32 to 9 ratio lcd panel made in china
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
*Aspect ratio, resolution, curvature radius, color gamut coverage, refresh rate, brightness and contrast certifications by the National Testing and Inspection Center for Radio and TV Products of China (TIRT),
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
dynamic contrast ratio smart tv 42 inch 24 inch with BCD art and white stand color black ( optional ) pannel 55inch Screen size Effective display size 1904.0(H) × 1096.0(V) mm resolution 3840*2160 According to the color 16.7M color frequency 50Hz~75Hz brightness 450 cd/m2 contrast 5000:01:00 Viewing Angle 178° TV system High frequency head Analog signal of high frequency Image formats PAL/SECAM, NTSC(Option) Sound system BG ,DK ,I, (M/N,L,L’ Option) Channel number 125 The sound system The horn Built-in speaker, can external speakers The speaker power 8Ωx10W × 2 Stereo sound Balance, automatic volume control, surround sound, coaxial, etc Terminal interface Video input High frequency head: 1. HDMI 1.4 * 1, super clear signal port USB2.0 *3 , USB 3.0 *1 VGA *1 Component (YPbPr) * 1 The USB video playback (supported formats: jpg,bmp,png,video is avi,mpg,dat,vob , div,mov,mkv,rm,rmvb,mp4,mjpeg,ts,trp,wmv,asf,flv,audio is wma,.mp3,. m4a etc) HDMI 1.3 * 3 Audio input YPBPR audio input terminals Computer audio input terminals Video output AV output Audio output AV audio output Coaxial output Smart TV function(only smart tv have ,led without) network with android With USB/SD card interface, can be an external storage card RJ45 network interface The input voltage AC:100~240V 60/50HZ power <260W Standby power ≤1W copy The remote control, manual, the power cord Shell material Metal wire drawing shell The net weight 85KG Gross weight 130KG Environmental requirements Working temperature: 0 °C to 40 °C Work surrounding humidity: 10% ~ 80% Storage temperature: - 20 °C and 40 °C Store the surrounding humidity: 5% ~ 95% After-sales service The machine warranty for one year Packaging & Shipping Should any problem,contact me freely. :0086-66659982 &wechat : zhou5261181 Phone&WhatsApp: +0086-15119459991 Skype: Claire Everluck QQ:963912427
The shift to high pixel density displays, which started with smartphones and tablets, has spread to the world of PC display monitors. 4K displays for PCs hit the shelves in 2014, and an understanding of pixel density has become important for selecting products, along with screen size and resolution. Our theme this time is the shift to high pixel density displays, including trends in the latest technology.
Looking at the market trends in LCD monitors for PCs, in the latter half of the 2000s, the transition from square to wide screens took off all at once, and currently, the trend has been towards larger screens and higher resolutions.
As of 2014, the best selling LCD is the 23" model supporting 1920 x 1080 pixel (full HD) display, but 4K displays that boast of four times that resolution are on rapid rise, and there is a new trend of converting to high resolution (increasing pixel density) without enlarging the screen size
Note: This is a translation from Japanese of the ITmedia article "ITmedia LCD Monitor Course III: Confused about HiDPI and Retina display? Understanding pixel density, an essential element in choosing displays in the age of 4K" published on December 11, 2014. Copyright 2014 ITmedia Inc. All Rights Reserved.
Over the next several years, it is predicted that 4K will replace full HD as the mainstream resolution. 4K, of course, represents 4,000 and refers to a horizontal pixel count of around that number. There are currently two standards for 4K resolution, namely "DCI 4K" and "UHD 4K.
DCI 4K is twice the 2048 x 1080 pixel resolution of projectors (4096 x 2160/approx. 17:9) and is the 4K resolution of the film industry. UHD 4K (also called UHDTV 4K), on the other hand, is the 4K resolution of the television industry defined by the International Telecommunication Union (ITU). It has twice the horizontal resolution of 1920 x 1080 pixel full HD (3840 x 2160/16:9).
4K displays for current PCs are primarily UHD 4K resolution like 4K televisions. However, there are a few products out there that have adopted the DCI 4K standard, such as the ColorEdge CG318-4K color management monitor for video production to be released by EIZO in the spring of 2015.
4K is a high resolution with twice the vertical and horizontal pixel count of full HD and refers to resolutions featuring a horizontal pixel count of around 4 million. The photograph is of EIZO"s ColorEdge CG318-4K. It supports 4096 x 2160 pixel/approx. 17:9 display, which surpasses the 3840 x 2160 pixel/16:9 (UHD 4K) display often used in 4K displays for PCs. Note the difference in horizontal resolution.
The only interface for 4K displays currently on the market that is capable of 4K 60 Hz display is DisplayPort 1.2, which has a 21.6 Gbps bandwidth. That’s because 4K 60 Hz transmission requires a bandwidth of 16 Gbps (3840 x 2160 pixel, 32-bit color, 60 Hz). This is well above the bandwidth supported by DisplayPort 1.1 (10.8 Gbps), HDMI 1.4a (10.2 Gbps) and DVI Dual Link (7.4 Gbps). For that reason it should be noted that currently, when connected via DVI-D or HDMI, 4K display only works at 30 Hz.
However, as far as HDMI goes, the bandwidth of the new HDMI 2.0 standard (HDMI 2.0 Level A) has been expanded to 18 Gbps, and new displays capable of 4K 60 Hz display with HDMI 2.0 input have been announced. As the video output components of PCs (GPU) and other devices begin supporting HDMI 2.0, the situation will gradually improve.
From left to right: DVI-D, HDMI and DisplayPort video input terminals. 4K 60 Hz display requires connection via DisplayPort 1.2. Dual Link DVI-D and the current HDMI 1.4a only support 4K display at 30 Hz.
If the display is connected via DisplayPort 1.2, the setting can be changed to 4K 60 Hz display in the OS settings. The above image shows the setting for 4K 60 Hz with EIZO"s FlexScan EV3237 31.5" 4K display.
The HDMI 2.0 Level B standard is capable of transmitting 4K 60Hz signals over the HDMI 1.4 transmission bandwidth, but the color depth is YUV 4:2:0, and colors bleed, so it is not suited to displays. We’ll have to wait for the spread of HDMI 2.0 Level A for proper 4K 60Hz display via HDMI.
Moreover, there are cases where the 60 Hz transmission system of the 4K display creates problems even if DisplayPort 1.2 is used. Although not widely known, there are two transmission systems used to support 60 Hz display with the currently available 4K displays, namely MST (Multi Stream Transport) and SST (Single Stream Transport).
In the MST system, the OS recognizes 4K as a two-screen 1920 x 2160 pixel display, so a GPU driver is required to combine the output onto one screen. Depending on the version of the GPU and driver used, there were problems such as with the rendering timing on the left and right sides of the screen or not working in a multi-display environment.
The reason the video signal is purposefully split into two screens for transmission is that the supply of display scalers (video processing chips) that can transmit 4K 60 Hz as a single screen was behind the supply of 4K LCD panels. For that reason, there was no other choice but for the early 4K displays to adopt the MST system.
In contrast, the SST (Single Stream Transport) system can transmit 4K resolution as a single screen, so it is capable of 4K 60 Hz display without internal image synthesis or other processes. It does not have problems resulting from splitting the signal into two screens like MST, but there are some devices with DisplayPort 1.2 that have graphics cards that do not support SST, so the card should be checked at the time of purchase to see if it supports SST. Incidentally, EIZO"s FlexScan EV3237 31.5" 4K display has adopted the SST system.
These kinds of compatibility issues will likely be solved in the not-so-distant future as 4K displays become more popular and support improves on the GPU and driver side. Of course, these limitations only apply to 4K display at 60 Hz, so if you"re satisfied with 30Hz, the current HDMI 1.4a and DVI Dual Link are fully capable of 4K display.
The shift to high resolution displays does not stop with 4K. 27" displays (5120 x 2880 pixel/16:9) that support 5K are already being commercialized. The question is what will the very high resolution of 5K be used for, but there is the advantage that tool bars and other elements can be placed on the screen while displaying 4K content with video editing software.
However, the current DisplayPort 1.2 does not support 5K output, so it should be noted that as of right now 5K displays require special configuration to send video signals via two cables. Although not yet commercialized, the new DisplayPort 1.3 standard announced in September 2014 supports 5K (5120 x 2880 pixel) 60 Hz display and simultaneous two-screen UHD 4K display via daisy chain. Once PCs (GPUs) with DisplayPort 1.3 support hit the shelves, 5K 60 Hz signal output will be possible with a single cable.
What"s more, the world of 8K to follow 4K and 5K is almost here. According to an announcement by the Japanese Ministry of Internal Affairs and Communications, 8K test broadcasts will begin in 2016 and regular broadcasts in 2018. 8K (7680 x 4320 pixel/16:9) compatible display test models have appeared at video-related exhibitions and events, and the move towards ever higher resolution and higher definition will continue at a rapid pace.
As the resolution of displays grows increasingly higher, a new element to consider when choosing a display today is pixel density. Pixel density in displays is a spec indicating the degree of definition, and the value is usually expressed in ppi. Ppi stands for "pixes per inch" (not per square inch). An inch is equal to 2.54 centimeters.
Reducing the distance between pixels (pixel pitch) without changing the screen size of the LCD increases the ppi, and the higher this number, the higher the definition of the display. For example, at 100 ppi, there are 100 pixels per 2.54 centimeters, and at 300 ppi, there are 300 pixels packed within the same width.
Different pixel densities create differences in appearance. The image on top is of an enlarged 10pt font, and the image below is an enlarged thumbnail of a photograph. At 96 ppi, the roughness of the pixels is apparent, but at 192 ppi, the quality is greatly improved. At 384 ppi, the image is smooth, and the pixel grains and jagged edges of diagonal lines are no longer visible.
Today there is a trend of rapidly rising pixel density. Looking at stand-alone displays, the hot topic of late is super high pixel density displays with high resolution of 4K packed into screen sizes of 24-27 inches. At first, this genre only attracted the attention of some high-end consumers, but low-priced products started hitting the shelves one after another in 2014, so the number of regular users showing an interest has increased.
What people need to know before choosing one of these super high pixel density displays is the new way of thinking concerning resolution that has been brought about by rapid increases in pixel density.
When it comes to PC displays, most products have a pixel density of about 96 ppi to match the display density of 96 dpi (dots per inch) which has been the standard for the Windows desktop UI. The standard for the new Start screen and other aspects of the Modern UI of Windows 8 and later is 135 dpi (automatically switching between 100%, 140% and 180% depending on the pixel density of the display device), but the standard for the desktop UI is still 96 dpi.
As such, up until now, PC displays have been designed based on the assumption that the OS and applications would have a fixed display density (96 ppi for Windows). The 96 dpi standard is behind this assumption, and the screen size increased with the higher resolution of LCD panels (increased pixel counts), so it was safe to simply consider that the higher the resolution (pixel count), the larger the work space.
The higher the pixel density of the display, the higher the definition of the OS and applications, but there was no such thing as a display with such high pixel density that it could not be put to practical use, so it did not lead to any major problems. Depending on how high the pixel density, the icons and fonts would appear larger or smaller, but the definition was sufficient for the users to recognize them.
This is the conventional thinking with regards to LCDs. The screen size increased as the resolution of LCD panels became higher, so choosing a display with a higher resolution meant that the amount of information displayed at once was higher and the work space was larger.
On the left is an SXGA 17" square screen (1280 x 1024 pixels), and on the right is a WUXGA 24.1" wide screen (1920 x 1200 pixels). As you can see, the higher resolution and larger screen provided a much larger work space.
By contrast, when it comes to super high pixel density displays of the 4K class, a higher resolution (pixel count) does not necessarily mean a larger work space. In recent years, the display density (dpi) of the Modern UI, OS and applications in Windows 8 and later is designed to be variable rather than fixed. In other words, even at the same screen size, the display density does not have to be fixed. With the scaling function of the OS, the display can be enlarged smoothly.
The biggest advantage of this is that it enables very high definition display. Say, for example, you took a 24" UHD 4K display and enlarged the display so that the work space was equivalent to 24" full HD. UHD 4K (3840 x 2160 pixels) has twice the vertical and horizontal resolution of full HD (1920 x 1080 pixels), so there will be scaling of 200% for the enlarged display.
A single pixel on the OS display that was conventionally displayed using one pixel on the LCD panel is rendered with four pixels (double the aspect ratio), so combined with the OS-side scaling function, it produces a very fine and smooth display.
EIZO"s FlexScan EV3237 31.5" display supports UHD 4K display. For a large external display, it has high pixel density (approx. 140 ppi) for smooth, very high-definition display. This product has a large 31.5" screen, so it also offers a large work space, but with 23.8" and 28" 4K displays, the display is too fine, so the scaling function of the OS has to be used to enlarge it.
This is the difference in how UHD 4K (left) and full HD (right) appear at the same screen size. The photographs of the icons have been taken at about the same distance from the screen. With UHD 4K (3840 x 2160 pixels), the display is enlarged 200%, and with full HD (1920 x 1080 pixels), the icon is displayed at the same magnification. The size of the icons is roughly the same, but as you can see, the icon is displayed in higher definition with UHD 4K.
It"s difficult to describe, but if you compare the display on smartphones, on which high pixel density display is common, with that of conventional low pixel density PC displays, you"ll be able to see the advantage right away.
Compared to the sharp and smooth display on the smartphone, the display on the PC appears rough, and the pixel grid is visible. Moreover, the diagonal lines may appear jagged, and the rendering of text and icons may have a rough feel. If you use a smartphone or tablet frequently, you might have even felt that something was wrong with the display on your PC.
In actual usage scenarios, there are various advantages, such as ease of discerning focus and blurring when retouching high pixel photographs without enlarging or shrinking them, improved visibility of text, numbers and fine details of illustrations in design and CAD software, and legibility of fine text and clear distinction between fonts in PDFs, digital books, etc., so it can be expected to contribute to improved work efficiency.
Of course, the enlarged display of the full HD-equivalent work space on the 24" 4K display introduced above is only a single example. If you want a large work space even if the icons and text are a little smaller, you just have to lower the magnification. On the other hand, if you want to have a larger display with improved visibility even if the work space is smaller, you just have to increase the magnification. This flexibility is another thing that gives super high pixel density displays an advantage.
This is the difference in appearance produced by the scaling setting on the FlexScan EV3237 (31.5"/3840 x 2160 pixels/approx. 140 ppi). The image on the left is of normal 100% magnification, and the image on the right is of enlarged 150% magnification.
This is an example of screen display on the FlexScan EV3237 desktop. At 100% magnification, the 3840 x 2160 pixel UHD 4K resolution can be fully utilized, but the pixel density is around 140 ppi, and the pixel pitch is about 0.18 mm, so it appears quite tiny from the normal viewing distance (left). When magnification is set to 150%, the work space becomes smaller, but the visibility of the text and icons is improved (right).
Nevertheless, it should be remembered that there are practical limitations to lowering the magnification rate for scaling to make a larger work space on a super high pixel density display.
For example, if a small screen size like 24" is selected for a 4K display as described above, the scaling magnification rate has to be raised to ensure visibility. As a result, you can"t have a large work space with respect to the actual resolution. By reducing the distance from which the screen is viewed, it may be visible even if you lower the scaling magnification rate a little. However, if you get too close to the display, your eyes and neck will have to make bigger movements during use, which will increase the burden on your body, so this is not recommended.
Of course, the larger the screen size the more room you"ll have for making adjustments to the work space and scaling magnification rate, so if you"re not sure, choose a super high pixel density display that is slightly larger than your current one, and you should be able to create a comfortable environment without trouble (you"ll need to pay attention to the physical space required by the display, though).
On the left is the FlexScan EV3237 (31.5"/3840 x 2160 pixels/approx. 140 ppi), and on the right is the FlexScan EV2436W (24.1"/1920 x 1200 pixels/approx. 94 ppi). When the scaling on the FlexScan EV3237 is set to 150% magnification, the appearance of the text and icons is about the same as on the FlexScan EV2436W at normal magnification. The appearance is close to the Windows Desktop UI standard of around 96 dpi, so the setting provides a balance between definition and work space. Even at 150% magnification, taking advantage of the 31.5" wide screen, you can secure a large work space.
Support for the high pixel density display environment in the PC OS is called HiDPI support. Along with support on the OS side, support by applications is also progressing, and the PC software environment surrounding HiDPI has risen to a practical level. This is boosting the spread of super high pixel density displays like 4K.
Moreover, since Windows 8.1, it is possible to apply different display density settings to different displays when multiple displays are connected, and the sense of incongruity experienced in a multi-screen environment with displays of different pixel densities has been reduced (however, the number of setting levels is limited, so the combination of display densities cannot be elaborately customized).
As for Mac OS X, the spread of high pixel density displays (referred to as "Retina displays" by Apple) was promoted earlier than it was by the Windows camp, so optimization of the OS design with variable display density is further along than it is with Windows. OS X Mavericks 10.9.3 and later support HiDPI display by external displays, so it"s easier to combine high pixel density displays made by other companies.
This is the Windows 8.1 scaling magnification rate settings screen. With a UHD 4K display, if you set it to "Extra large - 200%," the icons and text will be displayed at the same size as a full HD display with the same screen size. You can also adjust the text size of certain elements rather than changing the size of everything on the desktop.
When it comes to applications as well, the Microsoft Office 2013 (Windows)/2011 (Mac) office suite, major web browsers and other applications are starting to support HiDPI one right after another. Image editing software Adobe Photoshop Elements offers support as of Ver.13, and Photoshop CC has provisional support for manually setting 200%, so the foundation for full utilization of high pixel density displays has been laid.
As for hardware, lately GPU already has processing performance that could be called overkill for general use, so even PCs that aren"t especially high performance should be able to handle 4K display (although enjoying 4K games and videos on them is going to be a different story). For reference purposes, the status of GPU support for EIZO"s FlexScan EV3237 31.5" 4K display is summarized in the table below.
This trend of high pixel density becoming mainstream took off all at once when Apple began introducing its Retina displays to its products like the iPhone, iPad and iMac in 2010. These highdensity pixel displays are based on the concept of providing high-definition display that equals or exceeds the pixel densitythat can be distinguished by the retina of the human eye.
When it comes to visual devices, looking at the actual display often has more impact than a long description. Following the entrance of the Retina display and its positive reception, various manufacturers introduced smartphones, tablets and PCs with high pixel density displays, so they have spread to regular users.
Of course, products that are higher priced than the rest do not catch on, so the prices are coming down at the same time. The reason this is possible is complex and includes the improvement of LCD panel manufacturing technology, a substantial increase in the number of products adopting high pixel density LCD panels resulting in an environment conducive to economies of scale, and the rise of price competition between products featuring high pixel density LCD panels.
In this way, the software and hardware environments to support HiDPI display were put together, and in response, display manufacturers began aggressively introducing 4K displays, and the momentum of super high pixel density displays has taken off all at once.
The table below summarizes the specifications of high pixel density displays. The pixel densities of PC displays are lower than those of smartphones and tablets, but in the case of PCs, the user views them from a distance of about 50 centimeters, so the high-definition display appears just as smooth. As a rough guide, in the case of external displays for PCs, if the pixel pitch islessthan around 0.2mm, normal use becomes more difficult at normal magnification, so the magnification has to be increased with the scaling setting.
PC displays are currently becoming more and more diverse, including the 4K and HiDPI trends introduced earlier. Let"s summarize the screen size, resolution, pixel density and aspect ratio trends in current PC displays.
Since the latter half of the 2000s, square screens with aspect ratios of 5:4 and 4:3 have been on the decline in the PC display market, while 16:9 and 16:10 wide screens have been on the rise and have become established. At the same time, there has been a transition from 17" and 19" square screens to 23" and 24" wide screens.
There is also an active trend to move towards wide screens of 27" or more in pursuit of even more comfortable environments. That transition is split between those looking for a larger work space choosing 3840 x 2160 pixels (UHD 4K) or 2560 x 1440 pixels (WQHD) and those looking for a display with greater visibility at a lower price choosing 1920 x 1080 pixels (full HD).
In recent years there have also been ultra-wide screen products hitting the shelves featuring even wider screens. These are products with super wide screens featuring aspect ratios of 21:9. They are not suited to those switching from environments with a single regular display, but there is replacement demand from business users that regularly use spreadsheets as well as those coming from side-by-side dual display environments.
At the same time, going in a completely different direction, EIZO plans to launch its 26.5" FlexScan EV2730Q display featuring a square panel with an aspect ratio of 1:1 in spring 2015. It is a truly unique screen size, but it features a high resolution with full HD stretched horizontally to 1920 x 1920 pixels, so there is plenty of vertical and horizontal working space. Considering the large number of users that use two full HD displays side by side, it will be highly versatile.
Today, with the emergence of 4K and other highpixel density displays and the breaking down of the concept that a high resolution (high pixel count) equals a large work space, there is still no change in the fact that screen size has a significant impact on work space. As a rough guide for choosing, comparing to paper sizes provides an easy understanding from the standpoint of work efficiency. The main paper sizes are shown in the table below, so check them against the display area for the above screen sizes.
A3 (long grain) is a size allowing a crop mark to be placed on the outer edges of the A3 printing area as a mark for positioning for co mmercial printing or cutting, but there is no uniform standard, so sizes vary slightly depending on the paper.
For example, the 23" full HD displays that are currently mainstream have a display area of around 509mm x 287mm, which holds one A4-sized sheet (297mm x 210mm) and leaves substantial surplus space. This is sufficient for web browsing and simple spreadsheets, but for displaying an A4 two-page spread in actual dimensions, it is lacking vertically.
If using it for retouching photos to be printed on A4 two-page spreads or, in other words, A3 paper (420mm x 297mm), DTP, design work, etc., having an area where it can be displayed in the actual A3 dimensions and an area for the tool palette allows the work to proceed more smoothly while confirming what the final product will look like. For these conditions, the candidate displays will be 24" wide (approx. 531mm x 299mm) or larger.
If you are envisioning something up to A3 (long grain; although not standard, around 483mm x 329mm), a 27" wide (approx. 582mm x 364mm) is slightly larger than that, so you can gauge the required screen size using paper size as a guide.
On a 24.1" wide LCD supporting 1920 x 1200 pixel display (WUXGA) with an aspect ratio of 16:10, you can display an A4 two-page spread or A3 size (420mm x 297mm) image at the actual size on a single screen and have the menu and tool palette on the outside. The photograph is of EIZO"s FlexScan EV2436W.
When choosing an LCD in the future, it will be necessary to also consider the pixel density resulting from the screen size and resolution combination. As previously stated, super highpixel density displays basically require magnification with scaling for use, so high resolution (high pixel count) does not equal a large work space. This is a key point that needs to be carefully noted.
Thanks to the diversification of LCDs, users are able to be very choosy when selecting products based on their own uses, but the other side of the coin is that there is also an increased risk of accidentally purchasing a product that does not match your needs.
In order to avoid the tragedy of purchasing a super highpixel density display in hopes of increasing the work space only to realize that magnification has to be used, which means that the work efficiency is the same as before, it"s important to select the optimal model with a proper understanding of the features such as the advantage of super highpixel density displays when it comes to very high definition display and that going with a larger screen size is effective for increasing the work space.
A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large (over 32 inches diagonal) flat panel displays to be released to the public.
Until about 2007, plasma displays were commonly used in large televisions (30 inches (76 cm) and larger). By 2013, they had lost nearly all market share due to competition from low-cost LCDs and more expensive but high-contrast OLED flat-panel displays. Manufacturing of plasma displays for the United States retail market ended in 2014,
Plasma displays are bright (1,000 lux or higher for the display module), have a wide color gamut, and can be produced in fairly large sizes—up to 3.8 metres (150 in) diagonally. They had a very low luminance "dark-room" black level compared with the lighter grey of the unilluminated parts of an LCD screen. (As plasma panels are locally lit and do not require a back light, blacks are blacker on plasma and grayer on LCD"s.)LED-backlit LCD televisions have been developed to reduce this distinction. The display panel itself is about 6 cm (2.4 in) thick, generally allowing the device"s total thickness (including electronics) to be less than 10 cm (3.9 in). Power consumption varies greatly with picture content, with bright scenes drawing significantly more power than darker ones – this is also true for CRTs as well as modern LCDs where LED backlight brightness is adjusted dynamically. The plasma that illuminates the screen can reach a temperature of at least 1200 °C (2200 °F). Typical power consumption is 400 watts for a 127 cm (50 in) screen. Most screens are set to "vivid" mode by default in the factory (which maximizes the brightness and raises the contrast so the image on the screen looks good under the extremely bright lights that are common in big box stores), which draws at least twice the power (around 500–700 watts) of a "home" setting of less extreme brightness.
Plasma screens are made out of glass, which may result in glare on the screen from nearby light sources. Plasma display panels cannot be economically manufactured in screen sizes smaller than 82 centimetres (32 in).enhanced-definition televisions (EDTV) this small, even fewer have made 32 inch plasma HDTVs. With the trend toward large-screen television technology, the 32 inch screen size is rapidly disappearing. Though considered bulky and thick compared with their LCD counterparts, some sets such as Panasonic"s Z1 and Samsung"s B860 series are as slim as 2.5 cm (1 in) thick making them comparable to LCDs in this respect.
Wider viewing angles than those of LCD; images do not suffer from degradation at less than straight ahead angles like LCDs. LCDs using IPS technology have the widest angles, but they do not equal the range of plasma primarily due to "IPS glow", a generally whitish haze that appears due to the nature of the IPS pixel design.
Less visible motion blur, thanks in large part to very high refresh rates and a faster response time, contributing to superior performance when displaying content with significant amounts of rapid motion such as auto racing, hockey, baseball, etc.
Superior uniformity. LCD panel backlights nearly always produce uneven brightness levels, although this is not always noticeable. High-end computer monitors have technologies to try to compensate for the uniformity problem.
Unaffected by clouding from the polishing process. Some LCD panel types, like IPS, require a polishing process that can introduce a haze usually referred to as "clouding".
Earlier generation displays were more susceptible to screen burn-in and image retention. Recent models have a pixel orbiter that moves the entire picture slower than is noticeable to the human eye, which reduces the effect of burn-in but does not prevent it.
Due to the bistable nature of the color and intensity generating method, some people will notice that plasma displays have a shimmering or flickering effect with a number of hues, intensities and dither patterns.
Earlier generation displays (circa 2006 and prior) had phosphors that lost luminosity over time, resulting in gradual decline of absolute image brightness. Newer models have advertised lifespans exceeding 100,000 hours (11 years), far longer than older CRTs.
Uses more electrical power, on average, than an LCD TV using a LED backlight. Older CCFL backlights for LCD panels used quite a bit more power, and older plasma TVs used quite a bit more power than recent models.
For those who wish to listen to AM radio, or are amateur radio operators (hams) or shortwave listeners (SWL), the radio frequency interference (RFI) from these devices can be irritating or disabling.
Fixed-pixel displays such as plasma TVs scale the video image of each incoming signal to the native resolution of the display panel. The most common native resolutions for plasma display panels are 852×480 (EDTV), 1,366×768 and 1920×1080 (HDTV). As a result, picture quality varies depending on the performance of the video scaling processor and the upscaling and downscaling algorithms used by each display manufacturer.
Early plasma televisions were enhanced-definition (ED) with a native resolution of 840×480 (discontinued) or 852×480 and down-scaled their incoming high-definition video signals to match their native display resolutions.
The following ED resolutions were common prior to the introduction of HD displays, but have long been phased out in favor of HD displays, as well as because the overall pixel count in ED displays is lower than the pixel count on SD PAL displays (852×480 vs 720×576, respectively).
Early high-definition (HD) plasma displays had a resolution of 1024x1024 and were alternate lighting of surfaces (ALiS) panels made by Fujitsu and Hitachi.
Modern HDTV plasma televisions usually have a resolution of 1,024×768 found on many 42 inch plasma screens, 1280×768 and 1,366×768 found on 50 in, 60 in, and 65 in plasma screens, or 1920×1080 found on plasma screen sizes from 42 inch to 103 inch. These displays are usually progressive displays, with non-square pixels, and will up-scale and de-interlace their incoming standard-definition signals to match their native display resolutions. 1024×768 resolution requires that 720p content be downscaled in one direction and upscaled in the other.
Ionized gases such as the ones shown here are confined to millions of tiny individual compartments across the face of a plasma display, to collectively form a visual image.
A panel of a plasma display typically comprises millions of tiny compartments in between two panels of glass. These compartments, or "bulbs" or "cells", hold a mixture of noble gases and a minuscule amount of another gas (e.g., mercury vapor). Just as in the fluorescent lamps over an office desk, when a high voltage is applied across the cell, the gas in the cells forms a plasma. With flow of electricity (electrons), some of the electrons strike mercury particles as the electrons move through the plasma, momentarily increasing the energy level of the atom until the excess energy is shed. Mercury sheds the energy as ultraviolet (UV) photons. The UV photons then strike phosphor that is painted on the inside of the cell. When the UV photon strikes a phosphor molecule, it momentarily raises the energy level of an outer orbit electron in the phosphor molecule, moving the electron from a stable to an unstable state; the electron then sheds the excess energy as a photon at a lower energy level than UV light; the lower energy photons are mostly in the infrared range but about 40% are in the visible light range. Thus the input energy is converted to mostly infrared but also as visible light. The screen heats up to between 30 and 41 °C (86 and 106 °F) during operation. Depending on the phosphors used, different colors of visible light can be achieved. Each pixel in a plasma display is made up of three cells comprising the primary colors of visible light. Varying the voltage of the signals to the cells thus allows different perceived colors.
The long electrodes are stripes of electrically conducting material that also lies between the glass plates in front of and behind the cells. The "address electrodes" sit behind the cells, along the rear glass plate, and can be opaque. The transparent display electrodes are mounted in front of the cell, along the front glass plate. As can be seen in the illustration, the electrodes are covered by an insulating protective layer.
Control circuitry charges the electrodes that cross paths at a cell, creating a voltage difference between front and back. Some of the atoms in the gas of a cell then lose electrons and become ionized, which creates an electrically conducting plasma of atoms, free electrons, and ions. The collisions of the flowing electrons in the plasma with the inert gas atoms leads to light emission; such light-emitting plasmas are known as glow discharges.
In a monochrome plasma panel, the gas is mostly neon, and the color is the characteristic orange of a neon-filled lamp (or sign). Once a glow discharge has been initiated in a cell, it can be maintained by applying a low-level voltage between all the horizontal and vertical electrodes–even after the ionizing voltage is removed. To erase a cell all voltage is removed from a pair of electrodes. This type of panel has inherent memory. A small amount of nitrogen is added to the neon to increase hysteresis.phosphor. The ultraviolet photons emitted by the plasma excite these phosphors, which give off visible light with colors determined by the phosphor materials. This aspect is comparable to fluorescent lamps and to the neon signs that use colored phosphors.
Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel, the same as a triad of a shadow mask CRT or color LCD. Plasma panels use pulse-width modulation (PWM) to control brightness: by varying the pulses of current flowing through the different cells thousands of times per second, the control system can increase or decrease the intensity of each subpixel color to create billions of different combinations of red, green and blue. In this way, the control system can produce most of the visible colors. Plasma displays use the same phosphors as CRTs, which accounts for the extremely accurate color reproduction when viewing television or computer video images (which use an RGB color system designed for CRT displays).
Plasma displays are different from liquid crystal displays (LCDs), another lightweight flat-screen display using very different technology. LCDs may use one or two large fluorescent lamps as a backlight source, but the different colors are controlled by LCD units, which in effect behave as gates that allow or block light through red, green, or blue filters on the front of the LCD panel.
To produce light, the cells need to be driven at a relatively high voltage (~300 volts) and the pressure of the gases inside the cell needs to be low (~500 torr).
Contrast ratio is the difference between the brightest and darkest parts of an image, measured in discrete steps, at any given moment. Generally, the higher the contrast ratio, the more realistic the image is (though the "realism" of an image depends on many factors including color accuracy, luminance linearity, and spatial linearity). Contrast ratios for plasma displays are often advertised as high as 5,000,000:1.organic light-emitting diode. Although there are no industry-wide guidelines for reporting contrast ratio, most manufacturers follow either the ANSI standard or perform a full-on-full-off test. The ANSI standard uses a checkered test pattern whereby the darkest blacks and the lightest whites are simultaneously measured, yielding the most accurate "real-world" ratings. In contrast, a full-on-full-off test measures the ratio using a pure black screen and a pure white screen, which gives higher values but does not represent a typical viewing scenario. Some displays, using many different technologies, have some "leakage" of light, through either optical or electronic means, from lit pixels to adjacent pixels so that dark pixels that are near bright ones appear less dark than they do during a full-off display. Manufacturers can further artificially improve the reported contrast ratio by increasing the contrast and brightness settings to achieve the highest test values. However, a contrast ratio generated by this method is misleading, as content would be essentially unwatchable at such settings.
Each cell on a plasma display must be precharged before it is lit, otherwise the cell would not respond quickly enough. Precharging normally increases power consumption, so energy recovery mechanisms may be in place to avoid an increase in power consumption.LED illumination can automatically reduce the backlighting on darker scenes, though this method cannot be used in high-contrast scenes, leaving some light showing from black parts of an image with bright parts, such as (at the extreme) a solid black screen with one fine intense bright line. This is called a "halo" effect which has been minimized on newer LED-backlit LCDs with local dimming. Edgelit models cannot compete with this as the light is reflected via a light guide to distribute the light behind the panel.
Image burn-in occurs on CRTs and plasma panels when the same picture is displayed for long periods. This causes the phosphors to overheat, losing some of their luminosity and producing a "shadow" image that is visible with the power off. Burn-in is especially a problem on plasma panels because they run hotter than CRTs. Early plasma televisions were plagued by burn-in, making it impossible to use video games or anything else that displayed static images.
Plasma manufacturers have tried various ways of reducing burn-in such as using gray pillarboxes, pixel orbiters and image washing routines, but none to date have eliminated the problem and all plasma manufacturers continue to exclude burn-in from their warranties.
The first practical plasma video display was co-invented in 1964 at the University of Illinois at Urbana–Champaign by Donald Bitzer, H. Gene Slottow, and graduate student Robert Willson for the PLATO computer system.Owens-Illinois were very popular in the early 1970s because they were rugged and needed neither memory nor circuitry to refresh the images.CRT displays cheaper than the $2500 USD 512 × 512 PLATO plasma displays.
Burroughs Corporation, a maker of adding machines and computers, developed the Panaplex display in the early 1970s. The Panaplex display, generically referred to as a gas-discharge or gas-plasma display,seven-segment display for use in adding machines. They became popular for their bright orange luminous look and found nearly ubiquitous use throughout the late 1970s and into the 1990s in cash registers, calculators, pinball machines, aircraft avionics such as radios, navigational instruments, and stormscopes; test equipment such as frequency counters and multimeters; and generally anything that previously used nixie tube or numitron displays with a high digit-count. These displays were eventually replaced by LEDs because of their low current-draw and module-flexibility, but are still found in some applications where their high brightness is desired, such as pinball machines and avionics.
In 1983, IBM introduced a 19-inch (48 cm) orange-on-black monochrome display (Model 3290 Information Panel) which was able to show up to four simultaneous IBM 3270 terminal sessions. By the end of the decade, orange monochrome plasma displays were used in a number of high-end AC-powered portable computers, such as the Compaq Portable 386 (1987) and the IBM P75 (1990). Plasma displays had a better contrast ratio, viewability angle, and less motion blur than the LCDs that were available at the time, and were used until the introduction of active-matrix color LCD displays in 1992.
Due to heavy competition from monochrome LCDs used in laptops and the high costs of plasma display technology, in 1987 IBM planned to shut down its factory in Kingston, New York, the largest plasma plant in the world, in favor of manufacturing mainframe computers, which would have left development to Japanese companies.Larry F. Weber, a University of Illinois ECE PhD (in plasma display research) and staff scientist working at CERL (home of the PLATO System), co-founded Plasmaco with Stephen Globus and IBM plant manager James Kehoe, and bought the plant from IBM for US$50,000. Weber stayed in Urbana as CTO until 1990, then moved to upstate New York to work at Plasmaco.
In 1992, Fujitsu introduced the world"s first 21-inch (53 cm) full-color display. It was based on technology created at the University of Illinois at Urbana–Champaign and NHK Science & Technology Research Laboratories.
In 1994, Weber demonstrated a color plasma display at an industry convention in San Jose. Panasonic Corporation began a joint development project with Plasmaco, which led in 1996 to the purchase of Plasmaco, its color AC technology, and its American factory for US$26 million.
In 1995, Fujitsu introduced the first 42-inch (107 cm) plasma display panel;Philips introduced the first large commercially available flat-panel TV, using the Fujitsu panels. It was available at four Sears locations in the US for $14,999, including in-home installation. Pioneer also began selling plasma televisions that year, and other manufacturers followed. By the year 2000 prices had dropped to $10,000.
In the year 2000, the first 60-inch plasma display was developed by Plasmaco. Panasonic was also reported to have developed a process to make plasma displays using ordinary window glass instead of the much more expensive "high strain point" glass.
In late 2006, analysts noted that LCDs had overtaken plasmas, particularly in the 40-inch (100 cm) and above segment where plasma had previously gained market share.
Until the early 2000s, plasma displays were the most popular choice for HDTV flat panel display as they had many benefits over LCDs. Beyond plasma"s deeper blacks, increased contrast, faster response time, greater color spectrum, and wider viewing angle; they were also much bigger than LCDs, and it was believed that LCDs were suited only to smaller sized televisions. However, improvements in VLSI fabrication narrowed the technological gap. The increased size, lower weight, falling prices, and often lower electrical power consumption of LCDs made them competitive with plasma television sets.
At the 2010 Consumer Electronics Show in Las Vegas, Panasonic introduced their 152" 2160p 3D plasma. In 2010, Panasonic shipped 19.1 million plasma TV panels.
Panasonic was the biggest plasma display manufacturer until 2013, when it decided to discontinue plasma production. In the following months, Samsung and LG also ceased production of plasma sets. Panasonic, Samsung and LG were the last plasma manufacturers for the U.S. retail market.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.