led v lcd screen manufacturer
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.
If you spend long durations in front of a screen, it"s essential to make the best choice when buying one. Getting a high-quality screen will go a long way in enhancing your gaming, working, and watching experience. Additionally, it will help relieve eye strain even with prolonged use of the screen.
There are tons of screens available in the market today. However, LED screens and LCD screens are by far the most popular. But what is the difference between LCD vs. LED screens?
LED screens feature light-emitting diodes lights installed in the screens. The screens can be volatile or static, with some of them only responding to touch. Other LED screens will display pictures even when turned off.
Some of the benefits of LED monitors nclude enhanced picture quality and local dimming. Local dimming helps to dim down certain areas of your TV"s backlight. This helps to make the screen appear darker and better in displaying blacks.
Local dimming helps a lot in enhancing your screen"s contrast ratios. The higher the levels of the contrast ratios, the more enhanced difference between blacks and whites.
LED backlighting is an essential feature in offering realistic pictures. The features enhance the popularity of the LED screens (check out the Viewsonic TD2230 Review).
The main difference between LCD and LED displays is that the LCD screens come with a layer of liquid crystals. The liquid crystal layer is put between two plates. Images are made when light passes through parts of the liquid crystal.
The liquid crystal part either block or enhance an area which helps to create the image. Most LCD panel types have LED lights that help bring out the image.
Older LCD screens and use Cold Cathode Fluorescent Lamps (CCFLs) to light the screen. The CCFLs use electron discharge and fluorescence to light the screen.
LEDs like the one from our "Dell Computer Ultrasharp 24.0-Inch Screen LED Monitor Review" are taking over the market while LCD screens with CCFLs are fading away. LCD screens are used in watches, some notebook computers, and calculators.
OLED stands for organic light-emitting diodes, and it uses an organic compound to create outstanding high-contrast images - OLED screens are more environmentally friendly. They are also thinner than a standard LED screen as they don"t require a thick LED backlighting behind the screen to illuminate it.
On the other hand, you have QLED screens that are created and patented by Samsung. The QLED screens offer more crisp images as they create light with a shorter wavelength.
The Q in QLED stands for Quantum Dot (see Quantum Dot and IPS). The screens have an additional layer between the LCD screen and the backlight of the monitor. The layer allows light to pass through easily and produce better colors than an ordinary LED screen.
Slimmer design:LED screens to come in a slimmer design than their LCD counterparts. This gives them a sleek and elegant look, and it also takes less space.
Cheaper to run:If you are trying to cut down on energy cost, an LED screen will be a better option between the two as it is more energy-efficient. However, LED screens are more expensive than their LCD counterparts. As such, you can expect to pay more initially.
Better color:If you want to enjoy more realistic images, LED will be the better option. The screen offers you better color than other screens in the market. Additionally, it offers a better contrast, which is the range between the darkest blacks and brightest whites on the screen. The enhanced contrast ensures you end up with the most realistic images.
However, if you are working on a tight budget, you may consider an LCD screen. Besides the cost, LED performs better than the LCD screen in all the other aspects.
If you want to find out the type of screen you already have, you can check out the screen"s model number. The model number can tell you if the screen is an LED or LCD.
When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.
You"ll be happy with the picture regardless of what kind of display you buy. Still, LED TV have a few practical advantages that make them a better purchase than the older LCD TVs.
With an LED light, the pixels are either edge-lit or backlit. As such, the lights behind the screen are designed to light up all the pixels in your monitor at once.
An edge-lit monitor may not be the best for picture quality as the lights are only at the edges of the screen. However, screens with edge lighting have become very popular nowadays as the best budget choice. The edge lights allow for the creation of thin monitors at a low price which enhances their affordability.
If you are working in an office, you may have to spend eight or more hours in front of your monitor. If you keep looking away from the screen due to eye fatigue and strain, it will affect your productivity. The eye strain can also cause headaches to some people.
LED monitors feature better dimming options without sacrificing picture clarity. They also come with features that reduce eye strain, making them the ideal option if you are spending long hours in front of the screen.
Alternatively, you can go for LCD screens that offer arefresh rate of 120Hz or more. The LCD screens also offer a wider variety of viewing angles, which can offer better comfort.
Apart from watching movies and working, you can also get a monitor for gaming. Whether you are a gaming enthusiast or gaming for fun, you want a monitor to offer you the best picture clarity.
A perfect monitor for gaming should offer you a high refresh rate, low lag, and low response times. A screen response time refers to how fast the pixels change from one image to the next. Lag refers to the delay you experience between pressing a button and seeing the corresponding action on your screen.
You can trust an LED monitor to offer you the best resolution for the most precise and crisp images. This enables you to enjoy clear and lifelike images.
When choosing between LED and LCD monitors, there are several factors to consider. Besides the backlighting technology, you should also consider the panel type - see also what types of monitors are there. Various panels have their benefits compared to others.
LED monitors tend to be more expensive than LCD screens, thanks to LED technology being newer and featuring pricier components. Additionally, there is a newer form of LED called the OLED, which stands for Organic Light-Emitting Diodes. These OLED displays are extremely expensive, especially at high resolutions. LED technology, on the other hand, is extremely cheap and readily available.
Are you lost on the best choice between LCD and LED monitors? If you spend a lot of time in front of your monitor, you should ensure you end up with the best quality screen. This will ensure that you get high-quality images and also minimize eye strain.
In the battle between LCD and LED displays, LED comes out as the better option. It offers more crisp and clear images, and it also comes with a sleek and elegant design. However, it can be a little expensive. If you are working on a budget, LCD monitors can make a perfect choice.
LED technology has improved drastically in recent years improving picture quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours. LCD is cheaper and generally more familiar. A LCD screen typically has a lifespan of about 50,000 hours.
Sort of. Older technologies like LCD technology and Plasma displays are becoming obsolete due to the intrinsic properties of LEDs like brightness, efficiency, maintainability, and sustainability.
LCD screens emit blue light and thus negatively affects not only vision but also overall health. Continual extended screen time mainly can impact your eyes in two major ways. When we look at a screen, our blink rate drops significantly, thus causing digital eye strain.
Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.
Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:
Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:
MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:
Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.
LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.
Cantwell, John; Hayashi, Takabumi (January 4, 2019). Paradigm Shift in Technologies and Innovation Systems. Springer Nature. ISBN 9789813293502 – via Google Books.
"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.
"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.
"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"Business Place Information – Global Operation | SAMSUNG DISPLAY". www.samsungdisplay.com. Archived from the original on 2018-03-26. Retrieved 2018-04-01.
"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.
Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.
Byeonghwa, Yeon. "Business Place Information – Global Operation – SAMSUNG DISPLAY". Samsungdisplay.com. Archived from the original on 2018-03-26. Retrieved 2018-04-01.
www.etnews.com (30 June 2017). "Samsung Display to Construct World"s Biggest OLED Plant". Archived from the original on 2019-06-09. Retrieved 2019-06-09.
Colantonio, Andrea; Burdett, Richard; Rode, Philipp (2013-08-15). Transforming Urban Economies: Policy Lessons from European and Asian Cities. Routledge. ISBN 9781134622160. Archived from the original on 2019-01-01. Retrieved 2019-06-09.
Shilov, Anton. "LG"s New 55+ inch OLED Plant in China Opens: Over 1m+ per Year". www.anandtech.com. Archived from the original on 2019-09-14. Retrieved 2019-12-18.
www.wisechip.com.tw. "WiseChip History – WiseChip Semiconductor Inc". www.wisechip.com.tw. Archived from the original on 2018-02-17. Retrieved 2018-02-17.
"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.
Shilov, Anton. "JOLED Starts Construction of New Printed OLED Facility". www.anandtech.com. Archived from the original on 2019-06-30. Retrieved 2019-06-30.
Pooler, Michael (29 September 2015). "Subscribe to read". Financial Times. Archived from the original on 2019-10-25. Retrieved 2019-10-25. Cite uses generic title (help)
The modern era has shown a tremendous switch from LCD to LEDdisplay. The innovative introduction of LED screensin the television market, at best quality and decent pricing, has taken the market by storm. Every individual is switching rapidly from LCD to LEDscreens. The reason for the switch lies in the innumerable benefits Led has to offer to its clients. Here at Dynamo LED, we offer both LED and LCD, and we appreciate the benefits of both technologies.
An liquid crystal display) uses CCFL’s, which is more power-consuming than LED. The CCFL dissipates more light than the LED, and hence they even tend to make the television warmer to touch with prolonged use. This even makes the LCD more prone top catching fire than the LED televisions.
The LED is lighter weighted and easily portable compared to LCD television. The LED is also more affordable and economical than the LCD now. The long-lasting superior quality makes it more worth to invest in an LED than an LCD.
Eye safety is a major concern in today’s modern era, where people are always working in front of a laptop or computer screen. It is recommended by experts to invest in LED displayscreens to work on desktop, laptops, or even watch television. The LED have far better display panel in the prospective of eye safety, picture quality, and power consumption. Both LC and LED make use of Liquid crystal display, but the difference lies in the backlight, which is majorly responsible for the effect on the eyes. The regular LCDs use a cold fluorescent cathode display backlight, and the LED uses Light Emitting diodes. The LED backlighting is smaller and much safer for the eyes.
The picture quality of the LED display is far better than the LCD. The LED uses an RGB contrast, which makes the pictures almost come alive on the television screen giving its viewers an enjoyable experience.
Though these benefits make LEDs the first choice, it is important to state very clearly that LEDs are not at all cheap. Though the long durability, high-quality picture, the energy-saving feature, and eye safety technology makes it worth the investment compared to less durable and little lower quality LCD display. Why settle for less when the bigger and better product is available at a little higher price,, giving innumerable benefits to its consumers. The LED may be bulkier in price but definitely worth it.
Besides better picture quality, LED Televisions are also energy efficient. They consume very little energy compared to LCD televisions. There is an almost 50% reduction in the power consumption for LED televisions.
It is often claimed that LCD TVs’ lifespan is around 75,000 hours, whereas with LED TVs, you can expect up to 100,000 hours. This is clearly 25% more on average, so LEDs are the clear winner here.
The LED is often regarded as a third-generationdisplay. It meets the demands and preferences of the new generation very much. They are more attractive in designs too. With the increasing shortage of space in the new residential complex, what better than the ultra-thin LED display giving a cinematic experience in the comfort of your homes. LEDs are the first choice among the public today, be it the old generation or the new young youth. All are opting for a switch to LED from the LCD to make lives more enjoyable and better.
In the world of digital signage, there are two prominent display technologies: LCD and LED. There’s also a considerable amount of misconception about these technologies and how they relate to each other or work together. The blame for much of this confusion can be attributed to the advent of LCD TVs with LED-backlighting technology, so let’s clear that difference up before we move on.
With any digital display, you must have a well working light source so that you can see the picture brightly. Until very recently, TVs have always been backlit—that is, illuminated from behind the display monitor. For a long period of time after television sets were invented, this was done by firing electrons through a “gun” to the screen (tube and projector TVs). In the early 2000s, LCD TVs were backlit by fluorescent bulbs. More recently, however, TV manufacturers began using LED technology as the light source for flat-screen LCD TVs, as this method provided more versatility and uniform picture lighting, therein lies some of the confusion.
As picture displays, there are many differences between LED display features and LCDs. Given advances in LED display technology—and drastically lower cost—both display types can be viable options for a variety of interior spaces. And of course, each has benefits, and each has limitations. To determine the best display for a digital signage project, it’s critical to understand exactly how each display type will perform and why one is better than the other in a given situation. It’s important to compare, not only cost, but also factors such as brightness, durability, size, resolution, vibrancy, and many more features that are on the market.
LED stands for light-emitting diode. By definition, LEDs provide their own light. Once reserved for large-scale, exterior digital displays, direct-view LED signage has emerged as a greatly improved, widely applicable medium, now suitable for virtually all display installations, both indoor or outdoor. In the digital signage industry, direct-view LED displays have now become the norm and work well together.
LCD stands for liquid crystal display. This type of display uses light-modulating properties of liquid crystals. As referenced above, liquid crystals don’t produce light directly; instead, they use a backlight to produce images on the screen. LCDs are used most often in interior applications, where users are in proximity to the screen. With this display technology, ambient light is usually limited and controlled.
Typically, LED displays have a higher up-front cost than LCDs; however, unlike LCDs, LED displays are rugged and durable, even in the most inhospitable environments. Additionally, they can be upgraded and retrofitted relatively easily. For total cost of ownership and longevity, the better option is the LED.
Brightness is typically measured in NITs. One NIT is equivalent to one candela per square meter. The brightness for LED displays ranges from hundreds to thousands of NITs. LCDs have a much lower brightness range feature. LED displays are able to compete in well-lit areas, both inside and outside. In contrast, competing light will severely impact an LCD; many times, this renders the picture unviewable.
While LED and LCD displays can both render most types of content, there are some drawbacks to LCDs. They can sometimes hold the “memory” of an image, and leave behind a residual imprint referred to as “image persistence.” It’s caused when a still image remains on the screen for too long. The colors become “stuck” in place. When the display tries to shift to another color, the crystals don’t want to budge. The result is a color that is slightly skewed from the intended one. LED displays do not encounter this issue.
Video walls are one of the most popular ways to use digital displays in interior spaces. From entertainment venues to other various retail spaces on the market, video walls have wide appeal. This makes the setup more complex than single screens, so it’s essential to have the right screens. LEDs are typically the preferred display for video walls. They are seamless, tiling together with no bezels. In a well-installed application, video walls have excellent uniformity and the widest viewing angles. LCDs can be tiled, but their bezels cause gaps and visual barriers. While there are LCDs with narrow bezels, small seams are still visible, unfortunately.
An LED display can be any size. There are no inherent limitations. They can also be curved, concave, or convex. They can even wrap completely around a pillar for a 360-degree effect. LCDs are typically only available in the standard sizing set by the manufacturer.
SNA Displays is a global manufacturing leader in LED video displays. We offer fully customizable LED products, thereby providing you with the most impact on your messaging. To learn more about how LED signage can power your digital display project, view our portfolio.
If LED screens are simply defined, they are screen systems similar to TV monitor. LCD screens can be considered as the ancestor of LED screens In this text, we will mention the differences between LCD and LED screens. The most basic and significant distinction is that fluorescent lamps are used for illumination goal in LCD screens. However, LED’s, a more up-to-date technology, are used for backlighting in LED monitors. We can list the other distinctions between the two screens as follows;
The picture grade is much clearer than other televisions. The cause for this is that it reflects less than classical televisions even when exposed to highlight. The fact that LED screens are not affected by sunlight is a unique opportunity for effective advertisement.
LED screens and small LED screen panels are extensively used today. Therefore, its usage fields are also very large. LED screens are used in football fields, malls, hospitals, openings, hotels, competitions and many more. As can be seen, the wide usage areas of LED screens provide convenience to people in many aspects. It is preferred because of the nominal cost of some LED screens. And for this reason, its usage area is also wide. LED panels are preferred in the fields of art and culture, visual presentations, classroom boards and logos.
The point of view limitation of LCD screens panels is greater than that of LED screens panels. That is to get a quality view on LCD’s, the screen should be viewed directly from a vertical angle. If viewed from different angles, the view loses its authenticity. LED screens preserve view grade and maintain the wanted realism from whatever angle they are viewed. Therefore, LED screens panels outdoor are more preferred. Because natural color transitions and realistic appearance from all angles are clearly visible.
What resolution should I choose for LED screen variants? For example, a nominal resolution LED screen can be seen clearly from afar. But when you look closely, you will notice that the image is not clear. For this reason, low resolution should be preferred for outdoor large LED screens. In indoor LED screens, high resolution should be preferred so that the viewers look at the screen at eye level and obtain a clear image.
LED Screen Panels has a wide range of products and exports these products to France, Italy, Greece, USA, England, Bulgaria, Kuwait, Lebanon, Romaniaand many more countries. Of course, we recommend you to select the LED Screen Panels for safe and quality shopping. You can reach us at any point you want to get information. Our expert team is at your service 24 hours a day. If you wish, you can fill out the form below to get detailed information and especially to unpaid price information about the best outdoor LED screen.
One of the most common questions we’re asked when assisting businesses establish their digital signage systems is whether an LED or an LCD display is best for their business. The answer is always contextual to the clients’ needs. It starts by clarifying what the difference between the two actually is.
When we’re talking aboutconsumer products such as computer monitors and televisions the first thing to know is that an LED screenis an LCD screen, but an LCD screen is not always an LED screen. An LED monitor or television is just a specific type of LCD screen, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen.
For the display to be considered an LED screen, it means it is utilising ‘Light Emitting Diodes’ to generate the light behind the liquid crystals to form an image. A non-LED LCD screen has backlights (called fluorescent lamps) behind the screen that emit white light which cannot pass through the liquid crystals until an electric current is applied to the liquid crystals which then straighten out and allow light to pass through.
This is where it can get easy to divert away from giving clear advice on whether as LED or LCD display is best for your business, because consumer displays differ from commercial displays. We are not trying to give the reader direction on which monitor is best for their gaming set-up, but which screen type is ideal for communicating your business’ messages.
Commercial LED displays are typically referred to as Direct View LED. This is because they use LEDs as the individual pixels that make up the image itself. Using a surface array of LEDs removes any need for a liquid crystal display panel, which carries noticeable benefits for particular uses.
While LCD flat panels are available in resolutions of 1080P and 4K UHD, Direct View LED displays are measured by pixel pitch. Pixel pitch is the distance from the centre of one pixel cluster to the centre of the next pixel cluster in an LED screen. The smaller the pitch, the closer viewers can get to the display before they see the pixels themselves. Outdoor configurations may have a pitch of 10mm to 40mm, as they are viewed at longer distances.
For use indoors, where viewers would be closer to the display, a pitch of 10mm or less would be required, some have even sub-1mm pixel pitch. When considering Direct View LED displays, it is important to know the minimum viewing distance required. Multiplying the pixel pitch by 1,000 gives you a good rule of thumb for the minimum viewing distance.
Direct view LED displays can either use discrete oval LEDs which are basically one single self-contained diode, or Surface Mounted Device (SMD) LEDs. SMD LEDs contain 3 individual light-emitting diodes bunched together. Either way, it’s the light-emitting diodes that create the images you see on screen. This is explained in the image below, courtesy of LG Electronics
Commercial LCD screens are more closely related to their consumer counterparts like TVs but there are still differences to be aware of. It is not advised to simply purchase an LCD TV from your local electronics retailer and install it in a public setting and expect it to function as desired.
Both have been designed to be used differently. Commercial display manufacturers understand that their displays are going to be exposed to far different conditions than a living room television will be. The componentry in a commercial display is optimised to allow for the display to be on 24 hours a day, all year around. They take into account diverse environments such as hot kitchens, high foot traffic, and bad weather,ensuring the product won’t fail in such exposures. The addition of more durable and resistant technology means commercial LCD displays will typically be priced higher than their consumer cousins.
Brightness: When deployed in areas with strong ambient lighting, even the best LCDs can appear washed out and difficult to view, especially when from an angle. Direct view LEDs for outdoor applications can reach 9,000 nits, making them a brighter and better choice for most outdoor applications.
Contrast: Direct View LEDs can turn off pixels that aren’t being used which allows for a higher contrast and therefore a richer image in varied lighting conditions.
Size and shape: Direct view LED-based walls can be flat, curved, wrapped around pillars and more. With no size limit or set aspect ratio they can be used more flexibly than LCDs. Plus, panels have no bezels which means you can piece together Direct view LEDs to create large and uniquely shaped displays with no visible interruptions between units.
Lifespan and servicing: Most direct view LEDs are rated to last 10 years, compared to a typical 5 years for LCDs. Further, they can be easily replaced on-site, reducing maintenance costs.
Tougher: If you’re using an LCD for any outdoor application or one where the unit has to be protected from extreme temperatures or humidity, you’re going to need to include an enclosure and have an understanding of how to properly seal and vent the unit. Outdoor Direct view LEDs, on the other hand, are purpose-built to withstand harsh environments.
Price: The higher upfront cost of Direct LEDs could be the biggest sticking point when it comes to pitching a video wall. While prices have been steadily dropping, Direct view LEDs are still more expensive than LCD alternatives. However, make sure you consider the lifetime cost of the solution and other benefits mentioned above before you discount direct view LEDs.
Functionality: LCD screens can offer a wider range of functionality when it comes to set-up, display settings, and day-to-day control. There is also the addition of touch screen options for LCD displays which are a fairly sought-after feature these days.
Resolution: Whilst the fine pixel pitches available in direct view LEDs today make for impressively resolute images, LCD screens still boast are more uninterrupted image when viewed up close, particularly with the modern 4k displays. This makes them a better option for smaller retail stores, quick service restaurants or office meeting rooms.
Screen brightness is impressive in a variety of locations and from any viewing angle, resolution is extremely clear from a viewing distance of 5ft and above.
As earlier stated, intended use for the display will determine which format you invest in. In outdoor environments or areas with high ambient lighting, brightness is the key concern. For indoor environments, the key concern is image quality and contrast. It’s also imperative to consider the usage environment and what the screen may be exposed to with regards to weather, temperature, humidity, direct contact and other factors. If you have a good understanding of your requirements for content, application, perception and budget then your first move should be to contact a supplier, like Black Lab Design, and we will be able to assist you with designing, building and installing the perfect digital display solution for your business.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
Modern technology is incredible---a marvel of ingenuity, creativity, and talent. The technological revolution of the past century continues to change the world, mostly for the better. Alongside technological innovation, a new vocabulary exists to describe technological advances.
Nowhere is this clearer than in the television market. Understanding terminology is critical to getting the best quality at a reasonable price when upgrading your TV.
A Liquid Crystal Display (LCD) is one of the most enduring and fundamental technologies found in monitors, televisions, tablets, and smartphones. TVs and monitors once used cathode ray tubes (CRTs) to provide the image on your screen. But CRTs were bulky and contained dangerous chemicals. Once LCDs became affordable, they replaced CRTs.
An LCD features a panel of liquid crystal molecules. The molecules can be induced using an electrical current to take certain patterns which either block or allow light to pass through. An LCD TV or monitor has a light source at the rear of the display, which lights up the crystals. LCDs commonly use Cold Cathode Fluorescent Lamps (CCFL) to provide the TV or monitor backlight.
To provide a color image on your screen, the LCD has red, green, and blue sub-pixels in each screen pixel. Transistors within the display control the direction of light each pixel emits, which then passes through either a red, green, or blue filter.
Light Emitting Diodes (LEDs) are small semiconductors that emit visible light when an electrical current passes through them. LEDs are typically more efficient and longer-lasting than traditional lighting.
While manufacturers often use "LED" in place of "LCD," an LED TV is also a type of LCD. Instead of CCFL tubes to provide the LCDs backlight, rows of LEDs provide the backlight. The LEDs give better control of the light, as well as greater efficiency as it is possible to control individual LEDs.
For accuracy, a TV or monitor description should read "LED-Backlit LCD Monitor." But that is a) a mouthful and b) doesn"t allow for the creation of a separate marketable product. That"s not to say there aren"t differences between the two.
However, both LED and LCD monitors have different technologies that make certain panels more appealing to gamers, film buffs, designers, and so on. You should also note that on older screens, the difference between an LCD and LED TV or monitor is more pronounced, due to the relative age of the two lighting options.
There are several different types of LED and LCD monitors. When you"re trying to buy a new TV or monitor, understanding the differences and the terminology will help you bag a better deal. Here are some of the most common variations of the LED and LCD panels.
An Edge-Lit LED TV or monitor has its LEDs arranged around the rim of the display, behind the LCD panels facing the screen. The Edge-Lit option allows for slimmer designs, uses fewer LEDs, and can bring the cost of a new screen down. Light reflects across the screen uniformly to create the image.
One downside to an Edge-Lit screen is the dark contrast. Because the Edge-Lit LED display is brightest closer to the edges, color uniformity and black levels can become an issue, with some areas appearing darker than others.
A Full-Array LED display uses a grid of LED lights behind the LCD. The LEDs shine outwards directly towards the LCD, creating a bright and uniform picture. Full-Array LED panels enjoy the efficiency benefits of LEDs.
For the best image reproduction, a Full-Array LED display may include local dimming. Local dimming means that groups of LEDs can switch on and off as required to provide better overall control of the brightness level.
LEDs are often referred to as emitting white light. Actually, LEDs produce light closer to yellow than a pure white. That difference can create a color shift in the image you see on your screen. To improve on this issue, some manufacturers replace white LEDs with groupings of red, green, and blue (RGB) LEDs.
The display uses advanced electronics and programming to control the RGB LEDs accurately, along with more LEDs. The combination increases the cost of an RGB LED screen significantly for what most viewers would consider a marginal improvement. RGB LED displays never became mainstream because of their higher cost.
Organic Light-Emitting Diodes (OLED) are an advanced form of LED lighting found in some LED monitors. Each pixel of an OLED TV can glow or dim independently, resulting in much better black levels, extremely sharp colors, and better contrast ratios. The majority of OLED TVs and monitors have excellent viewing angles and color quality.
Without a doubt, OLED TVs and monitors (and even smartphone screens) have incredible color depth. But that does come at a cost. The latest generation of flagship smartphones all feature OLED screens, and it is a contributing factor to their massive cost. Another consideration is power. An OLED screen consumes more power than other LED-backlit screens and standard LCD screens.
The acronyms continue with QLED, which stands for Quantum Dot LED. Samsung"s QLED improves color accuracy as much as 90-percent from a regular LED TV or monitor and can hit the high levels of brightness and color depth that HDR requires.
So, what is a quantum dot monitor? In short, quantum dots are semiconductor nanocrystals that absorb light at one wavelength and output it at a different wavelength. The LEDs in a QLED emit all of the blue shades the picture requires. But a blue picture isn"t what consumers want. The quantum dots refract the blue LED light into the green and red shades needed to complete the picture.
A single quantum dot monitor or TV contains billions of semiconductor nanocrystals. Those nanocrystals give QLED screens outstanding black range and color depth, as well as excellent color saturation and contrast.
Just as there are types of LED monitor technology, so is there LCD monitor and TV technology, too. The type of LCD tech powering your screen makes a difference to the final picture. Here"s what you need to look out for.
Twisted nematic (TN) was one of the first LCD panel types, dating back to the 1980s. TN panels have fast response time. Most of the fastest gaming monitors use a TN LCD panel to offer exceptionally fast refresh rates, up to 240Hz. That level of refresh isn"t necessary for most people, but it can make a difference for top-level gamers (for instance, in reducing motion blur and image transition smoothness).
Vertical alignment (VA) panels originated in the 1990s. The liquid crystals in a VA panel are aligned vertically, as the name suggests. The vertical alignment structure allows VA panels to produce much deeper blacks and more vibrant array of other colors in comparison to a TN panel. A VA panel usually has better contrast, too.
While a VA LCD panel has a better color range than a TN panel, they also have a slower refresh rate. They also usually cost more and, as such, are rarely marketed toward gamers. Between TN panels and IPS panels (read below), VA is the least popular LCD panel technology.
In-Plane Switching (IPS) panels are considered the best LCD panel technology for a variety of reasons. An IPS panel offers very wide viewing angles with very fast refresh rates. They"re not as fast as a TN panel, but IPS panels are widely available at 144Hz. At the time of writing, the first few 240Hz IPS LCD panels are hitting the market, although they are extremely expensive for a marginal gain.
Color-wise, IPS panels are excellent. High-quality IPS LCD panel prices continue to fall. However, there are several reasons why you shouldn"t buy a ridiculously cheap IPS gaming monitor.
The type of LCD panel you need depends on its use. Gamers want fast response times and rich depth of color, which is why IPS panels are a great option. If you"re more concerned about picture quality for your favorite films, an OLED panel will perform extremely well.
Still, now you know the terminology behind LCD panels and the pros and cons to each type, you can make an informed decision for your TV or monitor upgrade. But wait, the type of LCD or LED panel isn"t the only thing to consider. Take a moment to learn about the differences between 4K, Ultra HD, and 8K screens.
This isn"t the same technology they use for the giant screens at football games; in fact, the LED screens you see in shops are actually LCDs, and the term "LED" is the invention of Samsung"s marketing department.
How do they get away with this? Samsung"s televisions use a series of Light Emitting Diodes (LEDs) — like the ones used in LED torches and alarm clocks — to "backlight" the LCD panel, and it"s not the only company that does this. But what is backlighting, anyway?
As a consumer technology, LCD has been in widespread use since the early "70s where it first appeared in digital watches. As its name suggests, Liquid Crystal Display is a liquid that has been sandwiched between two plates, and it changes when a current is applied to it.
While we"ve had black-and-white LCDs for years, colour LCDs are a lot more recent, but the technology is the same. As we all know, you need to press a button to read a watch in the dark, and an LCD TV is no different. It needs a light behind it because it emits no light of its own.
It"s helpful to think of an LCD panel as a sandwich, consisting of different layers. On a typical TV you have a polarised filter, followed by a protective glass layer, followed by the LCD sheet, and then a light source at the back.
At present, there are two main methods of backlighting in LCD flat-panels: Cold-Cathode Fluorescent Lamp (CCFL) and LED (light-emitting diode). There are several others, and this includes Sony"s Hot Cathode Fluorescent Lamp (HCFL), but only
CCFL backlighting consists of a series of tubes laid horizontally behind the screen. It used to be the most common method of backlighting for LCD televisions, but it is quickly being superseded by LED.
LED backlighting has been in use in televisions since 2004 when it first appeared on Sony WEGA models. Though there are several different ways of backlighting using LEDs (as we"ll explain shortly), the idea is the same: a series of LED bulbs throw light from behind to illuminate the LCD panel.
There are two different methods of LED backlighting: direct and edge. The main advantage of direct lighting is that it can be used to increase contrast levels by turning some LEDs off — thus increasing the amount of black in parts of the picture. LG is one of the champions of direct lighting.
In comparison, edge lighting"s main advantage is that it can be used to make screens that are incredibly thin — the LEDs are at the side and not behind the screen. Of course, you lose the ability to switch off parts of the backlighting for better contrast, and picture quality could also suffer if light isn"t sufficiently well dispersed.
White LED is very similar to CCFL, and is meant to simulate the white light of the sun for a more "natural" result. But the LEDs aren"t actually white; this approach uses a blue light source that is made to look white by the presence of a sulphur coating on the bulb. CCFLs work in the same way.
As a result, the television could potentially be stronger in the green portion of the spectrum, but some CCFL technologies enable better red and blue response, so better white LEDs could also be possible. The
RGB LEDs, on the other hand, are potentially capable of a broader colour range because they use three LEDs coloured red, blue and green, which is a broadcast standard. RGB"s proponents argue that there is less of a green "push" as a result, and the colour spectrum is more evenly distributed. The Sony Bravia KDL-46XBR45 is an example of a television that used RGB LEDs in its backlight.
Here we have Samsung"s edge-lit LED unit, which comprises of two major components: a long LED module of tiny white diodes and a thin screen-sized plastic sheet known as a light guide plate. Four of these LED modules are deployed along the left, right, top and bottom of the television. The combined light output is then funnelled and redistributed evenly across the screen by the light guide.
We find it interesting that TV manufacturers are still asking for a higher price for LED-backlighting when many cheap devices — particularly mobile phones and netbooks — use LEDs as backlights. As of 2009, Samsung said that LED backlights cost three times more in large sizes than the equivalent CCFL arrangement, and this is mostly due to a lower number of manufacturers. Presumably, as the technology continues to take a firmer hold, the price will keep coming down.
In 2011, only the budget LCD televisions use CCFL backlighting, and all of the major manufacturers use LED lighting in their mid-range and premium models. It won"t be too long before it will become the default method of backlighting. While some people still prefer the look of a plasma, the LED"s combination of thin design and sharp picture quality will soon find favour with many people. If you"re looking for a further explanation of how LCD screens work, then you can try this video on the 3M site.
LED and LCD monitors share a lot of the same scientific qualities. For instance, they each consist of liquid crystals that are used to emit light through a screen and present specially designed images to the human eye. But the way in which these different technologies execute this objective is where they differ from one another. Depending on their main applications, industrial computer monitors can feature either LEDs or LCDs. Keep reading to learn the differences between the two, so you can determine which one is suitable for your specific commercial or industrial applications.
The relationship between LED and LCD monitors is a little bit complex. All LEDs are technically LCDs. LCDs aren’t the same as LEDs. However, both have similar technical properties even though they’re not entirely the same thing and can each be used for various applications.
Eyestrain is one of the most serious and pervasive health risks associated with and caused by ongoing computer and technical device usage. Whether you spend most of your time working at a desk, gaming, or mindlessly scrolling through social media, staring at a screen for endless hours can cause fatigue, blurred vision, headaches, watery or dry eyes, and a string of other physical symptoms.
Both LED and LCD monitors utilize liquid crystals to present images on a screen with the main difference being the type of backlighting that they use. LCD monitors feature fluorescent backlighting, whereas LED monitors use light emitting diodes. The latter has been proven to significantly reduce symptoms of eyestrain by providing a much wider viewing angle and more adjustability. This improves user comfort for long periods of time without causing image distortion.
By far, LED monitors are a lot more suitable for gaming. Just avoid LED screens with edge lighting, as these are very monolithic and don’t allow for any adjustability whatsoever. You have to be sitting directly in front of the screen the entire time for optimal visibility, which can put a lot of strain on your neck shoulders, back, and eyes. Opt for a full-scale LED monitor that’s customizable and adjustable according to your sitting position, height, and optimal viewing angles instead.
OLED, which stands for organic light-emitting diode, plays up the energy efficiency aspect of regular LEDs by allowing individual pixels to be shut off at any given time. OLEDs are also more space efficient than their LED predecessors as they can be made in a much thinner design and the pixels only use power when they’re in use.
QLED, which stands for quantum light-emitting diode, consists of quantum dots. These miniscule phosphor particles become illuminated when a backlight is shone directly on them, which enhances the brightness capabilities of a regular LED.
LCD and LED industrial and commercial monitors consist of liquid crystals and some form of backlighting. Fluorescent backlighting found in industrial LCD monitors consume a lot of energy and place a great deal of strain on the eyes.
Commercial LED displays, on the other hand, softer light-emitting diodes that reduce energy consumption even when they’re turned on for long periods of time and reduce the rate of eyestrain without compromising the video and image quality.
Nauticomp Inc.is a world-renowned designer and distributor of high-efficiency, low energy consumption, and durable LED and LCD displays that are capable of withstanding all kinds of weather conditions and applications. Contact us today to learn more about our products.
If LED screens are simply defined, they are screen systems similar to TV monitor. LCD screens can be considered as the ancestor of LED screens In this text, we will mention the differences between LCD and LED screens. The most basic and significant distinction is that fluorescent lamps are used for illumination goal in LCD screens. However, LED’s, a more up-to-date technology, are used for backlighting in LED monitors. We can list the other distinctions between the two screens as follows;
The picture grade is much clearer than other televisions. The cause for this is that it reflects less than classical televisions even when exposed to highlight. The fact that LED screens are not affected by su