led vs lcd panel free sample
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.
Wholesalers on Alibaba.com have a wide range of functions and such a curved monitorphone. LEDs are an excellent choice for smart watches as they are wireless and have a built-in Light-emitting Diode (LAG)) for the convenience of large-sized ones, LEDs are equipped with all the functions as a curved monitorphone, and it has a built-in media player and the possibility to see a difference in the second-hand TV of the choice. LED smart watches are wirelessly designed and allow the user to see the image in all, and they"re looking great for them.
With all the advantages and disadvantages, lcdds are essentially a good choice for those who see the TV starting from 4k smartphone. Nowadays, in addition to the wholesale models, lcdds are essentially a good option for those that don ’ t have the capacity of a device.
One of these choices is deciding between an LCD display or an LED video wall. Continue reading to find out more about the basics, as well as the advantages and disadvantages of each solution.
Most people are familiar with LCD technology, which stands for Liquid Crystal Display. These types of displays have a massive presence in this world, used in living rooms to watch movies, fast-food restaurants to showcase menus, airports to show flight schedules, and everything in between. LCD technology was developed in the 1960s and has been used worldwide as a standard for roughly 20 years. It is a tried-and-true technology that has stood the test of time and will be around for the foreseeable future.
On an LCD screen, the panel is illuminated by a light source and works through reflection or transmission of light. Overall, LCD displays have better viewing angles and less glare than LED screens. This technology was designed to be energy efficient and tends to be lighter in weight.
An LCD video wall is made up of multiple LCD panel monitors mounted on a surface to create a digital canvas, which then work together to create a unified experience. They operate 24/7 at a high brightness and have thin bezels that help create a seamless look when the displays are placed next to one another.
Bezel thickness and the brightness rating are among key attributes to consider for an LCD video wall display. Here is what each of these means and why.
Nits:Brightness is measured in Nits. A higher Nit value means the display will be brighter. A brighter display is necessary in a room that sees plenty of direct sunlight, or if the intent is to draw in visitors from far away. With LCD video walls, the price of the hardware goes up as the display size and brightness increase, and the bezel width decreases.
The next item to consider is the type of content that will be displayed on your video wall. LCD displays have high resolution screens — modern 4K displays have over 8 million pixels! This means that the content being displayed is highly detailed and crystal-clear. A viewer could stand less than 1 foot away from the screen and be able to see exactly what is being shown on the screen.
Like previously mentioned with LCD video walls, an important consideration in the decision-making process is the type of content that will be displayed on the video wall. LED video walls suffer from image degradation and pixilation from up close, so fine details will be lost, and text will be illegible. If detail from up close is important, LCD displays are much better suited for that situation.Content examples that are well-suited for an LCD video wall:
Video walls are relatively new. But LCD technology has had decades of mainstream adoption, and with that comes both familiarity and lower costs. If those are important to you, then an LCD video wall is likely the right choice.
LED video walls are similar to LCD video walls, but the digital canvas is built using LED panels. Individual LED panels can be anywhere from 12”x12” to 36”x18”, which is much smaller than LCD displays. LED panels have a larger presence in this world than most might think—they are found indoors and outdoors at stadiums, arenas, concert venues, airports, and in use as large digital advertisements in iconic places such as Times Square.
The module is a small rectangular board that contains all the individual LEDs (light-emitting diodes).Unlike LCD, there is no glass or color filter on the LED video wall panels. The individual diodes that are placed on the modules produce both color and light.
One of the most impressive features of LED panels is that they can be combined to create almost any shape, without a bezel interrupting the digital canvas. LED video wall panels can be placed on curved surfaces, 90-degree edges, and other non-standard surfaces. The smaller size of the panels in relation to LCD video wall displays means they can fill more space on a surface—they aren’t limited to standard 46” and 55” sizes as are LCD video wall displays.
The most important factor to consider when scoping LED panels for a video wall is what is referred to as “pixel pitch.” The pixel pitch is effectively the distance between each pixel on the LED panel—a pixel pitch of 6mm means each pixel is spaced 6 millimeters away from the adjacent pixel. The smaller the pixel pitch, the smaller the distance is between each pixel, which means there are more pixels per square inch on the digital canvas.
Pixel pitch factors into viewing distance. When the pixels are close together, the image is more detailed and can be viewed comfortably by others from a close distance. But when the pixels are spaced further apart, a viewer needs to stand further away to view the image clearly.
Lastly, pixel pitch impacts the price of the LED video wall more than any other factor. For example, a 2mm pixel pitch LED video wall costs significantly more than its 10mm pixel pitch counterpart.
As is the case with an LCD video wall, an LED video wall will add exciting drama and premium value to showcase spaces. LED panel displays don’t enjoy the benefit of decades of mainstream adoption as do their LCD counterparts. However, the technology curve is increasing their availability and lowering their costs. At this time, an LED video wall will have higher upfront costs compared to an LCD video wall. If cost is the main concern, then an LED video wall system will not likely fit into your budget
An LED video wall would be well-suited and cost-justified if the intent of the video wall is to provide an immersive viewing experience from a further distance. This could be content with lots of movement, animation, imagery, and bright colors to draw viewers into your space or provide a unique experience.
Aside from LED video wall cost, there are other factors to consider which could make an LED video wall system the frontrunner for your project. Here are the advantages and disadvantages to consider:
Limitless shapes and sizes:the smaller size of LED panels allows them to be combined to create unique canvases, including curved, 90-degree edge, and other combinations not possible with LCD displays
Easy maintenance and service; high reliability:LED module replacement takes seconds with little effort; LED panels are rated with a lifetime of 80,000-100,000 hours, depending on the product
Although there are big differences between LCD and LED displays, there are a lot of confusion in the market which shouldn’t happen. Part of the confusion comes from the manufacturers. We will clarify as below.
LCD stands for “liquid crystal display”. LCD can’t emit light itself; it has to use a backlight. In the old days, manufacturers used to use CCFL (cold cathode fluorescent lamps) as backlight, which is bulky and not environment friendly. Then, with the development of LED (light emitting diode ) technology, more and more backlights use LEDs. The manufacturers name them as LED monitors or TV which makes the consumers think they are buying LED displays. But technically, both LED and LCD TVs are liquid crystal displays. The basic technology is the same in that both television types have two layers of polarized glass through which the liquid crystals both block and pass light. So really, LED TVs are a subset of LCD TVs.
Quantum-dot TVs are also widely discussed for recent years. It is basically a new type of LED-backlit LCD TV. The image is created just like it is on an LCD screen, but quantum-dot technology enhances the color.
For normal LCD displays, when you light up the display, all the LEDs light up even for unwanted area (for example, some areas need black). Whatever perfect the LCD display made, there is still small percentage of light transmitting through the LCD display which makes it difficult to make the super black background. The contrast decreases.
Photo-emissive quantum dot particles are used in RGB filters, replacing traditional colored photoresists with a QD layer. The quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in RGB filters, improving display brightness and color gamut. Although this technology is primarily used in LED-backlit LCDs, it is applicable to other display technologies which use color filters, such as blue/UV AMOLED(Active Matrix Organic Light Emitting Diodes)/QNED(Quantum nano-emitting diode)/Micro LED display panels. LED-backlit LCDs are the main application of quantum dots, where they are used to offer an alternative to very expensive OLED displays.
Micro LED is true LED display without hiding at the backside of the LCD display as backlight. It is an emerging flat-panel display technology. Micro LED displays consist of arrays of microscopic LEDs forming the individual pixel elements. When compared with widespread LCD technology, micro-LED displays offer better contrast, response times, and energy efficiency.
Micro LEDs can be used at small, low-energy devices such as AR glasses, VR headsets, smartwatches and smartphones. Micro LED offers greatly reduced energy requirements when compared to conventional LCD systems while has very high contrast ratio. The inorganic nature of micro-LEDs gives them a long lifetime of more than 100,000 hours.
As of 2020, micro LED displays have not been mass-produced, though Sony, Samsung and Konka sell microLED video walls and Luumii mass produces microLED lighting. LG, Tianma, PlayNitride, TCL/CSoT, Jasper Display, Jade Bird Display, Plessey Semiconductors Ltd, and Ostendo Technologies, Inc. have demonstrated prototypes. Sony and Freedeo already sells microLED displays as a replacement for conventional cinema screens. BOE, Epistar and Leyard have plans for microLED mass production. MicroLED can be made flexible and transparent, just like OLEDs.
There are some confusions between mini-LED used in LCD backlight as Quantum dot displays. To our understanding, mini-LED is just bigger size of micro LED which can be used for larger size of cinema screen, advertisement walls, high end home cinema etc. When discussing Mini-LED and Micro-LED, a very common feature to distinguish the two is the LED size. Both Mini-LED and Micro-LED are based on inorganic LEDs. As the names indicate, Mini-LEDs are considered as LEDs in the millimeter range while Micro-LEDs are in the micrometer range. However, in reality, the distinction is not so strict, and the definition may vary from person to person. But it is commonly accepted that micro-LEDs are under 100 µm size, and even under 50 µm, while mini-LEDs are much larger.
When applied in the display industry, size is just one factor when people are talking about Mini-LED and Micro-LED displays. Another feature is the LED thickness and substrate. Mini-LEDs usually have a large thickness of over 100 µm, largely due to the existence of LED substrates. While Micro-LEDs are usually substrate less and therefore the finished LEDs are extremely thin.
A third feature that is used to distinguish the two is the mass transfer techniques that are utilized to handle the LEDs. Mini-LEDs usually adopt conventional pick and place techniques including surface mounting technology. Every time the number of LEDs that can be transferred is limited. For Micro-LEDs, usually millions of LEDs need to be transferred when a heterogenous target substrate is used, therefore the number of LEDs to be transferred at a time is significantly larger, and thus disruptive mass transfer technique should be considered.
It is exciting to see all the kinds of display technologies which make our world colorful. We definitely believe that LCD and/or LED displays will pay very important roles in the future metaverse.
If you have any questions about Orient Display displays and touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.
Before buying a new TV, you should know the difference between LED and LCD displays. Both provide a high-definition picture, but each handles creating it a little differently and has a few other differences as well. We examined these two screen technologies to help you get a better idea of which one is right for you.
Both LCD and LED TV screens and monitors display a bright, high-definition picture. If you want to save money on the hardware, go with the older LCD setup. LED screens may offer more cost savings over time, however, because the system generally requires less energy to operate.
Although more expensive, newer LED screens are generally lighter than LCDs, especially on an edge-lit display that has fewer components to add bulk to the device.
Before you buy an LCD TV with LED backlighting, consider one important factor: price. LED full-array backlit TVs are impressive but are more expensive than their florescent-lit peers. If picture quality is important to you, spending more money to enjoy the benefits of full-array LED backlighting may make sense for you. If you want the thinnest TV on the block, edge-lit LED is the way to go.
If you"re a bargain shopper, you will probably satisfy yourself and your wallet with a florescent-lit LCD TV. That said, they are getting harder to find since demand is shrinking.
In the context of televisions, the term LED refers to the TV backlighting system, not the display technology that produces the image content. LED TVs use LCD displays; however, they use LED backlights rather than the fluorescent backlights found in traditional LCD TVs. Just as LED TVs are a type of LCD TV, OLED and S-AMOLED are different types of LED TVs.
The liquid crystals in LCD TVs do not produce light, so backlighting is needed to illuminate the image for the viewer. LCD sets originally used a series of fluorescent tubes (termed CCFL-backlit technology) for this purpose. In LED TVs, the illumination source is a series of light-emitting diodes, better known as LEDs. In most modern LCD sets, those fluorescent tubes have been replaced with full-array LEDs, but both types of TVs still use LCD technology.
Each backlighting system has advantages and disadvantages. Edge-lit sets are typically thinner and lighter than those that use a full array because the lighting source takes up less space. Full array sets are thicker and heavier, but they make up for that with local dimming, which means one section of the LED panel can be dimmed while other sections remain bright. This feature slightly improves image contrast.
LED sets that use full-array backlighting tend to produce the best picture of all LCD TVs. Those that use edge lighting sacrifice picture quality, but they are the lightest and thinnest TVs on the market.
Because LCD screens rely on fluorescent panels behind the entire screen to make the picture visible, they use more energy than LED sets. TVs and monitors that use edge-lighting are more efficient than full-array ones because they contain fewer lights in general. However, full-array screens don"t necessarily use all of the LED backlights at once.
When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.
You"ll be happy with the picture regardless of what kind of display you buy. Still, LEDs have a few practical advantages that make them a better purchase than the older LCDs.
LED LCD backlights are small light strips, or light sources, contained inside a display, TV, or monitor to provide lighting for the screen. All LED TVs are LCD panels with LED backlighting. A common misconception is that LED displays are different from LCD when fundamentally they are the same. LED is better described as a sub-set of LCD devices.
LCD is an acronym for Liquid Crystal Display, which is a type of monitor or screen—and flat-panel technology—that relies on thousands or millions of pixels, arranged in a rectangular grid. When an LCD is turned on, each pixel takes on a red, green, or blue sub-pixel (RGB) that is either enabled or disabled. When the pixels are off, the individual section appears black, and when all of the sub-pixels are on, it appears white. Collectively, the arranged pixels provide the sharp image on the display by being in either an on or off configuration.
The LED backlight illuminates the pixels, from behind, making them appear richer and brighter. Not all LCDs have a backlight, and for those that do, not all of them utilize LED backlighting. Some displays also use CCFL lighting or Cold-Cathode Fluorescent Lamps. Although, it should be noted that CCFL displays are being phased out in favor of LED-backlit panels.
The liquid crystals inside an LCD panel don’t have any illumination on their own and require the light to come from a separate component, which, in this case, is provided by the LED backlighting.
Older display types, such as cathode ray tubes (CRT) produce illumination already and so they do not need an additional light source like LCD devices.
While it can be confusing at first, LED-backlit panels are different from a full LED. LED-backlit panels have LED strips lining the edges of the screen whereas full HD illuminates the entirety of the display often with higher brightness and color accuracy. Full LED panels achieve this thanks to an evenly distributed light source across the rear of the set.
This changes the picture on the display, particularly when it comes to dark scenes and true black colors. On an LED-backlit display, for example, dark scenes may appear washed out because of how the light is focused on the edges and spreads thinly into the center.
Full LEDs, on the other hand, can achieve true blacks, with even brightness levels because the light spreads across the entire panel accurately. That also means the lights in the full-LED panel can be disabled or turned off individually to create a darker image.
Because both types are fundamentally LCD panels, both LED and LED-backlit displays produce bright and vivid pictures. However, scenes may appear brighter or slightly washed out, depending on how the light source is distributed, such as from edge backlighting versus evenly distributed lighting. If you prefer a more accurate picture, full LED panels are the way to go, but they are more expensive.
Similar to TVs and other displays, an LED-backlit LCD monitor is an LCD panel with LED backlights. What often sets a monitor or computer monitor apart from standard displays is they don’t include a built-in tuner, which is needed to access cable. They often include different video or display ports, such as HDMI, DisplayPort, VGA, and so on. They"re designed to be used as a primary or secondary display for desktop computers, laptops, and beyond.
Monitors are generally full LED panels with a fully distributed light source. This allows them to provide a brighter and sharper image overall, which is ideal for computer-related activities and media.
LED-backlit TVs, monitors, and displays are used in many different places including ATMs, cash registers, digital billboards, fitness equipment like treadmills, vehicle infotainment systems, gas station pumps, Pachinko, and casino machines, mobile devices, and much more.
To clean a flat-screen TV, turn off the device and use a dry microfiber cloth to gently wipe the screen. If necessary, dampen the cloth with distilled water or an equal ratio of distilled water to white vinegar.
While all LED TVs are LCD TVs, not all LCD TVs are LED TVs. If a TV is marketed as LCD with no mention of LED, then it probably uses a different type of backlighting such as CCFL.
This isn"t the same technology they use for the giant screens at football games; in fact, the LED screens you see in shops are actually LCDs, and the term "LED" is the invention of Samsung"s marketing department.
How do they get away with this? Samsung"s televisions use a series of Light Emitting Diodes (LEDs) — like the ones used in LED torches and alarm clocks — to "backlight" the LCD panel, and it"s not the only company that does this. But what is backlighting, anyway?
As a consumer technology, LCD has been in widespread use since the early "70s where it first appeared in digital watches. As its name suggests, Liquid Crystal Display is a liquid that has been sandwiched between two plates, and it changes when a current is applied to it.
While we"ve had black-and-white LCDs for years, colour LCDs are a lot more recent, but the technology is the same. As we all know, you need to press a button to read a watch in the dark, and an LCD TV is no different. It needs a light behind it because it emits no light of its own.
It"s helpful to think of an LCD panel as a sandwich, consisting of different layers. On a typical TV you have a polarised filter, followed by a protective glass layer, followed by the LCD sheet, and then a light source at the back.
At present, there are two main methods of backlighting in LCD flat-panels: Cold-Cathode Fluorescent Lamp (CCFL) and LED (light-emitting diode). There are several others, and this includes Sony"s Hot Cathode Fluorescent Lamp (HCFL), but only
CCFL backlighting consists of a series of tubes laid horizontally behind the screen. It used to be the most common method of backlighting for LCD televisions, but it is quickly being superseded by LED.
LED backlighting has been in use in televisions since 2004 when it first appeared on Sony WEGA models. Though there are several different ways of backlighting using LEDs (as we"ll explain shortly), the idea is the same: a series of LED bulbs throw light from behind to illuminate the LCD panel.
There are two different methods of LED backlighting: direct and edge. The main advantage of direct lighting is that it can be used to increase contrast levels by turning some LEDs off — thus increasing the amount of black in parts of the picture. LG is one of the champions of direct lighting.
In comparison, edge lighting"s main advantage is that it can be used to make screens that are incredibly thin — the LEDs are at the side and not behind the screen. Of course, you lose the ability to switch off parts of the backlighting for better contrast, and picture quality could also suffer if light isn"t sufficiently well dispersed.
White LED is very similar to CCFL, and is meant to simulate the white light of the sun for a more "natural" result. But the LEDs aren"t actually white; this approach uses a blue light source that is made to look white by the presence of a sulphur coating on the bulb. CCFLs work in the same way.
As a result, the television could potentially be stronger in the green portion of the spectrum, but some CCFL technologies enable better red and blue response, so better white LEDs could also be possible. The
RGB LEDs, on the other hand, are potentially capable of a broader colour range because they use three LEDs coloured red, blue and green, which is a broadcast standard. RGB"s proponents argue that there is less of a green "push" as a result, and the colour spectrum is more evenly distributed. The Sony Bravia KDL-46XBR45 is an example of a television that used RGB LEDs in its backlight.
Here we have Samsung"s edge-lit LED unit, which comprises of two major components: a long LED module of tiny white diodes and a thin screen-sized plastic sheet known as a light guide plate. Four of these LED modules are deployed along the left, right, top and bottom of the television. The combined light output is then funnelled and redistributed evenly across the screen by the light guide.
We find it interesting that TV manufacturers are still asking for a higher price for LED-backlighting when many cheap devices — particularly mobile phones and netbooks — use LEDs as backlights. As of 2009, Samsung said that LED backlights cost three times more in large sizes than the equivalent CCFL arrangement, and this is mostly due to a lower number of manufacturers. Presumably, as the technology continues to take a firmer hold, the price will keep coming down.
In 2011, only the budget LCD televisions use CCFL backlighting, and all of the major manufacturers use LED lighting in their mid-range and premium models. It won"t be too long before it will become the default method of backlighting. While some people still prefer the look of a plasma, the LED"s combination of thin design and sharp picture quality will soon find favour with many people. If you"re looking for a further explanation of how LCD screens work, then you can try this video on the 3M site.
Sometimes the distance between good and great seems like hardly any distance at all — such as liquid crystal displays (LCDs) versus light-emitting diode (LED) displays. Both are suitable for retail window signage, campus wayfinding or large video walls. But LCD and LED have significant differences, and their specific benefits are worth understanding so you can choose the best displays for your business needs.
LCD is the broader category; LED is a subset. In other words, all LED displays are LCDs, but not all LCDs are LED. LCDs are made up of hundreds of thousands — even millions — of individual pixels built from liquid crystals. Each pixel is capable of displaying a color when it receives an electrical charge. Like a mosaic, the displayed image is built from tiny elements that combine to form the overall picture.
But the liquid crystals don’t produce any light of their own, so in order for the image to be illuminated, the liquid crystals need to be backlit. LCDs are illuminated by cold cathode fluorescent lamps (CCFLs), evenly positioned behind the pixels so that, at least in theory, every part of the screen is evenly lit and at consistent brightness.
Up to a point, LED displays are much the same. An LED screen also uses liquid crystals to generate color — or pure black (no color), by not charging a specific pixel. So LED displays have the same need for backlighting. But rather than CCFL, tiny individual lights (light-emitting diodes) illuminate the liquid crystals.
The individual LEDs can be arranged one of two ways: full-array or edge-lit. For edge lighting, the LEDs are arranged around the edges of the back of the screen. Full-array, on the other hand, calls for many LEDs to be lined up evenly across the back of the screen, where they can be arranged into zones (usually called “dimming zones” or “local dimming”).
Is LED just plain better than LCD? Well, for a while, LCD screens represented the cutting edge of digital signage. But now, about the only meaningful advantage of LCD over LED is price point. As LCD is becoming outdated, it tends to be less of an upfront investment. In every other respect, though, LED displays have the advantage.
No matter the arrangement of the backlighting, LED has a greater nit value than LCD, which means it’s brighter (“nit” comes from the Latin “nitere,” meaning “to shine”). The average nit value for LCDs is between 500 and 700 nits, while LEDs are typically between 1,200 and 2,400 nits. With greater brightness comes greater contrast, and all-day visibility on outdoor displays.
Despite the energy output, higher brightness doesn’t necessarily mean a shorter lifespan. In fact, LED displays have an average lifespan of 10 years — double the average five-year lifespan of LCDs. Factoring longevity into the cost of your signage, LED’s longer lifespan can make it cheaper than LCD in the long run.
Even with edge lighting, LED produces more vividly lifelike images than CCFL-backlit LCDs — and with sleeker hardware, thanks to their minimalist design. And while LCD bezels have drastically reduced over time, they’re still greater than zero. LED has no bezels at all.
Full-array backlighting requires a little more depth to the screen, but with discrete dimming zones, LEDs can be illuminated far more precisely — which, in turn, means more accurate and engaging visuals.
LED isn’t the first technology to realize miniaturization is the way forward. Even as screens get bigger, the next big step is made of smaller parts: microLEDs.
Up to 40 times smaller than regular LEDs, microLEDs allow backlighting to be even more precisely targeted, with many times more diodes. This, in turn, delivers a more accurate picture, with greater contrast and highly focused areas of brightness. Samsung’s The Wall is a spectacular example of what microLED is capable of.
Whether you need your digital signage to entertain, inform or simply impress, understanding the differences between LCD and LED will allow you to make a better-informed decision.
With best-in-class picture quality and exceptional durability,Samsung LED displayscan help your business deliver content that engages, informs and entertains.Samsung’s trade-in program makes it easy for businesses to upgrade their video wall with LED technology. Once you’ve chosen your displays, learn how you can configure and tailor their real-time messaging using an integrated CMSin this free guide.
In case you’ve been wondering if Direct View LED video wall vs LCD video wall is synonymous with ‘future vs past,’ you’ve come to the right place. The interest in video walls is only growing and we’ll be seeing more of those, especially within business environments, event solutions, and advertising industries. It all comes down to the technologies that drive both displays, so here’s some food for thought that’ll help with decision making.
Read on to learn about the difference between a Direct View LED video wall and an LCD video wall or go ahead and checkViewSonic’s LED video wall solutions now.
LED video wall vs LCD video wall comparison takeaways will be relevant for several forms of display technology and will help you make the right choice when exploring video wall options. Getting your message across to dozens if not hundreds of people daily is an important endeavor, and you want to make sure the display helps you connect with your audience, team, or community more easily.
In the past, the most common display technology for video walls was LCD, but today’s large-format all-in-oneLED displays have many advantages that have helped them become the new industry standard very quickly. In this post, we’ll discuss the differences between LED and LCD large format displays in more detail, give a general overview of each technology, and delve into the reasons why a high-quality all-in-one LED displayis invariably the best option for large-format display requirements.
Historically, LCD video wall display technology has been the most popular and it’s a good place to start with technical insights. LCD stands forliquid crystal display. Liquid crystals are sandwiched between the polarizing filters and electrodes and topped withthe display surface (something we casually refer to as a screen). The bottom part of the video wall is made of fluorescent lighting which backlights the liquid crystals. The light passes through the crystals and those – powered by varying electric current – produce the desired color.
LCD video wall displays are usually constructed by linking together four or more LCD screens. That’s because individual panels are not big enough and have size limits. The downside is, the bigger number of panels will be assembled, the heavier the display will become. That makes delivery and installation more difficult.
A major benefit of LCD displays is the sharp, crystal-clear image quality, which is especially apparent when you come up close to the display. Besides, its long-standing status as the most popular technology for video walls has helped to ensure the product’s relatively low price.
LCD technology remains a perfectly viable display option, but, aside from challenging delivery and setup, it is no longer regarded as the go-to video wall solution. Keep reading to find out more reasons.
Although LED technology for video walls is nothing new, it’s quickly gaining in popularity thanks to all its improvements. It has, consequently, become more accessible.
While LCD is a multi-layered thick device, the LED is much thinner and more effective. In contrast to LCD technology, LED video walls are typically constructed from modules of light-emitting diodes (LEDs) making the whole display slimmer and with higher brightness capability (discussed later in the post). Each diode works as the actual display pixel — emitting Red, Green or Blue (RGB) values to create any desired color. Since the LEDs produce the image for the display themselves, they don’t need any backlighting or filtering which considerably reduces the number of layers.
Within the broader category of LED video walls, there are also different packaging technologies. For more context, those include surface mount diode (SMD), integrated matrix device, and dots in place, but the real breakthrough happens elsewhere. It’s the chip-on-board orCOB technology, that has emerged as the LED game-changer of recent times. The most revolutionary aspect of this invention was the tightest pixel pitch that allows the direct mounting of the diodes onto the print circuit, placing them evenly along its surface.
The emergence of all-in-one LED displayshas also helped to improve the technology’s popularity. A Direct View LED display eliminates the LCD panel, resulting in a brighter picture and greater color clarity. Most importantly, it eliminates the grid issue and image uniformity when combining multiple LCDpanelstogether, so there are no lines breaking up the displayed content. This is whyDirect ViewLED technology can now create much larger video walls. The very latest all-in-onesolutions also integrate power, display,image stitching,and control systems for the ultimate user experience.
At the heart of the LED display vs LCD display comparison, it’s all about the use, impact, and price. In the sections below, let’s explore some of the various elements that make up the user’s experience and the cost-effectiveness of a video wall. That includes some of the plus points and drawbacks of these two competing technologies.
Let’s tackle the overall viewing experience. This is an area whereDirect ViewLED technology excels. Rather than serving as a backlight, the LED display adopts red, green, and blue LEDs for each pixel, and adjusts the values of each of those colors to create billions of possible colors for use on the display itself. Coloring the image directly from the light emitted from the diodes helps to provide a truer depiction of color, which can work magic in terms of heightening the audience’s sensory receptiveness.
Calibrating and synchronizing all the LCD screens require specific software that will add, both in costs and complexity, to the overall system. Each LCD panel operates, and therefore degrades, on an individual basis, which means they require calibration at different times. Panel degradation definitely adds up to the total cost of ownership.
Finally, it should be noted that added thickness of LCD displays — imagine over 110 mm — can also look cumbersome or unwieldy in an indoor space. This can detract attention away from the content being shown on the screen. By contrast, a high-end,All-in-One LED displaywill have a thickness of 25 mm – 35 mm with a 5 mm frameless edge. This is substantially less thick than LCD video walls and positively influences ideal viewing distance and immersion.
Even if LCD video walls are made of high-end screens, still their lack of brightness invariably results in poor visibility as soon as they’re viewed from a distance or under strong ambient light. This means that there are clear limitations when it comes to using an LCD video wall to display content.
Prior to the emergence of Direct View LED video walls, these limitations may have been more acceptable to the average user, but that has started to change. The high-end LED displays provide higher brightness while also making it possible to adjust brightness levels on the device itself. This often may be essential for optimizing the specific settings of the video wall (as low brightness images won’t be clear even if you can adjust the display for the strong ambient light).
Resolution-wise, most LCD displays come with 1080p but 4K UHD is available, which is the same as LED’s. However, the Direct View LED’s fine pixel pitch means that the LEDs are ultra-close to each other, so even when you’re closer to the display than usual, you’d still be able to clearly see the visuals. This can have an extra impact when showing vivid landscapes, detailed product images, design sketches or mechanical drawings in spaces of various sizes.The real-to-life color depiction is made possible thanks to the light being directly seen by human eyes without going through different materials which is the case for LCD. LED also delivers a wider color gamut, and the very best options on the market offer 120% coverage of the Rec.709 color space.
ViewSonic All-in-One LED video walls address the challenges of the past with finesse thanks to the Direct View technology and, for the most advanced models, Chip on Board (COB) packaging. For example, the multi-award-winningAll-in-One LED Displayprovides up to 4,440Hz ultra-fast refresh rates and 600-nit adjustable high brightness, offering an unparalleled viewing experience in any space.
Another important thing to remember when comparing LED display vs LCD display is the difference in shipping, installation, and all-around maintenance of a video wall. This is one of the areas where all-in-one LED video walls really outperform LCD video walls in almost every way imaginable, resulting in a far better experience for end users and greatly reducing the amount of time and effort needed to set the video wall up.
LCD large-format displays will have significantly higher shipping and installation costs. This is partly because an LCD video wall installation will require at least three people, often taking more than 4 hours. Furthermore, on top of free-standing models, LCD video walls can only be installed on a wall.
By contrast, an All-in-One LED Display can be installed in around two hours, thanks to the all-in-one modular design. Individual modules will automatically configure and calibrate to their location relative to the rest during installation.
One of the challenges associated with LCD video walls is the fact that each panel operates independently, so there is a realistic chance that one panel will wear out before the others. The core issue here is that if one panel wears out, the cost of tearing down the display to replace it and then deliver it will be high.Besides, the repair process takes around a month and during this time the LCD cannot be in use. After fixing, the display will need to be calibrated again. In the long term, this translates to high maintenance costs.
This is not true for LED video walls, thanks to the modular approach. In such cases, you would need to replace the single LED module without removing the whole screen. Besides, the LED modules can be swapped out while the display is powered on and in continuous use. This means anyone can replace a defective piece for quick and easy maintenance. The industry term for it would be “full front maintenance with no downtime”.
Each LCD display has different color and brightness, so calibration is needed upon installation. And each display will change over time (the degree of degradation of brightness and color performance also varies by each display), so users will take further time and effort to calibrate for maintenance.
LCD video walls have traditionally required an additional control box and a variety of other accessories and components to provide a smooth display and an acceptable user experience. Until relatively recently, this has also been true for LED displays and resulted in an unsatisfactory user experience, more complex maintenance, and day-to-day management. Often, a specialist technician would be needed to even get a large format display up and running.
Fortunately, the emergence ofAll-in-One Direct View LED displays has helped to change all of this. Such a comprehensive solution will combine everything the user needs in a single package. Imagine a control system, display system, and power supply that are all integrated together along with the image stitching technology. Crucially, such an approach results in a far superior and more user-friendly experience, with no need for specialist knowledge.
As the cherry on top, the all-in-one LED display can be turned on with just one click and is easy to operate with remote control. Additionally — aside from wireless content sharing — the display’s I/O port provides easy connection options.
While LCD video walls have historically been the most popular option, improvements to LED technology and thus its greater affordability ensured a clear frontrunner of any Direct View LED wall vs LCD video wall debate. A high-quality, Direct View LED video wall will be easier to install, manage, and operate on a day-to-day basis. There are affordability benefits as well, and modern all-in-one solutions deliver excellent user-friendliness from the get-go.
A Direct View LED video wall, otherwise called LED display, will also offer a superior overall viewing experience, with improved brightness, color gamut, contrast, and all-around flexibility. Users will not need to worry about grid issues or irregular aspect ratios, and for these reasons, LED’s cutting-edge technology is widely regarded as the ultimate solution for large displays.
1. Xinyao LCD led tv 32 inch tv is produced at the same location and on the same equipment, which ensures consistency over large runs and multiple orders.
3. Adhering to the mission of led tv 32 inch tv will contribute to the development of Xinyao LCD. Contact! Guangzhou Xinyao Electronic Co, Ltd. adheres to constant pursuit of top quality. Contact! In developing and expanding process of the enterprise, Xinyao LCD actively carries out the concept of hd 32 inch led tv . Contact! The establishment of a good brand image needs the efforts of each Xinyao LCD employee. Contact!
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
The Hisense U8H matches the excellent brightness and color performance of much pricier LCD TVs, and its Google TV smart platform is a welcome addition. But it’s available in only three screen sizes.
The Hisense U8H is the best LCD/LED TV for most people because it delivers the performance of a much pricier TV yet starts at under $1,000, for the smallest (55-inch) screen size. This TV utilizes quantum dots, a full-array backlight with mini-LEDs, and a 120 Hz refresh rate to deliver a great-looking 4K HDR image. It’s compatible with every major HDR format. And it’s equipped with two full-bandwidth HDMI 2.1 inputs to support 4K 120 Hz gaming from the newest Xbox and PlayStation consoles. Add in the intuitive, fully featured Google TV smart-TV platform, and the U8H’s price-to-performance ratio is of inarguable value.
Chief among the U8H’s many strengths is its impressive peak brightness. When sending it HDR test patterns, I measured an average brightness of 1,500 nits, with peaks just north of 1,800 nits (a measurement of luminance; see TV features, defined for more info). To put that into perspective, consider that the 65-inch version of our budget 4K TV pick (the TCL 5-Series) typically costs around half as much as the 65-inch U8H but achieves only around 30% to 40% of its brightness. On the other side of the coin, the 65-inch version of our upgrade pick (the Samsung QN90B) costs almost twice as much as the 65-inch U8H, but it achieves only nominally higher brightness. Adequate light output creates convincing highlights and image contrast and (when necessary) combats ambient light from lamps or windows. It is a necessity for any TV worth buying—especially if you hope to watch HDR movies or play HDR games—and the U8H simply outpaces most TVs in its price range (and some in the next price bracket up, too).
Key to this functionality is the U8H’s employment of mini-LED backlighting with local dimming, which allows this TV to produce very bright light while still maintaining satisfyingly deep black levels that are typically free of blooming (or light bleed that’s visible around bright objects against a dark backdrop). This not only ensures impressive image contrast, it also makes the U8H a viable choice for most rooms, whether they’re brighter than average or dimmed down like a movie theater.
That’s not to say the U8H has pixel-precise light control—it’s not an OLED TV, after all—but it does a terrific job most of the time. In fact, in our tests, the U8H bested last year’s upgrade pick, the Samsung QN90A, in certain scenarios: The intro to Guillermo del Toro’s Cabinet of Curiosities on Netflix features the filmmaker against a pitch-black backdrop. Though last year’s QN90A failed to maintain perfect control over dimming elements during this scene (the black backdrop brightened distractingly once a sufficient amount of brighter content appeared on screen), the U8H did not. (For the record, the newer QN90B also passed this test.) The U8H’s mini-LEDs also help the screen look uniformly bright: Although the U8H is still not as good as an OLED TV in this respect, it shows very little indication of being a backlight-driven display, even during tricky scenes with large swaths of dim lighting.
The U8H’s brightness, black-level integrity, and local-dimming abilities make this an excellent TV for watching HDR content. The U8H is capable of playing HDR content in all of the major formats (HDR10, HDR10+, Dolby Vision, and HLG), but when it comes to impressive HDR, what’s under the hood is much more important than format compatibility. The most crucial thing for good HDR is high brightness and deep color saturation, and the U8H’s quantum dots achieve the latter. It’s not as simple as just having quantum dots, however: While many TVs (even the budget options) have quantum dots nowadays, what is often not taken into account is that brightness directly affects color saturation. For example, both the 2022 TCL 6-Series and the Hisense U8H are equipped with quantum dots, mini-LED backlights, and local dimming. But because the U8H is notably brighter than the 6-Series, it also achieves a higher total color volume. During our color-volume testing, the U8H exhibited color ranges at more than 100% of the DCI-P3 color space (the range of color needed to properly display HDR content), and it is capable of roughly 10% more total color volume compared with the 6-Series.
And thanks to Hisense’s inclusion of Filmmaker Mode, it’s easy to rein in the U8H’s brightness abilities for a more-subdued and filmic experience in a darker room. Our measurements revealed that this mode has a very accurate white balance, mostly accurate colors (green is a bit oversaturated, but not egregiously so), and a perfect “dark room” gamma (which controls how quickly the video signal transitions from dark to light). Additionally, the TV’s 120 Hz refresh rate means it can play Blu-ray discs at 24 fps without the judder that’s usually present on TVs with 60 Hz refresh rates.
In terms of design, the Hisense U8H is not as svelte as our upgrade pick, but it’s plenty sturdy and doesn’t look or feel cheap. Two narrow, metal feet jut out from beneath the panel and steadily hold the TV. They can be attached in two separate spots, either closer in toward the middle of the panel or out toward the edges, to account for different-size TV stands. The feet are also equipped with cable organization clasps—a nice touch for keeping your TV stand free of cable clutter. Though the TV is primarily plastic, its bezels are lined with metal strips, providing a bit more durability in the long run. I moved it around my home, and it was no worse for wear, but we’ll know more after doing some long-term testing.
The Hisense U8H has some difficulties with banding, or areas of uneven gradation, where transitions that should appear smooth instead look like “bands” of color (sometimes also called posterization). Like many current 4K HDR TVs, the U8H uses an 8-bit panel rather than a 10-bit panel, which affects the color decoding and color presentation process. This is usually relevant only with HDR video and games. When playing games on the PlayStation 5 and Xbox Series X, I saw a few instances where the content wasn’t rendered correctly and displayed ugly splotches of color on the screen. However, this almost always occurred during static screens (such as a pause menu or loading screen); I rarely spotted it during actual gameplay. Hisense has stated that it would address the problem in a future firmware update, but at the time of writing it was still present. This is a flaw that may give dedicated gamers pause, but we don’t consider it to be a dealbreaker for most people.
Finally, like most TVs that use vertical alignment (VA) LCD panels, the U8H has a limited horizontal viewing angle, which may be a bit annoying if you’re hoping to entertain a large crowd. Our upgrade pick uses a special wide-angle technology to address this.
For gaming, use the game picture mode (the TV should switch into this mode automatically when paired with the newer game consoles), and then go into the Gaming submenu to make sure the right settings (VRR) are enabled. We recommend leaving the HDMI setting in “auto,” unless you notice that your game console is incorrectly identified.
Linsn LED offers plentiful product categories of indoor LED screen & outdoor Commercial LED Displ