tn display vs tft display pricelist

IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.

The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.

A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.

tn display vs tft display pricelist

A TN-TFT display is a type of Liquid Crystal Displaywith thin film transistors for controlling the image formation. The TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen.

TFT-LCD technology is now fairly mature. As a result, manufacturing processes are efficient and production yields are high, leading to very competitive unit prices. Upgrading from a monochrome display to a TFT is now an affordable way to give your product an uplift.

As with all our displays, a variety of customisation options are availableto bring you a unique design that meets your application requirements and satisfies environmental challenges, including:

Here at Anders we don"t just strive to design a best in class display solution for your product, but we also want to make sure the display is driven with the right embedded system. We can help achieve a hardware solution that ensures your display works perfectly within your application. Hardware solutions include:

With ever increasing pressure in all of our lives, having easy to use and reliable home appliances plays a key role in easing those stresses. A cost effective colour TFT display is ideal for demanding user expectations, available in a variety of shapes and sizes..

Residential and commercial metering solutions are changing from monochrome to colour with a TN-TFT display offering an ideal cost effective solution to give your product the uplift it deserves. We can optimise these to suit your application including mechanical integration, coverlens design and backlight enhancements.

TN-TFT Displays are ideal for medical and personal healthcare devices. Both low power consumption and low cost solutions, they are available with wide viewing angles for challenging medical situations where the user may be at an acute angle to the device.

Putting your own stamp on your product is more than a logo on the start-up screen. Discover how we can help you design a unique display solution with our customisation services:

We aim to offer reliable and long-term solutions to our B2B customers. If you would like to discuss your display and/or embedded system requirements please contact us below.

tn display vs tft display pricelist

TN, or Twisted Nematic panels, are the oldest variety of LCD panels, but they’re still quite common even today. They’re cheap to produce, and they have very low input lag, which makes them appealing for gamers. They also support refresh rates of up to 240Hz, another plus for fast-paced environments.

The problem with TN panels is that they have very poor color reproduction. While modern TN panels are far better than earlier models, it’s still relatively rare to find a TN panel with close to full sRGB reproduction. Even if they do have good color reproduction when you’re looking at them straight on, their viewing angles are limited, and they look washed out when viewed from the sides.

If you’re on a budget, enjoy playing competitive shooters or strategy games where reaction times matter, a TN panel could be fine for you. But if you want something that doubles as a media player, the average TN monitor might disappoint.

Fortunately, our GFT27CXB monitor is far from “average.” We engineered our TN panel to do what most TN panels simply cannot: deliver stunningly accurate colors. And with its 99% sRGB gamut, colors are rich and vibrant. And it’s fully customizable, with space to store up to 3 unique user profiles. So you get amazing color. But you also get full HD resolution with lightning-fast speeds up to 240hz refresh rate and 1ms response times.

IPS, or In-Plane Switching, monitors are almost the exact opposite of TN panels. They offer much wider viewing angles than TN panels as well as better black reproduction. The trade-off is that they’re more expensive. They have a history of slower refresh rates, too, although that has been changing lately. Today’s IPS panels can reach max. refresh rates as high as 200-240Hz.

There are some IPS monitors with very good refresh rates and response times, but they’re on the pricier side. You can expect to pay more than $500 for an IPS monitor with a 1ms response time. If you’re looking for a more budget-friendly IPS monitor, then you’ll have to settle for response times of 4ms or slower. IPS panels are also prone to backlight issues. Color reproduction is better than on TN panels, even at extreme angles, but the backlight can sometimes be seen.

VA, or Vertical Alignment, panels are somewhere in between TN and IPS, offering the best of both worlds. This type of panel is common in TVs but is relatively uncommon for gaming monitors. TN panels offer very good contrast ratios, so you can expect vibrant colors and good color reproduction. They also offer good viewing angles, and while brightness may vary depending on the angle you’re looking at the screen from, they’re not susceptible to the backlight issues of IPS panels.

If you’re a competitive gamer who wants the absolute best response time on a budget, TN panels will get the job done, but they may disappoint when you’re playing a heavily modded game of Skyrim and want to stop and enjoy the scenery. IPS panels can deliver a similar experience if you’re willing to spend a lot of money. But if you’re like most of us, you’d rather put that extra cash towards a slightly better GPU.

VA monitors are a great “Jack of all trades.” The NBV24CB2, for example, is a highly affordable 1080P monitor that offers a 75Hz refresh rate and AdaptiveSync technology—along with some other nice extras. Those extras include GAMEPLUS targeting crosshairs and FPS/RTS display modes to help give you the advantage while playing first-person shooter games. This monitor is ideal for gamers with mid-range systems. If you’re playing marathon sessions, the NBV24CB2 has a blue-light filter to help reduce eye strain. And there’s great color reproduction for watching videos.

tn display vs tft display pricelist

When choosing a new computer monitor, the type of panel used by the display is a key piece of information that reveals a lot about how the monitor will behave and perform. By far the most common types of display panels are TN, IPS and VA.

Monitor LCD panels are made up of many layers, including a backlight, polarizing filters and the liquid crystal layer. It"s this liquid crystal layer that determines the intensity of light let through from the backlight, and in what colors, whether red, green or blue. To control this intensity, a voltage is applied to the liquid crystals, which physically moves the crystals from one position to another. How these crystals are arranged and how they move when voltage is applied, is the fundamental difference between TN, VA and IPS.

Our original explainer about display technology and the difference between TN vs. VA vs. IPS was published almost three years ago, and while most of that information remains accurate to this day, we"ve seen the introduction of much faster IPS displays as well as a revolutionary updates to VA panels, particularly from Samsung Odyssey gaming monitors. We"ve also since tested over 100 monitors, so we have a lot more insights to share about performance.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

The most immediately obvious difference when viewing a TN, IPS or VA panel for the first time is in viewing angles. This is one area that hasn"t significantly changed since the introduction of these technologies.

TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs and can impact the experience for productivity where any shifts to color impact accuracy for things like photo editing.

VA and IPS panels are significantly better for viewing angles, with IPS panels generally giving the best overall experience. Here you"ll commonly see 178/178 ratings for viewing angles, and while there can still be some shift to colors and brightness viewing at off-center angles, this will be far less noticeable than on a TN panel. Of all the IPS panels we"ve reviewed over the years, I"d describe the majority of them as having excellent viewing angles, a non-issue for modern IPS displays.

Because the liquid crystal layer is separate to the backlight layer, there is no technical reason why TN, IPS or VA monitors should differ in terms of brightness. Across the 100 displays we"ve tested using our latest test suite, the average SDR brightness for IPS panels was 385 nits, versus 367 nits for TN and 346 nits for VA - so really there"s not much of a difference.

Contrast ratio, on the other hand, is where another major difference occurs. TN panels have the worst contrast ratios, with the twisting technique not particularly great at producing deep blacks. In the best cases you"ll see contrast ratios around 1000:1, but typically after calibration these numbers are lower, in the 700:1 to 900:1 range. Of the monitors we"ve tested, the average TN has a contrast ratio of 872:1, which is poor so if you want rich, beautiful blacks - well maybe just buy an OLED but if you"re buying LCD, don"t get a TN.

IPS is the next step up, though generally IPS contrast ratios aren"t that different from TN. In the worst cases - in particular LG"s current line-up of Nano IPS panels - you won"t see contrast performance any different from a typical TN, with a ratio below 1000:1. However outside of those worst cases, it"s much more common to see contrast at or above 1000:1, with some best case examples pushing up to 1500:1 which is about the ceiling I"ve seen for IPS. Of the IPS panels we"ve tested, an average contrast ratio of 1037:1 was recorded, 19% higher than the average contrast of a TN.

We"ve measured ratios up to 5000:1 for VAs, and some TVs can push this even higher. The range of typical contrast ratios is also quite a bit larger than with the other two technologies, but when manufacturers list a 3000:1 ratio for their VA monitor they"re usually correct - on average we measured a 2898:1 contrast ratio for VAs. With that in mind you can see VAs are usually 2.5 to 3 times better at producing blacks than IPS or TN, great for night scenes.

We often get asked whether these differences in contrast ratios actually matter. Almost all monitors use some sort of matte anti-glare coating, which can reduce the effective contrast ratio in brighter viewing environments. So if you"re using your monitor during the day, or under artificial lights, the difference between TNs, IPSs and VAs in contrast ratio is going to be less noticeable. But if you typically use your monitor in a dimmer environment, like gaming with the lights off or having a cheeky late night incognito browser session, you"ll much more easily spot the massive superiority VAs have in this area.

It"s also worth mentioning that while IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type, and can vary between individual units.

Before when discussing TN vs. VA vs. IPS, we spent some time talking about the differences between TNs, VAs and IPS in terms of bit depth -- or the difference between 6-bit, 8-bit and 10-bit panels. But we feel this is less relevant these days when the vast majority of displays are native 8-bit panels, with the exception of a few low-end panels that are 6-bit, and a few professional grade high-end panels that are 10-bit.

It remains the case that most displays advertised as "10-bit" or having "1 billion colors" are not true 10-bit panels, instead achieving this through FRC or dithering, and the type of LCD panel technology makes little difference.

Even TN panels, which historically have had the "worst" color quality, these days will cover over 95% of the sRGB color space at a minimum for any monitor worth buying. The exceptions to this are entry-level junk some OEMs like to punish their low-end laptop buyers with; it"s rare for a desktop monitor to go below 90% sRGB coverage and certainly you shouldn"t buy it if it does.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

The main differences between TN, IPS and VA for color quality these days comes in coverage of wider gamut, such as DCI-P3, Adobe RGB or Rec. 2020. DCI-P3 and the larger Rec. 2020 are important for HDR videos and gaming, while Adobe RGB is common for work with wide gamut images.

As far as gaming monitors are concerned, which is the majority of monitors we test, it"s uncommon for TN panels to exceed the sRGB color space and produce a wide color gamut. We"ve seen it on occasion, with DCI-P3 coverage topping out around 92% in the best cases, but the majority of TN displays are standard gamut which is fine for SDR content.

If you want the widest color gamut, you"ll need to get an IPS monitor. While basic IPS panels will be limited to sRGB only, the best wide gamut IPS displays offered these days can achieve much higher gamuts than TN or IPS.

Time to talk about speed. Whereas before there was a pretty clear cut distinction between the technologies: TN was the fastest, IPS sat in the middle, and VA was the slowest. In 2021, that is no longer the case, and there"s a lot less separating each technology.

Historically, the highest refresh rate displays on the market were almost all TN models, but that"s not true anymore. Currently there are TN, IPS and VA monitors capable of 240Hz speeds, or sometimes in excess of 240Hz, including at resolutions like 1440p.

The highest refresh rate displays on the market today are capable of 1080p 360Hz speeds, and use an IPS panel from AU Optronics, not a TN. There is lower demand for TN panels than other panel types these days, so a lot of development effort on high refresh models has gone into IPS instead. This makes IPS the highest refresh technology for now, with all three technologies being available at 1440p 240Hz.

Response times have also improved substantially for IPS and VA monitors, especially for high-end panels. There is no longer a clear distinction between TN and the rest of today"s contenders, thanks to big speed gains headed by LG"s Nano IPS and Samsung"s new-gen VA.

The fastest TN panels that we"ve measured using our current, strict test methodology are able to hit the 4ms mark on average with a cumulative deviation of around 400. Cumulative deviation tells us how close a monitor"s response times get to the ideal instant response, and also show the balance between response times and overshoot. The HP Omen X 27 is definitely a fast monitor with its 1440p 240Hz spec. However, the Samsung Odyssey G7 and G9 are actually slightly faster, with response times between 3.4 and 4.0 ms and cumulative deviation below 400.

This puts the best VA monitors of today slightly ahead of the best TN monitors that we"ve tested, which we definitely couldn"t have said a few years ago. With these new panels, Samsung have also fixed the unsightly dark level smearing issue that plagued last-generation VA panels, giving the latest VA panels an overall experience similar to the best LCDs have to offer.

Meanwhile over at the IPS camp, the best IPS panels are slightly slower than VA and TN, but still highly competitive with the best of today. The fastest we"ve seen is a response time average of 4.5ms, with cumulative deviation around 460. That"s less than 20% off the best from other technologies, giving us a pretty small difference in 2021 between the three LCD panel types in a best vs best comparison.

With that said, this discussion of response times only applies to high end monitors. Currently in the mid-range and entry-level markets, the performance differences between TN, IPS and VA are more traditional. TN monitors can still be quite fast, with performance in the 4ms range even with basic 1080p 144Hz panels. Basically if you buy a TN in any market segment, you know it will be fast.

The next step down is IPS in lower price segments, with performance varying a bit depending on the exact model. The reason for this is that mid-range and entry-level IPS monitors tend to use more last-generation panels, which aren"t as fast as the best of today. Still, performance between 6 and 9ms on average is pretty common, and cumulative deviation is still quite competitive, especially in the value-oriented IPS market. Not as fast as TN, but still generally good for motion clarity.

However these days the most focus tends to go into TN-based esports-oriented monitors when it comes to backlight strobing, so monitors like the BenQ XL2546K can be highly attractive offerings and preferred over the best IPS or VA monitors in this feature. We"ve also seen really good implementations with IPS and VA monitors, but TN is known to be the best.

Summarizing each of the three main LCD technologies is much harder today than in previous years, as there"s been a lot of focus on improving IPS and VA panels. This has led to much better gaming monitors for all, and many more displays to analyze and keep us busy which is always a good thing.

If we had to summarize the LCD ecosystem today... TN panels are a dying breed and their main strengths have been countered in recent years. TN panels are still very fast and great for competitive gaming, but aren"t as much of an outright speed leader anymore, especially at the high end. The main advantage to buying a TN is their affordability and consistency of speed even with entry-level panels, but this comes with weaknesses like viewing angles, contrast ratio and gamut coverage, which makes them unsuitable for a lot of stuff and probably not what you"d want to choose these days.

Due to the prevalence of flat panels with great uniformity and very wide gamuts, IPS is also the most suitable technology for gaming and content creation on the same display, though contrast ratios are still well behind what VA panels can achieve.

tn display vs tft display pricelist

TFT LCD display is the general category that includes TFT display panels, MCU TFT displays, Arduino TFT displays, Raspberry Pi TFT displays, HDMI TFT displays, IPS TFT displays, VGA TFT displays, and embedded TFT displays.

TFT LCD panel means TFT LCD glass with LCD controller or LCD driver and backlight, with or without touch panel. Orient Display provides broad range products with the most competitive TFT LCD Panel Price by working with the most renowned TFT panel glass manufacturers, like AUO, Innolux, BOE, LG, Sharp etc.

Orient Display offers a range of small to mid to large size TFT LCDs. Our standard products for TFT screens start at 1” in diagonal size and up to 7 inches and to 32 inches. Orient Display TFT displays meet the needs for applications such as automotive, white goods, smart homes, telecommunications industrial, medical, and consumer devices.

Orient Display not only provides many standard small size OLEDs, TN or IPS Arduino TFT displays, but also custom made solutions with larger size displays or even with capacitive touch panels.

If you have any questions about Orient Display TFT LCD displays or if you can’t find a suitable product on our website. Please feel free to contact our engineers for details.

tn display vs tft display pricelist

Thanks for the display technology development, we have a lot of display choices for our smartphones, media players, TVs, laptops, tablets, digital cameras, and other such gadgets. The most display technologies we hear are LCD, TFT, OLED, LED, QLED, QNED, MicroLED, Mini LED etc. The following, we will focus on two of the most popular display technologies in the market: TFT Displays and Super AMOLED Displays.

TFT means Thin-Film Transistor. TFT is the variant of Liquid Crystal Displays (LCDs). There are several types of TFT displays: TN (Twisted Nematic) based TFT display, IPS (In-Plane Switching) displays. As the former can’t compete with Super AMOLED in display quality, we will mainly focus on using IPS TFT displays.

OLED means Organic Light-Emitting Diode. There are also several types of OLED, PMOLED (Passive Matrix Organic Light-Emitting Diode) and AMOLED (Active Matrix Organic Light-Emitting Diode). It is the same reason that PMOLED can’t compete with IPS TFT displays. We pick the best in OLED displays: Super AMOLED to compete with the LCD best: IPS TFT Display.

If you have any questions about Orient Display displays and touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

tn display vs tft display pricelist

When it comes to buying either a TV for home or a monitor for your office or a display for that gaming setup in your basement, things can be distilled down to usage and based on that; you can compare what different panels have to offer and how they will suit you. In this article, we will be having a quick look at the three most commonly used panels – TN, IPS and VA and helping you understand what they have to offer, and what they can be best used for. But first, a basic run on what an LCD is.

The major drawback of the CRT (cathode ray tube) technology was that it occupied quite a significant amount of space. The CRT displays worked on the principle of ‘light emission’ and they consumed a lot of power, which just added up to the size issue. The solution to these problems came in technological research on developing a screen that consumes less power (hence, increasing productivity), and which was smaller. Lit using fluorescent tubes, LCDs (liquid crystal displays) consume less power, are way thinner than the CRTs, and work on the principle of ‘blocking light’ rather than emitting it.

LCDs are made from a passive/active matrix grid made of conductors, the latter called as thin film display (or a TFT). Pixels are mounted on this grid at each intersection (and an active matrix has a transistor located at each pixel intersection). This network structure controls a pixel’s luminance and consuming a little amount of current. This ability leaves us with a choice to switch the current on and off more often on the grid, and this leads to a high ‘refresh rate.’ And a high refresh rate means a ‘smoother’ operation.

Developments in these screen types lead to LED TVs. The main difference between these and the LCDs is that they are lit using Light Emitting Diodes instead of fluorescent tubes. So technically, a LED display is a ‘LED backlit LCD screen.’

This LED backlighting helps in enhancing the color contrast and it consumes less power as compared to fluorescent tube lit panels. It significantly improves the overall picture quality by tapping into a wider RGB color range, and there is a better brightness achieved which allows you to see the images clearly, even in well-lit environments. On top of these things, LED backlit displays to consume less power and are lightweight too. So there are no drawbacks of this technology as such, resulting in backlighting being used in more and more panels every day. Today, we have three types of backlighting: White Edge, Full LED array, and Local Dimming LEDs.

This information, however not essential for everyone to know, is a good bit for panel enthusiasts and pro gamers, as having a high refresh rate depends on the panel’s build and it’s resolution. Now, let’s go ahead and have a look at the three most commonly used panels on these LCD monitors – TN, IPS, and VA.

The most common LCDs are based on TN (Twisted Nematic) panel designs. Manufactured on a vast scale and pretty cheap, TN displays can be found in most homes. Primarily made for supporting low response times, TN panels remain to this day, a cheaper option for gamers who want a massive resolution with a low response time and a high refresh rate. Not to say that the IPS panels don’t have these features, but an IPS panel with the same features as a TN (1ms response time, QHD resolution and a 144Hz refresh rate for example) will always be more expensive. However, while the price is good with the TN, the color quality and viewing angles take a toll. They are the drawbacks of a TN panel when compared to other panels out there.

TN displays, (TFT-LCDs for example), work by passing light through two polarized screens, a color filter and liquid crystals that tend to twist and block light in correspondence of the current applied to them. This type of an arrangement leaves a lot in your hands as you can change the amount of current applied to adjust the crystal twists. Hence, you can achieve virtually any color or shade reproduced on the screen. But while precise adjustments are possible with a TN display, there are some drawbacks to this structure.

Every LCD’s pixel is constructed using some red, green and blue sub-pixels. Colors and shades are produced by mixing different brightness levels for these pixels that result in the perception of a particular solid color by the user’s eyes. The problem with TN panels comes from its adoption of a 6-bit per channel model, which outputs 64 shades per color, instead of the 8-bit per channel, 256 shades implementation. Needless to say, color accuracy takes a toll here. And while the TN compensates for this issue with ‘dithering,’ (using alternating colors to produce a certain perceived shade) it is still a poor substitute for 24-bit color reproduction. On top of that, narrow viewing angles don’t help the case, as there is a ‘washout’ produced that puts TN panels at a low level concerning color accuracy.

But if your main concern is not the aesthetics of the performance, but the performance itself, TN LCD screens reign supreme over other panel types because of providing us low response times and high refresh rates on a budget.

Measured in milliseconds, pixel response time or ‘responsiveness’ is the time taken for a pixel to change from one shade (of gray) to another (denoted as grey-to-grey or GTG). The higher the response time, the more blur and smearing you will experience during rapid transitions. While no industry standard exists for measuring precise response times, there is a value specified by the manufacturers on these displays.

TN panel displays have very fast GTG pixel response times that are usually well under the typical 5ms TFT-LCD average. This makes these displays a good choice for competitive gamers who are willing to sacrifice some color accuracy and viewing angles for great performance at a good price.

In-Plane-Switching, or IPS, was designed to overcome the shortcomings of a Twisted Nematic panel and they are replacing TN panels. These panels also use polarized filters, liquid crystals, and transmitters. However, in this case, the arrangement is different. The liquid crystals in an IPS panel design are aligned in a way that allows less light to distort and achieves better color visibility. Additionally, IPS panels use 8-bits of depth per color unlike TN’s 6-bit, which results in a wider 256 shades spectrum. This takes care of the color accuracy problem.

The second thing that is improved in IPS panels is the range of viewing angles. While Twisted Nematic panel displays ‘washed out’ at shallow angles, IPS displays have rich colors that don’t shift/fade when viewed from side angles. One other significant improvement of the IPS screen was that there were no trailing distortions when you touched them. This made them ideal for Touch-screen applications.

While marketed as the best of the best, IPS screens have some drawbacks of their own. The major one happens to be the cost. The construction of IPS panels requires a greater number of transmitters and lighting for each pixel. Now, the higher the resolution of the constructed panel will be, the greater number of pixels will be mounted on the panel. This results in a complex architecture, and they cost more than their TN counterparts. However, with the rising competition in the market, the prices of IPS panels have come down from expensive to reasonable, and you can get a decent IPS display for a few hundred dollars. However, the more you want from your monitor as a consumer, the more pricey it will become. This leaves high-end IPS monitors most commonly found at the desks of editing professionals and competitive gamers – people who want a lot of color accuracy and detailing along with decent speed and longevity.

Today, many variants of the IPS also exist, like Samsung’s popular PLS (plane line switching) panels. These variants are not entirely different from IPS, though there are subtle ‘generational improvements’ like enhancements in viewing angles, brightness and whatnot. LG also has a variation to the IPS, called as the eIPS, which is basically a IPS panel you can get on a budget. However, in real world use, the usage experience varies by a little factor.

VA (Vertical Alignment) panel technology sits between the high speeds of TN and the color richness of IPS panels. Constructed implementing IPS’s 8-bit color depth per channel approach (that has a crystal design capable of reproducing rich colors), VA (and its variants) also retain some of the low latency of TN panels. This results in a display that is ‘almost’ as fast as TN and as colorful as IPS.

Often reaching 5000:1, VN panels have a superior contrast as compared to both IPS and TN screens, and this remains the highlight among other features. These panels reproduce better black levels than TN or IPS. However, there are more issues with VA panels today than there are advantages, and some of these issues can’t be ignored.

First on the list of cons is the color (and contrast) shift that happens when we view media from a wide angle. And while the viewing angles of VA panels are wider than TN, the shift is similar to a TN panel and renders most VA panels ‘not ideal’ for tasks that require a great amount of color accuracy. When it comes to gaming, there’s another issue. VA panels offer rapid light-to-dark pixel transitions. However, darker color shifts aren’t as speedy, and it can lead to blurring during high-performance tasks.

Just like there are variants of IPS, VA panels also have their own. To put it simply, they progressed from 1998 to 2005 (and beyond) from MVA, AMVA to AMVA+. MVA or Multi-domain Vertical Alignment technology first came out in 1998 and provided a 25ms response time with 160-170 degree viewing angles. This was, of course, a lot of value at the time. Today, these panels can be found as AMVA (Advanced MVA) in many displays, and they offer a contrast ratio as high as 5000:1 (which is the best contrast ratio in LCD technology), and QHD (2560 x 1440p) resolution at a wide screen size like 32 inches. So again, a lot of value here as well. After that, we have the AMVA+ which had improved viewing angles on the standard AMVA.

So in a nutshell, while VA panels are much better than average TN panels regarding color reproduction, they are still not good enough if you were to switch to premium TN panels oriented for gaming purposes. And when it comes to IPS panels, they dominate the list but with one disadvantage – price. If we were to talk about performance, high-end IPS panels reign over all else, with response times as low as 1ms, 144Hz refresh rates and supporting resolutions all the way up to 4K and 5K. If, however, you want to talk ‘value for money,’ TN panels give you decent colors and speed at decent rates. And if you have some more money in your pocket after selecting a TN panel of certain specifications, you can look for a VA panel that will offer you some added color quality and viewing angles. It’s all about comparison here, and understanding the fundamentals of these panels is a good starting point.

tn display vs tft display pricelist

IPS displays are highly popular for their eye-catching color and wide viewing angles. In fact, Lenovo now offers more laptops, tablets and monitors based on In Plane Switching or IPS display technology than with the earlier TN (Twisted Nematic) construction – although TN models are still prized by some users, such as hyper-competitive PC gamers.

So, what does an IPS display really deliver? Which laptop and monitor buyers are most likely to benefit from IPS technology? And why do some users still prefer older-style TN displays? Read on for answers to these and other questions.

IPS and TN are different kinds of TFT LCDs (Thin Film Transistor Liquid Crystal Displays). At the simplest level, LCDs rely on the light modulating properties of energized liquid crystals – along with coordinated light filtering polarizers (both behind and in front of the crystals) -- to control what appears on the screen. By applying voltage to each crystal (or not), light is made to pass through the polarizers (or not). When these changes are managed at microsecond intervals, you get smooth moving images.

TN and IPS displays differ in how their light-influencing polarizer layers are aligned. If this sounds too technical, just know that when polarizers are aligned similarly, light can pass through, but when they’re put in different orientations, light is blocked. And when you place liquid crystal molecules between the polarizer layers and apply voltage, interesting things happen:

TN polarizers are aligned perpendicular to each other. Without voltage, the liquid crystal molecules naturally “twist” the light so it can go from a vertically-aligned polarizer, be twisted in the crystals, and then pass through the associated horizontal polarizer. But if you apply voltage (in other words, if you disrupt the crystals’ natural properties), the light no longer gets twisted and the perpendicular polarizer orientations block light from passing through.

IPS polarizers are aligned in parallel, which would normally allow all light to pass through. But again, the resting liquid crystal molecules twist the light to disrupt the normal flow. So IPS displays work in an opposite manner from TN ones. Rather than the application of voltage blocking light, the voltage lets light get through. It prevents the liquid crystals from twisting the light so it can pass through the parallel polarizers as usual.

There’s a lot more to it, of course. But this gives you the general idea of how TN and IPS displays differ. And it’s these differences that give each type of display distinct advantages for specific customers. For example, the parallel polarizer alignment on IPS displays is one reason they can be viewed from extreme angles compared to their TN counterparts. Meanwhile, the way TN displays let light through by default (without applying voltage to disrupt the flow) is one reason TN displays have faster response times and refresh rates than similar IPS models.

Your need for IPS technology depends on how you will use your laptop display or standalone monitor. Here’s a quick run-down of the relative advantages of IPS and TN displays. How does each type match your requirements?

Wider viewing angles: The parallel orientation of an IPS display’s crystals and polarizers make them far easier to see from extreme angles, such as for viewing by large groups. Only those farthest to the side of the display will see any big diminishment in color and contrast.

Greater variety of colors: Most IPS displays feature 8-bit panels (8 bits red, 8 bits green, 8 bits blue), so they can better reproduce the full 24-bit color palette of a typical graphics processor (8 x 3 = 24). Many TN displays have 6-bit panels (6 x 3 = 18) and use extra steps to emulate the full color range.

Improved color accuracy: IPS displays are generally built to meet a higher price point than TN ones and use better backlights capable of generating far wider color gamuts (for example, Adobe RGB versus the older sRGB). The additional hues and shades allow more realistic, true-to-life colors.

One perceived disadvantage of IPS monitors compared to TN ones is their relatively slower refresh rates (the time needed to reconfigure each on-screen image) and response times (the delay when a pixel changes from an active to inactive state). But these delays are measured in milliseconds, so the vast majority of users – say, everyone but advanced PC game players -- will not be impacted. IPS is plenty fast enough for streaming movies, making video calls, and so on.

Faster response times and refresh rates: As stated above, the nature of a TN display makes it faster at refreshing the on-screen imagery and activating/deactivating each pixel. And while the difference is only a few milliseconds (the best TN panels boast response times as fast as 1 ms -- 2-3 ms faster than top-end IPS models), competitive PC gamers typically want the fastest refresh rates and response times.

Lower prices (generally): It’s broadly accepted that a TN display will cost less than an IPS one with equivalent resolution, features, and so on. However, the price difference has narrowed over time, with some IPS monitors now available for $200 USD or less. Still, be wary of IPS displays that seem too inexpensive. Some users complain about so-called “IPS glow” on low-end IPS displays, with the backlight appearing brighter in some parts of the screen than others.

Ready to shop? Lenovo offers a full line of laptops, tablets, standalone monitors, and all-in-ones with different display technologies. Now that you know how IPS and TN displays differ, you’re ready to make your choice.

tn display vs tft display pricelist

It becomes a necessity in modern society. LCD panel is the most important part of an LCD display. It determines LCD screen"s performance, e.g. brightness, contrast, color and viewing angle. Therefore, picking the right type of LCD panel is critical to your application.

These names reflect the alignment of crystal molecules inside the LCD, and how they change when they are charged electrically. All liquid crystal displays change the alignment of liquid crystal molecules to work, but the manner in which they do so can drastically affect the image quality and response time. Each panel type has its advantages and disadvantages. The easiest way to choose between them is to decide which attributes are most important to your project. It mainly depends on what you use your LCD display for, and your budget.