/decrement transitions between luminances (see Fig 5 in [24]). The spectra of our consumer-grade LCD also revealed a frame response, as well as 1.2 kHz flicker, likely associated with the back light. This latter temporal nonuniformity increased linearly with the luminance of the static test patch.

We presented nominally static test patches at display position 5 (Fig 2, inset), measuring luminance with a linearized photodiode device. At each luminance (0, 10, 20 … 100%) we made ten 1-second recordings, deriving the Fourier amplitude spectrum for each. Each spectrum illustrated is the average of 10 spectra. For each display, we normalized spectra such that 1000 corresponds to the DC component at 50% luminance; therefore, a value of 5.0 corresponds to approximately 0.15 cd/m2. The spectra of the CG247X (upper) revealed a frame response, comprising a 60 Hz component and harmonic components at integer multiples of 60 Hz. This frame response varied non-monotonically in amplitude with the luminance of the static test patch, peaking between 40 and 50% luminance. The spectra of the U2415b (lower) also revealed a frame response, as well as 1.2 kHz flicker, the amplitude of which increased linearly with the luminance of the static test patch (amplitudes above 5.0 are not shown, arrowheads). For the U2415b, mains noise (50 Hz) was apparent at high-luminance. lum., luminance.

For each display, we verified that the frame response was optical and not related to any radiated electromagnetic noise: We used the oscilloscope to visualize the Fourier amplitude spectrum online. We then interposed opaque cardboard between the photodiode and display which caused the disappearance of the frame response. For the U2415b, we similarly verified that the 1.2 kHz response was optical.

In general, LCD response times—the duration of the rise or fall of a step from one luminance level to another—vary as a function of both step source and destination luminance. This nonlinear behaviour is owing largely to mechanisms of response time compensation (RTC) (e.g., the work of McCartney [25]), a feature of many modern LCDs designed to enhance video. RTC mechanisms speed luminance transitions by transiently altering the voltage applied to the liquid crystal associated with individual pixels (e.g., Fig 1 in [27]; Fig 5 in [24]). We measured the CG247X’s response times by presenting luminance steps—both increments and decrements—to the linearized photodiode device. Step source and destination took values 0, 25, 50, 75, or 100%. As illustrated in Fig 5, response times varied as a function of both luminance step source and destination. For example, stepping from 0% luminance to 25% luminance took 24.5 ms, stepping from 75% to 100% took 12.9 ms, and stepping from 25% to 0% took 8.1 ms. All of these steps are the same height, but response times differ markedly. Overall, the response times of our consumer-grade LCD were less than the CG247X response times. However, as we will illustrate below, faster is not better; although RTC mechanisms reduced the response times of our consumer-grade LCD, they contaminated displayed luminance with overshoot and undershoot artifacts which are problematic for many applications in clinical and experimental vision research, including the presentation of mean-modulated flicker. RTC mechanisms lower “black-white-black” and “grey-to-grey” response times, which are used to promote displays to the gaming community and other consumer markets.

(A) CG247X response times. The leftmost gray box (labelled “0%”) encompasses four points showing mean response times for transitions from source luminance = 0% to destination luminances = 25, 50, 75, and 100% (x axis). These rise times (upward triangles) decreased with increasing destination luminance. The gray box labelled “25%” shows mean response times of transitions from source luminance = 25% to destination luminances = 0, 50, 75, and 100%. The fall time (downward triangle), from 25% to 0% luminance, was less than the rise times. Overall, response times varied as a function of both source and destination luminance, as is generally expected of LCDs. We made 10 measurements at each source/destination luminance pair; error bars, where not obscured by symbols, mark the full range (from minimum to maximum) of these 10 measurements. (B) U2415b response times. Graphical conventions are as in A. Overall, U2415b response times were less than CG247X response times.

At the outset of this study, we made preliminary measurements similar to those illustrated in Fig 5. We noticed that rise and fall times straddling 50% luminance were approximately equal (e.g., rise time from 25% to 75% = 16.3 ms; fall time from 75% to 25% = 17.1 ms) which led us to wonder whether the CG247X could be used to display achromatic, mean-modulated flicker without the introduction of unworkable artifacts. To better determine the CG247X’s potential suitability for presenting mean-modulated flicker, and its susceptibility, or otherwise, to overshoot and undershoot artifacts typical of LCDs implementing RTC mechanisms, we presented mean-modulated flicker on both the CG247X and our consumer-grade display, using the linearized photodiode device to measure luminance over time. We used a flicker period of 20 frames (333.3 ms), and contrast ranging from 20 to 100%. As illustrated in Fig 6, the consumer-grade display’s luminance traces revealed overshoot and undershoot artifacts symptomatic of RTC. The CG247X’s luminance traces, however, appeared free of RTC artifacts. We used these traces to estimate response times specific to mean-modulated flicker, illustrated in Fig 7. Overall, CG247X rise and fall times were greater than those of our consumer-grade LCD. However, with the exception of 100% contrast, CG247X rise and fall times were approximately equal, indicating its potential suitability for presenting mean-modulated flicker.

Flicker period = 20 frames (333.3 ms), and contrast = 20 to 100% in increments of 20 as marked. At 40% contrast, the arrowheads show examples of luminance step source and destination as used in the computation of response times (Fig 7). For each display, we normalized traces to the luminance step destination at 100% contrast. For the U2415b, over- and undershoot are readily apparent at low and moderate contrast. The CG247X, however, shows exponential rise and fall, regardless of contrast.

To further determine whether the CG247X could be used to display achromatic, mean-modulated flicker without the introduction of unworkable artifacts, we presented flicker at frequencies ranging from 0.94 to 30 Hz and contrasts ranging from 20 to 100%. We used recorded traces (similar to those in Fig 6) to derive cycle-averaged luminance. In Fig 8, we illustrate how cycle-averaged luminance was approximately constant for all flicker frequencies, and for contrasts up to 80%. At 100% contrast, cycle-averaged luminance decreased with flicker frequency, indicating that, at full contrast, the monitor is not suitable for presenting mean-modulated flicker. Cycle-averaged luminance recorded from our consumer-grade LCD (Dell U2415b) varied as a function of flicker frequency at all contrasts tested; this variation is problematic for presenting achromatic, mean-modulated flicker. We also used CG247X traces to derive cycle-averaged r.m.s. luminance. In Fig 8, we illustrate how cycle-averaged r.m.s. luminance decreased with flicker frequency, indicative of loss of contrast. The consumer-grade LCD was affected by both changes in cycle-averaged luminance and loss of contrast.

We presented mean-modulated flicker at a range of flicker frequencies (0.94 to 30 Hz) and contrasts (20 to 100%). We used waveforms (e.g., Fig 6) recorded from the CG247X (A) to derive cycle-averaged luminance; we divisively normalized that derived measure using the cycle-averaged luminance of a “reference” waveform, that is, the response to contrast = 20% and flicker frequency = 0.94 Hz. This relatively low-contrast, low-frequency waveform was chosen as reference because it should be easily realized by both displays. For clarity, cycle-averaged responses for contrast = 40, 60, 80, and 100% are offset by -0.1, -0.2, -0.3, and -0.4 log units, respectively (arrowheads). As shown, cycle-averaged luminance was approximately constant for contrast = 20 to 80% at all flicker frequencies tested (0.94 to 30 Hz). At contrast = 100%, cycle-averaged luminance decreased with flicker frequency. Cycle-averaged luminance recorded from the consumer-grade U2415b (B) increased with flicker frequency at all contrasts tested. Graphical conventions are as in A. We used waveforms recorded from the CG247X (C) to derive cycle-averaged r.m.s. luminance; we divisively normalized that derived measure using cycle-averaged r.m.s. luminance of the reference waveform (20%, 0.94 Hz). As shown, at all contrasts tested (20 to 100%), cycle-averaged r.m.s. luminance decreased with flicker frequency, indicative of a loss of effective contrast. Cycle-averaged r.m.s. luminance recorded from the U2415b (D) revealed both increases and decreases to effective contrast with flicker frequency. Each symbol is the average of 10 measurements. (None of the data in panels C and D is offset.) We modeled cycle-average luminance and r.m.s. luminance on the CG247X as a causal exponential decay (Methods). This model comprised one free parameter, τ. For the illustrated fit (blue), τ = 6.6 ms. The red symbols in panel C (slightly offset rightward for clarity) show the result of a validation experiment (see

Taken together, Fig 8, and the traces used to derive the measures plotted there, indicated a simple relationship between nominal and displayed luminance on the CG247X, namely, that the latter was, simply, a low-pass-filtered version of the former. To test this hypothesis, we modeled the function transferring nominal luminance to displayed luminance as a causal, exponential decay (Methods). We optimized the single free parameter in this model, the time constant of the exponential decay (τ), by minimizing the sum of the squared error between the model-derived cycle-averaged mean luminance and cycle-averaged r.m.s. luminance, and those derived from the photodiode traces. For the CG247X, the fit is illustrated in Fig 8 (blue). There, the fitted parameter, τ, was 6.6 ms. To assess the fit to cycle-averaged luminance, we computed the root-mean-square error (RMSE) separately at each flicker contrast. For the CG247X, the RMSE was negligibly small for contrasts from 20 to 80% (ranging from 6.0e-4 to 6.3e-3 normalized units). At 100% contrast, RMSE was highest at 0.093. This simple model was a poor fit to the U2415b, not illustrated in Fig 8. For the U2415b, RMSEs were high, ranging from 0.04 at 20% contrast to 0.15 at 60% contrast. To assess the fit to cycle-averaged r.m.s. luminance, we calculated the square of Pearson’s correlation coefficient, R2, separately at each flicker contrast. For the CG247X, R2 was high, ranging from 0.9965 to 0.9999. As expected, the same calculation for the U2415b was consistent with a poor fit; at its worst, R2 = 0.03.

To quantify the nonlinearities associated with high-contrast, mean-modulated flicker, and to quantify temporal dependence between frames, we used a paired-pulse paradigm [37, 38]. We presented paired biphasic luminance pulses at position 5 (Fig 2, inset), systematically varying the inter-pulse interval, T (Methods). We used the measured responses to individual pulses to predict paired-pulse responses, and to model the display’s nonlinearities we subtracted each paired-pulse response from its prediction. Fig 9 shows the nonlinear behaviour of the CG247X and, for comparison, that of our consumer-grade LCD. In our CG247X, a nonlinear mechanism appeared to speed the transition between white and black (100% and 0% luminance, respectively; leftmost upper panel in Fig 9B). When paired pulses were separated by 16.67 ms or more (the three rightmost upper panels in Fig 9B where predicted and displayed luminance are approximately equal), the CG247X behaved linearly, that is, we saw no evidence of temporal dependence between frames. In our consumer-grade LCD, a nonlinear mechanism appeared to attenuate the transition to white (100% luminance; leftmost lower panel in Fig 9B). This attenuation reconciles with Fig 6 (lower), which shows marked overshoot at moderate contrast (e.g., 60% contrast, middlemost panel of Fig 6), but a near absence of overshoot at high-contrast (rightmost panel of Fig 6). Compared to the CG247X, the U2415b’s nonlinearities were large in magnitude and long-lasting. Paired pulses separated by as much as 33.33 ms (the third lower panel in Fig 9B, where predicted and displayed luminance are unequal) evoked nonlinear behaviour in the U2415b, that is, we saw clear evidence of temporal dependence between frames.

(A) Illustration of the paired-pulse paradigm. We presented a single biphasic luminance pulse (e.g., left panel), parametrically varying its latency relative to a trigger (cf. left and middle panels). We then presented a pair of biphasic luminance pulses (right panel), parametrically varying the offset between pulses comprising the pair, T = 0, 1, 2, and 3 times the frame period (frame period = 16.67 ms). Single-pulse responses can be used to predict the paired-pulse response; differences between this prediction and the displayed luminance model the display’s nonlinearities. (B) Nonlinear behaviour of the CG247X (upper). The four panels show responses to paired pulses with various offsets, T; we normalized responses (0, 0.5 and 1 corresponded to 0, 50 and 100% luminance, respectively) and then subtracted the baseline. For each offset, the predicted displayed luminance derived from single-pulse responses is shown in blue, and the measured displayed luminance in response to paired pulses is shown in black. The measured responses are an average of 16 recordings. The difference, that is, the nonlinearity, is shown in red. For the CG247X, superposition (T = 0 ms) of pulses evoked a nonlinearity which accelerated the transition from 100% luminance to 0% luminance. There was negligible nonlinearity of displayed lumiance for T > = 16.67 ms. Compared to the CG247X’s nonlinearity, the U2415b’s nonlinearity (lower panels) was large in magnitude and long-lasting, affecting subsequent frames (to T = 33.33 ms). Graphical conventions are as in B.

data vision lcd display free sample

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

data vision lcd display free sample

Many individuals experience eye discomfort and vision problems when viewing digital screens for extended periods. The level of discomfort appears to increase with the amount of digital screen use.

Viewing a computer or digital screen often makes the eyes work harder. As a result, the unique characteristics and high visual demands of computer and digital screen viewing make many individuals susceptible to the development of vision-related symptoms. Uncorrected vision problems can increase the severity of computer vision syndrome (CVS) or digital eyestrain symptoms. Viewing a computer or digital screen is different than reading a printed page. Often the letters on the computer or handheld device are not as precise or sharply defined, the level of contrast of the letters to the background is reduced, and the presence of glare and reflections on the screen may make viewing difficult.

Viewing distances and angles used for this type of work are also often different from those commonly used for other reading or writing tasks. As a result, the eye focusing and eye movement requirements for digital screen viewing can place additional demands on the visual system. In addition, the presence of even minor vision problems can often significantly affect comfort and performance at a computer or while using other digital screen devices. Uncorrected or under corrected vision problems can be major contributing factors to computer-related eyestrain. Even people who have an eyeglass or contact lens prescription may find it"s not suitable for the specific viewing distances of their computer screen. Some people tilt their heads at odd angles because their glasses aren"t designed for looking at a computer or they bend toward the screen in order to see it clearly. Their postures can result in muscle spasms or pain in the neck, shoulder or back.

The extent to which individuals experience visual symptoms often depends on the level of their visual abilities and the amount of time spent looking at a digital screen. Uncorrected vision problems like farsightedness and astigmatism, inadequate eye focusing or eye coordination abilities, and aging changes of the eyes, such as presbyopia, can all contribute to the development of visual symptoms when using a computer or digital screen device.

Many of the visual symptoms experienced by users are only temporary and will decline after stopping computer work or use of the digital device. However, some individuals may experience continued reduced visual abilities, such as blurred distance vision, even after stopping work at a computer. If nothing is done to address the cause of the problem, the symptoms will continue to recur and perhaps worsen with future digital screen use.

Solutions to digital screen-related vision problems are varied. However, they can usually be alleviated by obtaining regular eye care and making changes in how the screen is viewed.

In some cases, individuals who do not require the use of eyeglasses for other daily activities may benefit from glasses prescribed specifically for computer use. In addition, persons already wearing glasses may find their current prescription does not provide optimal vision for viewing a computer.

Some computer users experience problems with eye focusing or eye coordination that can"t be adequately corrected with eyeglasses or contact lenses. A program of vision therapy may be needed to treat these specific problems. Vision therapy, also called visual training, is a structured program of visual activities prescribed to improve visual abilities. It trains the eyes and brain to work together more effectively. These eye exercises help remediate deficiencies in eye movement, eye focusing, and eye teaming and reinforce the eye-brain connection. Treatment may include office-based as well as home training procedures.

Prevention or reduction of the vision problems associated with CVS or digital eyestrain involves taking steps to control lighting and glare on the device screen, establishing proper working distances and posture for screen viewing and assuring that even minor vision problems are properly corrected.

Don"t take a vision problem to work. Even if glasses are not needed for driving, reading or other activities, they still may offer benefits for a minor vision problem that is aggravated by computer use. A mild glasses prescription may be needed to reduce vision stress on the job. It"s a good idea for computer users to get a thorough eye exam every year.

Glasses should meet the demand of the job. If glasses are worn for distant vision, reading or both, they may not provide the most efficient vision for viewing a computer screen, which is about 20 to 30 inches from the eyes. Tell the doctor about job tasks and measure on-the-job sight distances. Accurate information will help get the best vision improvement. Patients may benefit from one of the new lens designs made specifically for computer work.

Minimize discomfort from blue light and glare. Blue light from LED and fluorescent lighting, as well as monitors, tablets and mobile devices, can negatively affect vision over the long term. Special lens tints and coatings can reduce the harmful impact of blue light. Minimize glare on the computer screen by using a glare reduction filter, repositioning the screen or using drapes, shades or blinds. Also, keeping screens clean; dirt-free and removing fingerprints can decrease glare and improve clarity.

data vision lcd display free sample

Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.

Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.

Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.

LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.

The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.

LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:

Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.

The origins and the complex history of liquid-crystal displays from the perspective of an insider during the early days were described by Joseph A. Castellano in Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry.IEEE History Center.Peter J. Wild, can be found at the Engineering and Technology History Wiki.

In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.

In 1964, George H. Heilmeier, then working at the RCA laboratories on the effect discovered by Williams achieved the switching of colors by field-induced realignment of dichroic dyes in a homeotropically oriented liquid crystal. Practical problems with this new electro-optical effect made Heilmeier continue to work on scattering effects in liquid crystals and finally the achievement of the first operational liquid-crystal display based on what he called the George H. Heilmeier was inducted in the National Inventors Hall of FameIEEE Milestone.

In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.

On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.

In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.

In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,

In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,

The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.

In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.

Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,

In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.

In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.

Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.

CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.

EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.

WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.

RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.

Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.

Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).

The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),

Due to the LCD layer that generates the desired high resolution images at flashing video speeds using very low power electronics in combination with LED based backlight technologies, LCD technology has become the dominant display technology for products such as televisions, desktop monitors, notebooks, tablets, smartphones and mobile phones. Although competing OLED technology is pushed to the market, such OLED displays do not feature the HDR capabilities like LCDs in combination with 2D LED backlight technologies have, reason why the annual market of such LCD-based products is still growing faster (in volume) than OLED-based products while the efficiency of LCDs (and products like portable computers, mobile phones and televisions) may even be further improved by preventing the light to be absorbed in the colour filters of the LCD.