can lcd displays bars price
Alibaba.com features an exciting range of stretched bar lcd that are suitable for all types of residential and commercial requirements. These fascinating stretched bar lcd are of superior quality delivering unmatched viewing experience and are vibrant when it comes to both, picture quality and aesthetic appearances. These products are made with advanced technologies offering clear patterns with long serviceable lives. Buy these incredible stretched bar lcd from leading suppliers and wholesalers on the site for unbelievable prices and massive discounts.
The optimal quality stretched bar lcd on the site are made of sturdy materials that offer higher durability and consistent performance over the years. These top-quality displays are not only durable but are sustainable against all kinds of usages and are eco-friendly products. The stretched bar lcd accessible here are made with customized LED modules for distinct home appliances and commercial appliances, instruments, and have elegant appearances. These wonderful stretched bar lcd are offered in distinct variations and screen-ratio for optimum picture quality.
Alibaba.com has a massive stock of durable and proficient stretched bar lcd at your disposal that are worth every penny. These spectacular stretched bar lcd are available in varied sizes, colors, shapes, screen patterns and models equipped with extraordinary features such as being waterproof, heatproof and much more. These are energy-efficient devices and do not consume loads of electricity. The stretched bar lcd you can procure here are equipped with advanced LED chips, dazzling HD quality, and are fully customizable.
Save money by browsing through the distinct stretched bar lcd ranges at Alibaba.com and get the best quality products delivered. These products are available with after-sales maintenance and are also available as OEM orders. The products are ISO, CE, ROHS, REACH certified.
Stretched Bar LCD Panel available in different sizes of 15.1"",19"",23.1"",23.7"",24"",24.5"",28"", 35"",36"", 36.5"", 37"", 43.8"", 46.6"", 49.5"", 50.1"",68"", 88"".
Stretched bar LCD display is a commercial display product with an ultra-wide LCD screen. In order to meet different needs, it has various display ratios of length and width.
The HuaKe Supermarket shelf advertising LCD digital display screen is using LCD Panel from LG, BOE, and Innolux, also with the resized/cut stretched displays as a way to offer cost-effective overall solutions while remaining open to more possibilities. Shelf Edge Digital Signage Solution for Retail Environments have many sizes, configurations, and features, making them adaptable to all sorts of digital signage projects.
The retail digital shelf display is an attractive Shelf Edge LCD Display well suited for a variety of in-store, on-shelf digital signage applications such as retail shelf edge pricing, retail shelf edge advertising, and multi-shelf digital signage in supermarkets, grocery stores, liquor stores, clothing stores, and other retail applications. Such a smart shelf system is end to end digital retail TFT shelf edge display solution perfect for retail POS applications, and it can turn your shop into a modern retail business to enhance customers’ shopping experience.
7. Shelf edge LCD display with slim and narrow bezel, advertisements are displayed without blocking the sight of consumers, thus creating a perfect shopping experience
We can also provide the Stretched LCD bar display screen with "BroadVisual" CMS (first year for free, while will be charged annually), which support both PC and Smart Device APP operated.
MO-123-001-EW-700-W12.3" Stretched LCD Monitor700 cd/m²1920x720LED341.1 x 142.9 x 61Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
MO-151-001-EW-300-W15.1" Stretched LCD Monitor300 cd/m²1280x248LED401.7 x 116.9 x 61Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
MO-190-001-EW-700-W19" Stretched LCD Monitor700 cd/m²1680x342LED499.4 x 136.9 x 61Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
MO-280-001-EW-600-W28" Stretched High Bright LCD Monitor600 cd/m²1920x358LED754.3 x 188.7 x 66Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
MO-280-001-EW-600-W28" Stretched LCD Monitor600 cd/m²1920x540LED754.3 x 188.7 x 66Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
MO-290-001-EW-500-W29" Stretched LCD Monitor1000 cd/m²1920x540LED742.3 x 245.9 x 66Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
MO-380-001-EW-700-W38" Stretched High Bright LCD Monitor700 cd/m²1920x570LED967.15 x 313.56 x 86Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
MO-380-001-EW-500-W38" Stretched High Bright LCD Monitor500 cd/m²1920x540LED989.6 x 311.9 x 86Industrial Grade, 700 & 1,000 & 1,500 nits available as well as IP65 front/IP66 chassis
MO-420-001-EW-500-W42" High Bright Stretched LCD Monitor500 cd/m²1920x480LED1068.18 x 292.22 x 107.5Industrial Grade, Optional Open frame, IP65 front/IP66 chassis available
Stretched LCD display use videos to reinforce product information, shelf edge LCD display tags, delivering an enhanced shopping experience to consumers. The application designer freedom to create all kinds of Bar type LCD monitor once group action it into a display because it can continuously enamor audiences associate decreed work to supply as an informative display for any application. Once you style within the monitor, the stretch monitor show can become a strong tool for advertising or as associate degree data show.
Each shelf edge lcd display has an integrated Bluetooth radio, WiFi radio, and zigzagged radio. Shelf edge lcd display filled with heavy bottles of apple can each display , so you"ll use them to display almost anything.Dynamically adjust pricing to accommodate special promotions, in-store marketing tests. This enables tags to be updated in real-time, so they’re always accurate and up so far . Manage display content easily. With an upscale interface, the portal allows you to manage display pricing, ads, messages & product info displayed on edge bar lcd across all of your locations. Implement price updates instantly across one or multiple stores, making execution of promotions a snap, deliver relevant messaging to consumers at the shelf edge lcd display for a more satisfying shopping experience, shelf edge lcd display tags showing ordering mode for associates, streamlined restocking activities with visual indications of which products belong on which bar lcd, edge bar lcd are a ground-breaking in-store solution that directly link the digital experience to the brick and mortar retail environment.
The Bar LCD provide their clients with the power to differentiate themselves within the cluttered retail environment, and most significantly have proven to drive incremental sales lift for our clients. Promotional shelf edge digital signage delivers coupons at-the-shelf edge LCD display to form the foremost of promotions.
To create an LCD, you take two pieces ofpolarized glass. A special polymer that creates microscopic grooves in the surface is rubbed on the side of the glass that does not have the polarizing film on it. The grooves must be in the same direction as the polarizing film. You then add a coating of nematic liquid crystals to one of the filters. The grooves will cause the first layer of molecules to align with the filter"s orientation. Then add the second piece of glass with the polarizing film at a right angle to the first piece. Each successive layer of TN molecules will gradually twist until the uppermost layer is at a 90-degree angle to the bottom, matching the polarized glass filters.
If we apply an electric charge to liquid crystal molecules, they untwist. When they straighten out, they change the angle of the light passing through them so that it no longer matches the angle of the top polarizing filter. Consequently, no light can pass through that area of the LCD, which makes that area darker than the surrounding areas.
Building a simple LCD is easier than you think. Your start with the sandwich of glass and liquid crystals described above and add two transparent electrodes to it. For example, imagine that you want to create the simplest possible LCD with just a single rectangular electrode on it. The layers would look like this:
The LCD needed to do this job is very basic. It has a mirror (A) in back, which makes it reflective. Then, we add a piece of glass (B) with a polarizing film on the bottom side, and a common electrode plane (C) made of indium-tin oxide on top. A common electrode plane covers the entire area of the LCD. Above that is the layer of liquid crystal substance (D). Next comes another piece of glass (E) with an electrode in the shape of the rectangle on the bottom and, on top, another polarizing film (F), at a right angle to the first one.
The electrode is hooked up to a power source like a battery. When there is no current, light entering through the front of the LCD will simply hit the mirror and bounce right back out. But when the battery supplies current to the electrodes, the liquid crystals between the common-plane electrode and the electrode shaped like a rectangle untwist and block the light in that region from passing through. That makes the LCD show the rectangle as a black area.
Custom Segment Liquid Crystal Displays are seen in products that measure the PH level of swimming pools, monitors used to measure specific gases in a mine, or in thermometers used to see if a child is running a fever. They are one of the oldest display technologies, but still one of the most popular.
Segment LCDs, also called static displays or glass-only displays, are constructed of two pieces of ITO (Indium tin oxide) glass with a twisted nematic fluid sandwiched in between. A static display is a segment display with one pin for every one segment.
These displays are still one of the most popular technologies in use and the majority of them are custom. Many people think the process of designing a custom segment liquid crystal display is complicated and too complex to be understood except for a few experienced people. But after designing custom LCDs for over 14 years, it can be said that just about anyone can select the best options for their product.
In other words, you don’t have to be an engineer, or have a PHD from MIT to design a custom LCD for your application. So instead of offering a list of technical terms and equations, these are the different options available.
Although Segment displays are an older technology, it is still one of the most popular. After all, they cannot display all the colors of a TFT or OLED like what can be seen on a cell phone and tablet.
The tooling fee for a custom display is the lowest of all the technologies and allows the customer to receive a LCD that is manufactured to the exact dimensions requested, including custom icons and segments.
Focus LCDs offers a one-time NRE (Non-recurring engineering) or tooling fee. This includes all design, technical support, and samples. A PDF showing an overview of our tooling process can be found by clicking here: Custom LCD flowchart
Segment displays require less power than other display technology such as TFT, OLED, and UWVD. This makes these LCDs ideal for applications that are battery powered or solar powered. They require the lowest power to drive, an estimated 2uA per centimeter squared. Glass only displays (no backlight and no controller) require an estimated 10% of the power that is required for a LED backlight. In other words, a static display without a backlight will draw around 1mA; the same display with a LED backlight will demand from 10mA up to 25mA. Most displays can be driven at 3.3V or 5V since microprocessors can operate at both voltages. 3.3V is becoming more popular since two double ‘AA’ batteries can produce between 3.0V and 3.3V.
A segment is any line, dot or symbol that can be turned on and off independently. The photo below is of a segment LCD that contains numbers, a small clock symbol, the word ‘Jul’, and the letters ‘PM.’
There are four numbers in the above LCD (0 8 4 7) all are seven segments. In other words the ‘0’ has seven segments, the ‘8’ has seven segments and so on. Each number has seven independent segments. Each segment can be turned on and off independently to create other numbers and some letters such as E, F C and others. This is an example of a ‘seven’ segment. But there are some letters that a seven segment cannot display such as the letter ‘M’ or ‘V’. In this case a fourteen segment configuration can be used.
An icon is a small symbol or set of words that is only one segment. In other words, when the segment is ‘on,’ the full word or symbol turns on. When it is “off,” the word or symbol turns off. In the photo above: the clocksymbol is one segment, the word ‘JUL’ is one segment, the letters FOCUSLCDS.COM are one segment and the letters ‘PM’ are one segment.
The advantage of icons is that they convey a message that can be understood in any language. An example of this is the battery symbol, this icon is understood anywhere in the world.
It is possible to burn a segment into the glass so that it is always “on”. In this case, the ‘FOCUSLCDS.COM’ has been burned into the glass and can always be seen by the customer even when the power is “off”. Some customers will have their company name burned into the glass.
Hence the display is called a segment display because each segment can be turned “on” and “off” individually. You choose the number of seven or fourteen segments and which icons you want on your custom display.
Segment displays earn the name ‘glass only display’ because the majority of them are glass with small metal leads attached to both sides of the display. However, it is possible to add a PCB (Printed Circuit Board) or a controller driver chip (IC). The construction of the display is similar to that of a sandwich. You take two pieces of glass, glue one piece on top of the other, than inject a fluid between the two pieces of glass. In the drawing below you see a side view of a segment display. The glass on top is smaller than the glass on the bottom. This is to allow room for the pins.
Segment LCDs, like all LCD display technologies, operate best between specific temperature ranges. You choose the temperature ranges that it will operate in. There are two standard configurations: normal temperature and wide temperature. The wider the temperature range, the more expensive the display.
The standard operating temperature range for a segment LCD is 0C to 50C. It is possible to build the display with a different fluid that will allow it to operate from -30C to 80C (F). With the addition of a heater, the display can operate down to -50C.
VATN (BTN) – Vertically Aligned Twisted Nematic is only available in negative mode (light colored letters on a dark/black background). VATN displays produce very bright segments and can be easily read.
IDS line of ultra wide stretched bar LCD displays provide super wide aspect ratios as wide as 16:1 and in sizes ranging from 6 inches to 60 inches. Large ultra wide displays are ideal for displaying panoramic content and catching an audience"s attention in advertising and digital signage applications, while smaller sizes are commonly used in appliances, kiosks, mobile devices, flight simulators, and gaming machines. High brightness is native on all models, and is an option for making these displays suitable for outdoor applications where sunlight readability is necessary. The most popular application for bar-style LCD is in public transportation displays,including route displays onboard trains, streetcars, and busses, advertising displays in airports, bus stations, and train stations.
Have you ever properly checked the display quality of the LCD you habitually use? Very often people become aware of previously unnoticed problems in display quality when they run a check using test patterns and so on. This time we are going to talk about the basic points used to assess LCD display quality, and show you a simple way to test it.
Below is the translation from the Japanese of the ITmedia article "The difference in image quality is perfectly obvious! – Let"s check the LCD"s monitor" published April 22, 2010. Copyright 2011 ITmedia Inc. All Rights Reserved.
First of all, bear with us in the following simple test. Below is image data of a row of three squares. In the center of each square is a letter so faint as to be barely distinguishable, so there are three letters in all. Read from the left they make up a word. Can you see that hidden word?
That"s right. The answer is "LCD" (it is displayed if you drag the space between the brackets). We assume that probably many users could read the letters concealed in the squares.
This time the answer is "EIZO" (it is displayed if you drag the space between the brackets). Depending on the lighting or the user"s environment it may be hard to make out but, if you can read these four letters, the display quality, or more accurately the still image gradation expression, of your LCD is extremely high.
Let"s get down to details then. "Image quality" is the top priority of the LCD, of course. However, recently LCD prices are fiercely competitive and there are surprisingly few products that insist on high image quality and performance. It may be nice to be able to get hold of a wide-screen monitor with full HD (1920 × 1080 dot) resolution or higher fairly cheaply, but it cannot be denied that such LCDs tend not to place too much importance on display quality.
On the other hand, the increasing opportunities to enjoy things like HD videos and games, and high resolution digital photographs on the computer make LCD display quality even more important. As far as possible it"s best to use an LCD with excellent display quality in order to fully enjoy the charms of the visual content.
Even so, perhaps you think that there can"t really be that much wrong with the LCDs that so many people are using at the moment. Here we would like to show you a simple method to check LCD display quality. You can get a good idea of whether the basic display quality is good or bad just by looking at how some simple test images are displayed, just like in the introductory quiz. First of all, we would like you to get a sense of how important it is that "image data can be properly displayed" by checking the display of the LCD that you currently use, (that"s right, the one you are using to view this page!).
The test items use color / monochrome patterned images to check gradation expression, and simple images to check brightness / chromaticity variation. Downloads are available of several test images, such as gradation patterns. We would like you to display the downloaded test images in photo retouching software or a viewer that can reproduce color accurately. As we mentioned at the start of this article, you have to be careful as in many cases colors cannot be displayed accurately in web browsers. (Currently only a few browsers such as Safari and Firefox 3.x can handle color management).
Before starting your visual check of the display quality, please return to your LCD"s setting to default, and select Adobe RGB or sRGB as the image quality mode. If these modes are not available it is fine to set the color temperature to 6500K and gamma to 2.2. If you cannot adjust the color temperature and gamma, simply adjust the brightness and contrast so that they are easier to discern. Of course, if it"s an LCD environment that has been color calibrated it"s OK to leave it as it is.
The average LCD takes some time for the monitor to stabilize after it is switched on so, after start up, please wait at least 30 minutes or so before doing the test. (Most EIZO monitors are an exception to this as they are equipped with our proprietary dimming function and the monitor stabilizes in a short time after start up.)
The surface treatment of an LCD makes a difference to the background reflection. Glare panels impede the surface diffusion of backlight, which does make it easier to achieve high color purity, but also makes distinct reflections of the user or lighting much more likely (photo on the left).
For your reference, we ran a test on an EIZO 24.1-inch wide-screen LCD, the FlexScan SX2462W, for this article. The FlexScan SX series comes with a number of high image quality functions and boasts top class display quality as a general-purpose LCD intended for a computer.
When we displayed the quiz images (the more difficult ones, of course) on the FlexScan SX2462W, the four letters appeared faintly when we stared closely at the screen and we could read what they said. This indicates the high image quality level.
When checking the display quality of an LCD it is comparatively easy to understand the gradation expression capability by a visual check. Let"s display color and monochrome gradation images and check whether the entire image is smoothly reproduced. If there is a problem with the gradation expression it produces things like blocked-up shadows in dark areas and blown-out highlights in light areas, banding (vertical or horizontal stripes) in the middle gradations, and color cast, so you should check for problems like these.
Test images of color / monochrome gradations are shown below. Each test image is prepared for three resolution levels (1280 × 800 dots / 1680 × 1050 dots / 1920 × 1200 dots). When you click on an image it is displayed in that actual resolution. We would like you to download the images in the resolution which matches that of your current LCD. Gradation expression can vary according to whether the image is viewed horizontally or vertically, so it will be more effective if you rotate these images and view them vertically as well.
A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 16 gradients as they change to white or black. This is an easy test image so we expect that it can be seen in most environments that each color bar is divided into 16 blocks.
A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 64 gradients as they change to white or black. Each color bar is divided into 64 rectangular blocks. With this many gradients we expect that many LCDs will find it hard to make distinctions in the dark areas or the areas that are close to primary colors.
A smooth gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 256 gradients as they change to white or black. At this level of difficulty you cannot distinguish between adjoining colors from a distance but, if you have an LCD with excellent gradation expression, if you look closely you should be able to see that each color is divided into thin rectangular blocks.
A gradation pattern that changes from black to white. It is divided into 5 horizontal bars: from the top, smooth, 128 gradients, 64 gradients, 32 gradients and 16 gradients. Even if all the differences can be distinguished in the 16 and 32 gradient patterns near the bottom, we expect that there will be some parts in the 64 and 128 gradient patterns where it is hard to see the boundaries between adjoining colors. With this kind of monochrome test image you should also check whether any unnecessary colors are mixed with the gray.
On an average LCD gradations of gray that are close to black tend to appear as blocked-up shadows (gradations of gray that are close to white are displayed comparatively accurately). If your LCD"s OSD menu allows you to adjust the contrast, please try gradually turning down the contrast. Turning down the contrast often makes it possible to see gradations that had been subject to blocked-up shadows or blown-out highlights.
Probably most LCDs will be able to detect some degree of banding and color cast in the middle gradations. Banding in the middle gradations is tone jump (Missing gradations) and, along with color cast, means that the RGB gamma curves are unequal. Unlike blocked-up shadows or blown-out highlights, this is an area that it is hard to improve with adjustments made by the user.
When there is a problem with the gradation expression, the original colors of the content being displayed cannot be reproduced. If you look carefully at displays like video, games or photographs you can probably see or sense things like a lack of depth in the coloration, unnatural color shifts in the middle gradations or displays blanked out with large blocked-up shadows. Of course, it is very hard to use such monitors for things where color reproduction such as photo retouching or graphics work.
When we looked at these test images on the FlexScan SX2462W, in the smooth gradation there was blocked-up shadows right next to the black but we could distinguish differences in gradations of gray until very close to the black area. When it comes to such subtle gradation distinctions the brightness of the room and the adaptability of the eye come into play, so the range that is visible will vary according to the environment and the individual. The gradation expression was excellent, with almost no blown-out highlights in light areas, middle gradation banding or color cast.
The FlexScan SX2462W has a 16-bit look-up table (around 278 trillion colors). It converts the 8-bit RGB input from the computer into multiple tones and then reallocates them in 8-bit RGB for their display. (10-bit display is also supported with the DisplayPort input)
Smooth color and monochrome gradations displayed on the FlexScan SX2462W. This data is of screen displays photographed with a digital camera so some of the gradations may seem to have been destroyed, but they were cleanly represented when checked visually.
A row of images of slightly different grays (1050 × 300 dots). If you cannot see the boundaries between the grays there is probably a problem with the display environment or gradation expression of your monitor.
The answer is "The far right" (it is displayed if you drag the space between the brackets). If the other grays looked correct, color may not be being correctly recognized for a variety of reasons, such as the lighting environment or the LCD settings.
For example, when the room is lit with standard household incandescent lights white and gray look reddish, while fluorescent lights can make them greenish (which is why there is some lighting that is made to conform to color evaluations). What is more, white and gray can have a reddish tinge when the monitor has been set to a low color temperature, while a high setting can give them a bluish tinge. Thus it often happens that the gray in visual data does not look like a true gray.
Another big problem is that the human eye (brain) is easily influenced by surrounding colors. Everyone has probably experienced the phenomenon where, when you come from outdoors into a room lit with incandescent lights, the room seems to be bathed in a reddish light at first but, as your eyes gradually get used to it, you lose all awareness of the redness.
The human eye has adaptability that it is applicable to a variety of environments, so it is extremely difficult to accurately distinguish color by a visual check, even for color professionals. Big shifts in color can probably be seen but it cannot be helped if very slight color casts go unnoticed.
The important thing in actual use is that you should not adjust the image quality of your monitor or edit visual material while looking at colors that are being wrongly recognized like this. There are some products where the RGB values of the monitor can be adjusted individually, but this requires caution since fiddling around randomly often leads to irreparable loss of color balance. An effective way to make subtle adjustments to the color detail of image data is to display neutral gray or white image data and use that as a yardstick.
Now let"s assess the gradation expression with some slightly different test images. Below are color patterns with a spread of pale colors in gradations close to the dark range and the light range. They are arranged so that a distinction cannot be made between adjoining colors on an LCD with insufficient gradation expression.
We expect that you could roughly get the whole picture in the gradation patterns on the previous page, but in the patterns this time some parts that cannot be seen may have appeared in some cases. As we mentioned earlier, LCDs tend to display gradations close to black as a blocked-up shadows, and color patterns that are close to black are particularly hard to distinguish.
Since there are some parts that cannot be seen, the possibility arises subtle skin colors and tones cannot be accurately recognized when doing things like retouching photographs, though the misrecognition will vary according to the user"s eyesight. People who place importance on color reproduction should probably bear this in mind when they think about replacing their LCD or buying an extra one.
Incidentally, when we checked the FlexScan SX2462W with these tests we could distinguish everything in both the close to white and the close to black patterns. As well as no blown-out highlights or blocked-up shadows, we saw no unnatural color casts.
This shows the color patterns displayed on the FlexScan SX2462W. It was taken with a digital camera so some parts look a little patchy but they were accurately displayed when we did a visual check.
Along with gradation expression, it is easy to visually check brightness variation and chromaticity variation. Brightness variation scatters brightness around the screen and is easy to notice when you use full-screen display for things like drawing up documents or using spreadsheets. Chromaticity variation scatters color around the screen and is not as easily noticed as brightness variation, but it makes graphics-related displays unnatural and causes deterioration in color reproducibility.
Every LCD has some degree of brightness and chromaticity variation, but there are many products where the variations become more obvious when the brightness is lowered. A comparison of the brightness and chromaticity variation of a number of LCDs reveals that there is a fairly large difference between products, so this is a point to bear in mind.
Brightness and chromaticity variation can be checked with standard Windows or Mac OS X functions. All you need to do is to set the desktop background to "Monochrome" and look at the whole screen from a little way away. Your check will be perfect if you change the desktop background to black, white, gray, then 100% red, green, blue, cyan, magenta and yellow, and then any "near-white pale color".
If you actually try this test you may be surprised to find more variation than you expected when gray or a near-white pale color is displayed. Generally speaking, the center of an LCD screen is the brightest and it gradually gets darker towards the edges. This is no problem if there is not a big difference in brightness between the central and peripheral areas, but there are some products where this difference is very striking.
An example of Windows 7 settings. Set the desktop background to "Monochrome" and then click on "Other". Prepare a color on the "Color settings" screen and use it as the background. (The background color cannot be changed in Windows 7 Starter.)
Incidentally, this test is also an effective way to test the LCD for dot defects (normal lighting / unlit room). We would like you to check the black display in a darkened environment, for example by switching off all the room lights at night. Although you probably saw the whole screen as uniformly black in a light environment, very often in a dark environment you can find variations in some parts due to light leaks.
The FlexScan SX2462W got good results again when we tried it with the brightness and chromaticity variation tests. The brightness decreased slightly at the edges of the screen, particularly the lower edge, but overall the display was even and pleasing. It is installed with a "digital uniformity equalizer" that measures brightness and chromaticity throughout the screen and makes corrections so that the entire screen is uniform.
Monochrome full-screen displays on a FlexScan SX2462W. Only the screen display is shown. The bottom right is a near-white pale orange. There are not many LCDs that can display this kind of pale color as uniformly as this
However, the pitfall here is that it simply means that "the screen is visible". The thing is that the viewing angle specifications are permitted to use the term "visible" until the display contrast ratio drops to an extremely low 10:1 or 5:1 when the screen is viewed from an angle (the steeper the angle from which the LCD screen is viewed, the more the contrast generally declines). In other words, they do not take into account the display uniformity of the central and peripheral areas of the screen, or the level of chromatic change, when the screen is viewed from an angle.
The ideal viewing angles is that the brightness and chromaticity is very uniform and there is not much chromatic change, even when the screen is viewed from a slight angle. The viewing angles given in the specifications are not really very helpful, but you can judge the standard of the panel type that the LCD (liquid crystal panel) adopts. IPS liquid crystal panels have the least change in brightness or chromaticity when the screen is viewed from an angle, and they are followed by VA panels. An IPS or VA liquid crystal panel can be said to indicate the superior nature of the product itself, so this is often included in the catalog or specifications. It is probably a good idea to look through the catalogs of various products.
The display on an IPS panel. Even when viewed from this angle, the displayed content can of course be distinguished completely and the colors also show up really well
The gradation images and monochrome images from earlier in this article can be used as they are to check the viewing angles. Display an image on the whole screen, look at it straight on and check whether the brightness and colors are uniform at the top and bottom of the screen, and in the center and at both sides. Then gradually shift the angle from which you view the screen and check how the brightness and coloration change. If you do this with photographic data as well as the test images, you should be able to get a better sense of the difference in the display.
When we checked the viewing angles of the FlexScan SX2462W there was absolutely nothing to criticize since, in addition to the use of an IPS panel, it is equipped with many high image quality functions, including the afore-mentioned digital uniformity correction circuit. The brightness and chromaticity throughout the whole screen is very uniform, and the coloration hardly changed at all when the viewing angle was changed.
Naturally, this is very impressive when doing things like photo retouching, but it is also very pleasant at times like when many people are looking at videos or photographs. You can get a perfect understanding of the viewing angles by a visual check of the display so, if possible, we would like you to check this in the store. You will probably be particularly amazed by the difference between IPS / VA types and TN ones.
The display on the FlexScan SX2462W. As expected, the display did not change even when the vertical display function was used, or when it was viewed from a very sharp angle
We explained here about easy ways to check LCD monitor quality. How were the results for your current LCD? We think that many people were probably very bothered by the blocked-up shadows and blown-out highlights when the test images to check gradation were displayed, by the middle gradation banding, and by the variations in brightness and chromaticity when the monochrome images were displayed.
As we mentioned at the beginning, recently the number of LCDs with excellent display quality is on the decline. Although we would not go so far as to say that the display quality of inexpensive products is poor. Of course a high quality LCD is indispensable if you want to enjoy using your computer, properly handle the needs of applications that require color reproducibility, and to fully enjoy all the benefits of rich content.
The EIZO FlexScan LCD series has excellent display quality in those regards, and we have no qualms about recommending them to everyone. The product line-up is diverse but each model is clearly ranked according to the purpose to which it is suited and its screen size, and they all guarantee above-standard display quality. They may cost a little more than you had budgeted for but the clear value they offer exceeds their price.
If, after trying these tests, you have doubts about the display quality of the LCD that you usually use, we would certainly urge you to consider an EIZO LCD. We would also recommend that you construct a multi-display environment by making the new LCD your main monitor and the one that you have been using your sub monitor.
Laptop Screens & LCD Panels└ Laptop Replacement Parts└ Computer Components & Parts└ Computers/Tablets & NetworkingAll CategoriesAntiquesArtBabyBooks & MagazinesBusiness & IndustrialCameras & PhotoCell Phones & AccessoriesClothing, Shoes & AccessoriesCoins & Paper MoneyCollectiblesComputers/Tablets & NetworkingConsumer ElectronicsCraftsDolls & BearsMovies & TVEntertainment MemorabiliaGift Cards & CouponsHealth & BeautyHome & GardenJewelry & WatchesMusicMusical Instruments & GearPet SuppliesPottery & GlassReal EstateSpecialty ServicesSporting GoodsSports Mem, Cards & Fan ShopStampsTickets & ExperiencesToys & HobbiesTravelVideo Games & ConsolesEverything Else
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
Take this category with a grain of salt. Both TV types are very bright and can look good in even a sunny room, let alone more moderate indoor lighting situations or the dark rooms that make TV images look their best. When it comes down to it, no modern TV could ever be considered "dim."
At the other side of light output is black level, or how dark the TV can get. OLED wins here because of its ability to turn off individual pixels completely. It can produce truly perfect black.
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
Here"s where it comes together. Contrast ratio is the difference between the brightest and the darkest a TV can be. OLED is the winner here because it can get extremely bright, plus it can produce absolute black with no blooming. It has the best contrast ratio of any modern display.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.
Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.
In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.
The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.
LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.
Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.
OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.
If you want something even brighter, and don"t mind spending a literal fortune to get it, Samsung, Sony, and LG all sell direct-view LED displays. In most cases these are
You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.
LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.