16x2 lcd module factory free sample

The Displaytech 162K series is a lineup of 16x2 character LCD modules. These modules have an 85x30 mm outer dimension with 66x16 mm viewing area on the display. The 162K 16x2 LCD displays are available in STN or FSTN LCD modes with or without an LED backlight. The backlight color options include yellow green, white, blue, pure green, or amber color. Get a free quote direct from Displaytech for a 16x2 character LCD display from the 162K series.

16x2 lcd module factory free sample

The Displaytech 162G series is a lineup of 16x2 character LCD modules. These modules have an 80x36 mm outer dimension with 66x16 mm viewing area on the display. The 162G 16x2 LCD displays are available in STN or FSTN LCD modes with or without an LED backlight. The backlight color options include yellow green, white, blue, pure green, or amber color. Get a free quote direct from Displaytech for a 16x2 character LCD display from the 162G series.

16x2 lcd module factory free sample

The Biomaker Stage-2 component pack contains a liquid crystal display (LCD) capable of displaying 2 lines of 16 characters (right). The device is equipped with an I2C interface backpack, that allows serial communication with the device. (This is the black-coloured circuit board soldered to the back of the green-coloured LCD board). The I2C interface allows communication with the LCD screen through two wires plus power supply, rather than 8+ wires required by a parallel port device. The I2C protocol allows comunication with multiple devices on the same 2 wire bus. Each device needs a unique address, usually set in the hardware.

The LCD display is powered by a 5V supply and draws about 25mA with the backlight on, and 2mA without. The green coloured backlight sits behind black coloured characters. The characters are formed in two lines of 16 characters in 5x7 dot matrices.

XOD provides the software node text-lcd-16x2-i2c, that allows direct communication with the display, with inputs for each line of the display (see below). The address of the i2C device should be set at 27h using the ADDR parameter.

Advanced use: If you which to use multiple LCD displays on the I2C bus, you can add solder bridges to the jumpers A0, A1 and A2 on the I2C backpack - in order to change the address of each device, and allow them to be individually addressed. The supplied I2C backpack has a PCF8574T chip: and the IC address is (high order first) 0100 A2 A1 A0. When shipped, A2~A0 are all vacant. The default I2C address therefore: 0100 111 (0x27). If you want to modify the address yourself add the relevant jumpers, noting that floating address pad is 1, and the short circuit is 0 after adding a solder bridge.

Important: There is a potentiometer that controls the contrast setting of the display. It is a controlled by a black plastic wheel at the front left edge of the LCD screen. (Contrast can also be adjusted using the blue potentiometer on the I2C backpack). The contrast setting requires fine adjustment, and the screen will appear blank and unresponsive if badly adjusted. If, on first use, you want to check that the LCD screen is correctly connected (i.e. are using the correct I2C address), use a XOD node to switch the backlight on and off. If that works, load some text into the screen, and adjust the contrast for best legibility.

16x2 lcd module factory free sample

Orient Display LCD displays are the general category that includes LCD display glass panels, character LCD modules, graphic lcd modules, Arduino LCD displays, and our featured JAZZ series graphic LCD displays.

Graphic LCD Displays: Our standard LCD Graphic display products range from 122 x 32 pixels to 320 x 240-pixel resolution. These displays are available in positive or negative STN, blue STN, FSTN, or FFSTN with multiple backlight color options. They can be either traditional Chip-On-Board (COB) LCDs or Chip-On-Glass (COG) LCDs for displays with a smaller footprint and lower power consumption. COGs come in the same display types and colors as our other LCD modules but are designed without a PCB to allow for a slimmer profile.

JAZZ Graphic LCD Displays: The series are exclusive for Orient Display 128 x 64 pixels with the selection of yellow green STN, blue STN, positive or negative FSTN display, with the options of yellow green, green amber, blue, red or RGB tricolor backlights, with or without resistive touch panels. JAZZ series have two sizes: 1.0” and 2.7”.

VTN Character LCD Displays: Orient Display VTN is vertical alignment LCDs which provide superior black background and then great contrast with the options of yellow green, green amber, blue, red or RGB tricolor backlights.

LCD Glass Screens (Panels): Orient Display LCD display panels include different options of polarizer in reflective (saving power), transmissive (better contrast) or transflective (sunlight readable and battery powered) types. Orient LCD glass panels include 1; 2; 2.1/2; 3; 3.1/2; 3.3/4; 4; 4.1/2; 5; 6; 8; and 24 digits. Orient LCD glass panels also include 7 , 14 or 16 segments to display digits and alphanumeric letters. The temperature ranges are from room temperature to wide temperature applications. Orient LCD glass panels can have metal pin or zebra connections.

ARDUINO LCD Displays: Orient Display creates special character LCD displays with SPI interface which is easily hooked up with Arduino, which has been widely acceptable in the electronic design. The series includes 8 x 2 characters, 16 x 2 characters, 20 x 2 characters and 20 x 4 characters with either yellow green STN with yellow green LED backlight or blue STN with white LED backlight.

If you have any questions about Orient Display TFT LCD displays or if you can’t find a suitable product on our website. Please feel free to contact our engineers for details.

16x2 lcd module factory free sample

LCD character modules are “characteristically” simple display devices known for their very low power consumption, low cost and long-term reliability. They are designed to display alpha-numeric characters in preset patterns and do not have much. In most cases, they are small displays with only 8 or 16 or 32 characters, utilized for status reports and simple communication. It is the most popular display for hobbyist because of its ease of operation.

Orient Display offers many standard sizes including (characters x lines) 8×1, 8×2, 16×2, 16×4 , 20×2, 20×4 , 24×4, 40×4, and many more. Orient Display’s character LCD displays cover small LCD character display modules for tiny devices to large character LCD displays for medical equipments.

Orient Display character LCD modules use industrial standard Hitachi HD44780 controller or compatible controllers such as Sitronix ST7066U, Samsung S6A0069, so they can be quickly integrated into a new product or used as a replacement in your existing products.

The LCD panel technologies include TN, STN, FSTN, FFSTN or VA (Vertical Alignment) types and also with positive mode and negative mode and options of reflective, transflective or transmissive polarizers. There are different LED backlights available in various colors including yellow-green, white, red, blue, green, amber, and RGB LEDs as well as no backlight option.

The viewing angles for these character LCD displays are available with 6:00, 12:00, 3:00, and 9:00. Orient Display offers various IC options of character fonts including English/Japanese, western European, eastern European, Scandinavian European, Cyrillic (Russian), and Hebrew/Arabic. These LCD character modules and LCD modules can be used on industrial and consumer’s applications including printers, microwaves, water machines, medical devices, car and home audio, white goods, game machines, toys, industrial meters, etc.

Please see our character LCD display list here. If you can’t find any in the list, please check with our engineers to search our factory database or have a custom-made option.

16x2 lcd module factory free sample

Do you want your Arduino projects to display status messages or sensor readings? Then these LCD displays can be a perfect fit. They are extremely common and fast way to add a readable interface to your project.

This tutorial will help you get up and running with not only 16×2 Character LCD, but any Character LCD (16×4, 16×1, 20×4 etc.) that is based on Hitachi’s LCD Controller Chip – HD44780.

True to their name, these LCDs are ideal for displaying only text/characters. A 16×2 character LCD, for example, has an LED backlight and can display 32 ASCII characters in two rows of 16 characters each.

The good news is that all of these displays are ‘swappable’, which means if you build your project with one you can just unplug it and use another size/color LCD of your choice. Your code will have to change a bit but at least the wiring remains the same!

Vo (LCD Contrast) controls the contrast and brightness of the LCD. Using a simple voltage divider with a potentiometer, we can make fine adjustments to the contrast.

RS (Register Select) pin is set to LOW when sending commands to the LCD (such as setting the cursor to a specific location, clearing the display, etc.) and HIGH when sending data to the LCD. Basically this pin is used to separate the command from the data.

R/W (Read/Write) pin allows you to read data from the LCD or write data to the LCD. Since we are only using this LCD as an output device, we are going to set this pin LOW. This forces it into WRITE mode.

E (Enable) pin is used to enable the display. When this pin is set to LOW, the LCD does not care what is happening on the R/W, RS, and data bus lines. When this pin is set to HIGH, the LCD processes the incoming data.

Now we will power the LCD. The LCD has two separate power connections; One for the LCD (pin 1 and pin 2) and the other for the LCD backlight (pin 15 and pin 16). Connect pins 1 and 16 of the LCD to GND and 2 and 15 to 5V.

Most LCDs have a built-in series resistor for the LED backlight. You’ll find this near pin 15 on the back of the LCD. If your LCD does not include such a resistor or you are not sure if your LCD has one, you will need to add one between 5V and pin 15. It is safe to use a 220 ohm resistor, although a value this high may make the backlight a bit dim. For better results you can check the datasheet for maximum backlight current and select a suitable resistor value.

Next we will make the connection for pin 3 on the LCD which controls the contrast and brightness of the display. To adjust the contrast we will connect a 10K potentiometer between 5V and GND and connect the potentiometer’s center pin (wiper) to pin 3 on the LCD.

That’s it. Now turn on the Arduino. You will see the backlight lit up. Now as you turn the knob on the potentiometer, you will start to see the first row of rectangles. If that happens, Congratulations! Your LCD is working fine.

Let’s finish connecting the LCD to the Arduino. We have already made the connections to power the LCD, now all we have to do is make the necessary connections for communication.

We know that there are 8 data pins that carry data to the display. However, HD44780 based LCDs are designed in such a way that we can communicate with the LCD using only 4 data pins (4-bit mode) instead of 8 (8-bit mode). This saves us 4 pins!

The sketch begins by including the LiquidCrystal library. The Arduino community has a library called LiquidCrystal which makes programming of LCD modules less difficult. You can find more information about the library on Arduino’s official website.

First we create a LiquidCrystal object. This object uses 6 parameters and specifies which Arduino pins are connected to the LCD’s RS, EN, and four data pins.

In the ‘setup’ we call two functions. The first function is begin(). It is used to specify the dimensions (number of columns and rows) of the display. If you are using a 16×2 character LCD, pass the 16 and 2; If you’re using a 20×4 LCD, pass 20 and 4. You got the point!

After that we set the cursor position to the second row by calling the function setCursor(). The cursor position specifies the location where you want the new text to be displayed on the LCD. The upper left corner is assumed to be col=0, row=0.

There are some useful functions you can use with LiquidCrystal objects. Some of them are listed below:lcd.home() function is used to position the cursor in the upper-left of the LCD without clearing the display.

lcd.scrollDisplayRight() function scrolls the contents of the display one space to the right. If you want the text to scroll continuously, you have to use this function inside a for loop.

lcd.scrollDisplayLeft() function scrolls the contents of the display one space to the left. Similar to above function, use this inside a for loop for continuous scrolling.

If you find the characters on the display dull and boring, you can create your own custom characters (glyphs) and symbols for your LCD. They are extremely useful when you want to display a character that is not part of the standard ASCII character set.

CGROM is used to store all permanent fonts that are displayed using their ASCII codes. For example, if we send 0x41 to the LCD, the letter ‘A’ will be printed on the display.

CGRAM is another memory used to store user defined characters. This RAM is limited to 64 bytes. For a 5×8 pixel based LCD, only 8 user-defined characters can be stored in CGRAM. And for 5×10 pixel based LCD only 4 user-defined characters can be stored.

16x2 lcd module factory free sample

NMLCD-M162A-0is 1602 blue lcd module hd44780 16x2 displays characters, blue text on blue background, equivalent controller, wide temp, low cost, fast delivery.

Answer: For the segment type LCD module, if you need to modify the outline size or display content, we will start the drawing paper for your checking.

16x2 lcd module factory free sample

The CFA533-***-KC series is a 16x2 I2C LCD with keypad. The I2C interface allows you to use just two lines (SDA & SCL) to have bi-directional communication with the I2C LCD. Other devices can also share those two I2C control lines with the LCD. Only 4 wires are needed to connect this I2C LCD: power, ground, SDA (I2C Serial DAta) and SCL (I2C Serial CLock).

The CFA533 can run on 3.3v to 5.0v directly, with no changes needed, so you do not need to do any level translation between your embedded processor and the I2C LCD. Simply power the CFA533 from the same supply as your processor and the I2C signal levels will match up.

Using only one address on your I2C bus, you can add all the elements that you need for your front panel. The CFA533 I2C LCD can also read up to 32 DS18B20 digital temperature sensors, giving you an easy way to integrate temperature sensing over the I2C bus. No additional firmware or pins are needed on the host system.

This CFA533-TFH variant features crisp dark letters against a white, backlit background. The keypad has a matching white LED backlight. Since the LCD is a backlit positive FSTN, the CFA533-TFH I2C LCD is readable in direct sunlight, as well as complete darkness.