28 inch tft lcd monitor free sample

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

Here’s that function which uses the ultrasonic sensor to calculate the distance and print the values with SevenSegNum font in green color, either in centimeters or inches. If you need more details how the ultrasonic sensor works you can check my particular tutorialfor that. Back in the loop section we can see what happens when we press the select unit buttons as well as the back button.

28 inch tft lcd monitor free sample

A wide variety of stretched tft options are available to you, You can also choose from original manufacturer, odm and agency stretched tft,As well as from tft, ips, and tn.

28 inch tft lcd monitor free sample

Also called ultra-wide displays or just stretched displays, these are a relatively new format in the digital signage arena. The format has allowed digital signage to be used in a range of new applications such as theatre subtitles and surtitles, shallower menu boards and in any public display with constricted space like on narrow pillars where the screens can be used in portrait.lcd bar display lcd bar display

28 inch tft lcd monitor free sample

All desktops require an external monitor to function. Computer monitors, like PCs, come in all shapes and sizes. Finding the perfect PC monitor can help take your computer experience to the next level. Whether you are looking for a high resolution external monitor to make your home office more ergonomic or you want a premium option to make gaming more robust, Micro Center has the computer monitor you need to boost productivity and enjoyment when you are using your computer.

Gaming monitors are specialized displays designed to have the lowest response times possible to stay ahead of the competition. PC monitors for office use may have slower response times but are more affordable and capable of performing general use tasks to improve productivity, viewing angles, and more.

At Micro Center, we proudly offer the best monitors for gamers, creatives, and more to help boost connectivity and the viewing experience with your Apple or PC computer. Discover your new high def LED, IPS, or LCD monitor here.

Resolution is important to choosing a monitor for gaming or enjoying streaming media with the best picture. Go for a 4K ultra high definition (4K UHD) or 8K monitor if you want the best resolution possible. With more than 8 million pixels, a UHD monitor will undoubtedly enhance the visuals of any gaming or video streaming experience. Ultrawide monitors are also great for creating cinematic viewing angles and making you feel like you’re in the theatre.

Additionally, gaming monitors have features that make them work better with your gaming PC. For example, the Nvidia G Sync or AMD FreeSync are used in some gaming monitors to provide a smoother refresh rate to make gameplay smoother and more enjoyable overall. Our selection of FreeSync and G Sync compatible monitors will help you maximize performance of your Nvidia or AMD graphics card.

Computer monitors are available from all the name brands such as Acer, Samsung, Dell, HP, and ASUS. Dell monitors are a popular choice among many offices and professionals because of their wide range of screen sizes and features. No matter if you are looking for a comfortable widescreen option for your home office or a gaming monitor with special features from Nvidia and AMD, Micro Center has the HD monitor you need!

"creative": "https://60a99bedadae98078522-a9b6cded92292ef3bace063619038eb1.ssl.cf2.rackcdn.com/images_ads_2020Search_Dell_AWMonitor_FA_tower_022002.jpg",

28 inch tft lcd monitor free sample

All desktops require an external monitor to function. Computer monitors, like PCs, come in all shapes and sizes. Finding the perfect PC monitor can help take your computer experience to the next level. Whether you are looking for a high resolution external monitor to make your home office more ergonomic or you want a premium option to make gaming more robust, Micro Center has the computer monitor you need to boost productivity and enjoyment when you are using your computer.

Gaming monitors are specialized displays designed to have the lowest response times possible to stay ahead of the competition. PC monitors for office use may have slower response times but are more affordable and capable of performing general use tasks to improve productivity, viewing angles, and more.

At Micro Center, we proudly offer the best monitors for gamers, creatives, and more to help boost connectivity and the viewing experience with your Apple or PC computer. Discover your new high def LED, IPS, or LCD monitor here.

Resolution is important to choosing a monitor for gaming or enjoying streaming media with the best picture. Go for a 4K ultra high definition (4K UHD) or 8K monitor if you want the best resolution possible. With more than 8 million pixels, a UHD monitor will undoubtedly enhance the visuals of any gaming or video streaming experience. Ultrawide monitors are also great for creating cinematic viewing angles and making you feel like you’re in the theatre.

Additionally, gaming monitors have features that make them work better with your gaming PC. For example, the Nvidia G Sync or AMD FreeSync are used in some gaming monitors to provide a smoother refresh rate to make gameplay smoother and more enjoyable overall. Our selection of FreeSync and G Sync compatible monitors will help you maximize performance of your Nvidia or AMD graphics card.

Computer monitors are available from all the name brands such as Acer, Samsung, Dell, HP, and ASUS. Dell monitors are a popular choice among many offices and professionals because of their wide range of screen sizes and features. No matter if you are looking for a comfortable widescreen option for your home office or a gaming monitor with special features from Nvidia and AMD, Micro Center has the HD monitor you need!

"creative": "https://60a99bedadae98078522-a9b6cded92292ef3bace063619038eb1.ssl.cf2.rackcdn.com/images_ads_2020Search_Dell_AWMonitor_FA_tower_022002.jpg",

28 inch tft lcd monitor free sample

All desktops require an external monitor to function. Computer monitors, like PCs, come in all shapes and sizes. Finding the perfect PC monitor can help take your computer experience to the next level. Whether you are looking for a high resolution external monitor to make your home office more ergonomic or you want a premium option to make gaming more robust, Micro Center has the computer monitor you need to boost productivity and enjoyment when you are using your computer.

Gaming monitors are specialized displays designed to have the lowest response times possible to stay ahead of the competition. PC monitors for office use may have slower response times but are more affordable and capable of performing general use tasks to improve productivity, viewing angles, and more.

At Micro Center, we proudly offer the best monitors for gamers, creatives, and more to help boost connectivity and the viewing experience with your Apple or PC computer. Discover your new high def LED, IPS, or LCD monitor here.

Resolution is important to choosing a monitor for gaming or enjoying streaming media with the best picture. Go for a 4K ultra high definition (4K UHD) or 8K monitor if you want the best resolution possible. With more than 8 million pixels, a UHD monitor will undoubtedly enhance the visuals of any gaming or video streaming experience. Ultrawide monitors are also great for creating cinematic viewing angles and making you feel like you’re in the theatre.

Additionally, gaming monitors have features that make them work better with your gaming PC. For example, the Nvidia G Sync or AMD FreeSync are used in some gaming monitors to provide a smoother refresh rate to make gameplay smoother and more enjoyable overall. Our selection of FreeSync and G Sync compatible monitors will help you maximize performance of your Nvidia or AMD graphics card.

Computer monitors are available from all the name brands such as Acer, Samsung, Dell, HP, and ASUS. Dell monitors are a popular choice among many offices and professionals because of their wide range of screen sizes and features. No matter if you are looking for a comfortable widescreen option for your home office or a gaming monitor with special features from Nvidia and AMD, Micro Center has the HD monitor you need!

"creative": "https://60a99bedadae98078522-a9b6cded92292ef3bace063619038eb1.ssl.cf2.rackcdn.com/images_ads_2022Search_March_ASUS_HDMI_2.1_Monitor_Series_M_search_banner.jpg",

"creative": "https://60a99bedadae98078522-a9b6cded92292ef3bace063619038eb1.ssl.cf2.rackcdn.com/images_ads_2020Search_ASUS_GamingMonitors_MASUS_tower.jpg",

28 inch tft lcd monitor free sample

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.

The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.

Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.

The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.

The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.

Initial iterations of IPS technology were characterised by slow response time and a low contrast ratio but later revisions have made marked improvements to these shortcomings. Because of its wide viewing angle and accurate color reproduction (with almost no off-angle color shift), IPS is widely employed in high-end monitors aimed at professional graphic artists, although with the recent fall in price it has been seen in the mainstream market as well. IPS technology was sold to Panasonic by Hitachi.

Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.

A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.

TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.

Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:

External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.

The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.

New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.

Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho (15 August 2012). "Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa". Journal of Hazardous Materials. Seoul, Korea; Laos, Lao. 227–228: 327–333. doi:10.1016/j.jhazmat.2012.05.059. PMID 22677053.

28 inch tft lcd monitor free sample

The Asus ProArt Display PA278CV has a great-looking screen with good enough color accuracy for most people and all the ports you need to hook up desktop or laptop PCs. The PA278CV’s stand can tilt, swivel, and pivot the screen and raise and lower its height, its USB-C port can provide enough power to charge most 13-inch laptops, and it comes with a three-year warranty and a good dead-pixel policy. Its QHD resolution (2560×1440) means it isn’t as sharp as a 4K screen, but it’s also hundreds of dollars cheaper than comparable 4K monitors.

The MSI Modern MD271QP is a simple, streamlined 1440p monitor that’s perfect for laptop users. If you have a laptop with a USB-C port, a single cable will send the image to the monitor and slowly charge your laptop with 15 watts of power. However, you’ll still need to plug in a power cable as well to keep your laptop fully charged. The MD271QP lacks features we liked in the Asus ProArt PA278CV,including a built-in USB hub, granular color calibration controls, and blue-light filtering modes for reading. But if you don’t need to tinker with color settings or those extra USB connections, the MSI Modern MD271QP is a great monitor for $100 less than our top pick.

The Dell S2722QC is a 3840×2160 display that’s great for anyone who watches 4K content or casually edits photos or video. However, if most of your time is spent on general office work or browsing the internet, you don’t really need to spend the extra cash. The S2722QC has a USB-C port with 65 watts of charging, so it can power most laptops except higher-end devices like the Dell XPS 15-inch or the 16-inch MacBook Pros (which are picks in our guide to the best laptops for video and photo editing). For more powerful 4K displays, check out our guide for the best 4K monitors.

The ASUS ROG Strix XG27AQ is a full-featured gaming monitor with HDR, a USB hub, and a robust menu system. The XG27AQ can reach a 170 Hz refresh rate, meaning the picture is updated 170 times per second, making motion in games look smoother and more realistic. We think this monitor is a nice balance between price and premium features like HDR, an overclockable refresh rate, a USB hub, good build quality, and a sturdy stand.

28 inch tft lcd monitor free sample

* Rewards 3% back excludes taxes and shipping. Rewards are issued to your online Dell Rewards Account (available via your Dell.com My Account) typically within 30 business days after your order’s ship date. Rewards expire in 90 days (except where prohibited by law). “Current rewards balance” amount may not reflect the most recent transactions. Check Dell.com My Account for your most up-to-date reward balance. Total rewards earned may not exceed $2,000 within a 3-month period. Outlet purchases do not qualify for rewards. Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers and rewards subject to change without notice, not combinable with all other offers. See Dell.com/rewardsfaq. $50 in bonus rewards for Dell Rewards Members who open a new Dell Preferred Account (DPA), or Dell Business Credit (DBC) account on or after 8/10/2022. $50 bonus rewards typically issued within 30 business days after DPA or DBC open date.

*Expedited Delivery: * Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers subject to change, not combinable with all other offers. See Dell.com/rewardsfaq.

28 inch tft lcd monitor free sample

WARNING: BTT does not officially provide MKS TFT hardware support. MKS TFT is maintained by open source contributors and BTT does not bear any risk of MKS TFT hardware using this firmware.

In case your mainboard provides EXP1 and EXP2, you have to connect 2 ribbon cables connecting EXP1 and EXP2 of the mainboard to EXP1 and EXP2 of the TFT. In the Marlin firmware of your mainboard, make sure that ONLY REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER is activated in Configuration.h and that all other controllers are Deactivated (especially CR10_STOCKDISPLAY).

In case you have an "E3" mainboard which provides a single EXP connector, you have to connect 1 ribbon cable connecting EXP of the mainboard to EXP3 of the TFT. In case your TFT does not provide an EXP3 connector but only two 10pin connectors (TFT24 v1.1 for example) you will need a "Y-split" cable with one 10pin connector on one side (for the mainboard) and two 10pin connectors on the other side (for the TFT). In the Marlin firmware of your mainboard, make sure that ONLY CR10_STOCKDISPLAY is activated in Configuration.h and that all other controllers are Deactivated (especially REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER).

Any binary file for an MKS firmware (e.g. MKS_TFT28_V4.0.27.x.bin) MUST be renamed to MKSTFT*.bin (e.g. MKSTFT28.bin, MKSTFT35.bin etc.) in order it can be recognized and installed by the TFT

A configuration can be uploaded without the need to upload the firmware or the TFT folder again, as long as the firmware and the configuration file are from the same version (see Configuration Update).

Copy the precompiled BIGTREE_TFT*_V*.*.*.bin or your self compiled firmware, plus the TFT* folder of your preferred theme along with config.ini to the root of a blank SD card not greater than 8GB and formatted as FAT32:

Optionally, copy one or more language_*.ini file(s) onto the SD card. Doing so, it will allow you to switch between English and the uploaded language(s) from the Language menu present in the TFT firmware. We recommend to upload the minimum amount of languages to keep the memory usage low. The language_*.ini file can be edited to change the text shown on the TFT:

Place the SD card with BIGTREE_TFT*_V*.*.*.bin, the TFT* folder, config.ini and the optional language_*.ini file(s) into the TFT"s SD card reader and reset your TFT (or optionally - power cycle your printer) to start the update process:

Unless the default hard coded settings have been properly configured (e.g. a self compiled firmware was installed), after an hard reset the TFT typically needs to be reconfigured with the proper config.ini file (see Configuration Update)

When the default hard coded settings are properly configured for a TFT and the TFT"s basic function such as surfing on the menus is working, in case of issues the user can opt to apply only a configuration reset (soft reset) instead of an hard reset.

A BIGTREE_TFT*_V*.*.*.bin file will be generated in the hidden .pio\build\BIGTREE_TFT*_V*_* folder. Follow the update process outlined in the Firmware Update section above to update your TFT to the latest version

TIP: In case there is a problem compiling the TFT firmware try to restart VSC. If this does not help and you are using macOS, delete the packages and platforms folders usually present under the folder /Users/***username***/.platformio/.

In case the TFT needs to be placed with a vertical orientation (e.g. 90°), the firmware needs to be compiled with the portrait mode support and installed following the procedure below:

OctoPrint, ESP3D, Pronterface etc, connected to a TFT"s serial port, can browse files on both the TFT"s and mainboard"s media devices and start a print that will be handled by the host (TFT or mainboard). The following actions and the related triggering G-codes are currently supported by the TFT fw:

OctoPrint, ESP3D, Pronterface etc, connected to a TFT"s or mainboard"s serial port, can host a print (print handled by the host) and optionally can trigger some actions to the TFT sending specific G-codes. The following actions and the related triggering G-codes are currently supported by the TFT fw:

Only on print end or cancel (with triggers print_end or cancel) the TFT Printing menu is finalized (statistics available etc.) and unlocked (the menu can be closed).

With the exception of TFT70, the maximum number of displayable layer count is 999 (there"s no space to display layer number and count if the layer count is above 999)

The most recent version of the standard bigtreetech TFT firmware has built in support for RepRap firmware. The pre-built images have this enabled by default.

The TFT35 E3 V3.0 has 3 cables to connect to the mainboard. Two 10 pin ribbon cables and one 5 pin serial cable. The 2 ribbon cables connect to the EXP1 and the EXP2 connections on both the TFT35 E3 V3.0 and the MKS mainboards.

NOTE: On the MKS mainboards there is an issue that involves at least the MKS GEN_L, MKS SGEN, and MKS SGEN_L models. The EXP1 and EXP2 connections have the socket shell installed wrong way around. The notch that indexes the cable should be facing towards the mainboard. If you get a blank screen on the TFT35 E3 V3.0 touchscreen after connecting the two EXP cables and turning the printer on, turn printer off and disconnect the 10 pin cables from either the touch screen or the mainboard and using small diagonal cutters trim the tab down to be as close to flush as you can get on both cables (and only on one end) and plug them back in with the trimmed tab now facing the mainboard.

In case filament data is not present in the G-code, the filament length data is calculated during print. Length is calculated regardless of using the TFT USB, TFT SD or the onboard media. Calculations are done in both absolute or relative extrusion mode. Filament data takes into account the flow rate also but with a caveat. It has to be the same flow rate during the entire time of the printing, because the end result is calculated based on the flow rate at the time the print has finished. If flow rate changes during the print the results will not be accurate anymore.