kuman uno r3 3.5 tft display screen free sample

I bought online this LCD Touchscreen Kuman SC3A-NEW-UK. It uses ILI9486 drivers, but it didn"t include any instructions manual, and kumantech.com seems to be devoid of complete technical documentation about SC3A-NEW-UK model.

Just in case it wasn"t noticable: I am trying to make a "Hello World" for my SC3A-NEW-UK"s LCD Touchscreen from an Arduino UNO board. In other words: just print "Hello World" to see if it works.

This compiled in Arduino IDE, no problem, but I still don"t know if it will work well with my screen. I am also confused about initialization of the TFT object and how would I have to wire the LCD screen to the Arduino depending on this initialization:

...i mean, my LCD screen has CS and RESET pins, but what is DC supposed to be here? (in this context, I don"t think it stands for "Direct Current"... but there"s no DC pin reference in my LCD screen written "AS IS"... ?? This brings me more confusion...

...specially having in mind that I don"t know how am I supposed to wire the LCD screen to the Arduino yet. It seems the LCD pins have been designed to fit in directly to the Arduino board without thinking too much about it (like the shape is the same), but that would make the screen getting all the Arduino UNO"s pins for itself, so I don"t think so...

...so, powering the screen shouldn"t be a big deal, but, how am I supposed to connect everything else? I am completely misguided about how am I supposed to interact with the screen from Arduino code... what is RS pin for? Should I use 4-bit or 8-bit mode? (I think 4-bit would imply connecting 4 digital pins for the screen, and 8-bit the whole 8 pins from screen to the Arduino UNO board)? Should I use LCD_RD and LCD_WR? Well you have a picture of my confusion.

Even though I know how to control Input/Output in Arduino code to interact with analog/digital input and output pins at will with C++ in Arduino code (but even so, I think I"m still an Arduino n00b), this LCD screen"s physical interface is very confusing to me...

PD: I have read somewhere that this SC3A-NEW-UK Touchscreen is made to shield Arduino MEGA boards (by fitting the PINs directly into it), but mine is an Arduino UNO Board! (perhaps I shouldn"t have bought This LCD model, then?)... but I have sets of wires, pinboards and stuff... I don"t want to give up the idea of harnessing this LCD screen using an Arduino UNO. I don"t care about shielding feature, I just want to wire it and make it work. I will figure out how to shield electronics later on.

Based on VE7JRO"s answer, I managed to map the connections by seeing where the connections would go if I just fit the connections shielding the Arduino UNO, the way VE7JRO suggested:

I put NONE for A5 input, because that pin of LCD screen doesn"t have any name on it. There are another ones without name as well, that I didn"t include in this table. I believe (perhaps I"m wrong believing it, I don"t know) that those pins without name have no use.

The bad thing about this layout is that it consumes almost all the Arduino pins, so I would not be able to attach additional circuits. However, perhaps I should not be worrying about earning connections yet, before testing the screen.

I still don"t know much of the details about what pins do what for the screen, but I have read somewhere that LCD_D0 to LCD_D7 are meant to receive digital data in some kind of 8-bit parallel mode. But I also heard that there is a 4-bit mode. If I could use that mode with this screen, I would be able to have 4 free digital pins for anything else...

I tested VE7JRO"s code. LCD Screen did draw the interface as expected. But buttons didn"t respond. I found out the code sample needs further calibration.

...because their values when I touch the screen with the touchpen are very weird. I tried to guess which ranges they go, and they don"t make sense when I move around the screen. Perhaps it"s because this strange "Z instead of Y" mapping from the TSPoint object. Perhaps pixel_x and pixel_y don"t need to make an intuitive sense, perhaps it"s just some intrincated in-bound logic that only makes sense within electronics" low-level scope, or within Adafruit_GFX_Button.press method, I don"t know... but x, y and z readings from TSPoint object seem very accurate, despite Y being Z and Z being Y...

There are 22 test sketches that come with the MCUFRIEND_kbv library. One of them scans your display and outputs configuration information (sorry, it"s been a while since I tested my screen). Another sketch will draw little boxes in each corner and sides. This is used to get the x y coordinates of the edges of your particular screen (it might be called TouchScreen_Calibr_native.ino).

z seems indeed sensitive to touch pressure, but it"s like its sensitivity is different depending on the touchpen"s position on screen (altough I"m not a robot, I think I was using more or less the same amount of force with my hand). It prints 0 when i do not touch the screen.

The fifth parameter is supposed to be the resistance measured between LCD_D6 and LCD_RS with the screen unplugged. Unfortunately, my multimeter can"t measure it for some reason (I put it in 2000 Ohms mode for reading resistance: I always get "1", the same than when I don"t connect anything... like if multimeter"s contacts aren"t working well, I don"t know)... so I left the default 300 value.

kuman uno r3 3.5 tft display screen free sample

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.

The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

Now we need to make the buttons functional so that when we press them they would send us to the appropriate example. In the setup section we set the character ‘0’ to the currentPage variable, which will indicate that we are at the home screen. So if that’s true, and if we press on the screen this if statement would become true and using these lines here we will get the X and Y coordinates where the screen has been pressed. If that’s the area that covers the first button we will call the drawDistanceSensor() custom function which will activate the distance sensor example. Also we will set the character ‘1’ to the variable currentPage which will indicate that we are at the first example. The drawFrame() custom function is used for highlighting the button when it’s pressed. The same procedure goes for the two other buttons.

So the drawDistanceSensor() custom function needs to be called only once when the button is pressed in order to draw all the graphics of this example in similar way as we described for the home screen. However, the getDistance() custom function needs to be called repeatedly in order to print the latest results of the distance measured by the sensor.

Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.

kuman uno r3 3.5 tft display screen free sample

if that"s the case I believe then this is using a resistive Touch screen overlay driven through 4 wires and there is no SPI driver, hence no Chip Select.

Then download this TouchScreen Library (I think it"s a copy of Adafruit"s work), copy the .h and .cpp in a folder and add the following .ino in the same folder modifying the #define for the pins based on what you got above:

kuman uno r3 3.5 tft display screen free sample

if that"s the case I believe then this is using a resistive Touch screen overlay driven through 4 wires and there is no SPI driver, hence no Chip Select.

Then download this TouchScreen Library (I think it"s a copy of Adafruit"s work), copy the .h and .cpp in a folder and add the following .ino in the same folder modifying the #define for the pins based on what you got above:

kuman uno r3 3.5 tft display screen free sample

i had the same issues with this 3,5" TFT LCD and wiring it to an ESP32 and making the TouchScreen work. However i managed to find a solution to the problem. Lets start with the wiring:

Next lets focus on the software side. In bodmers awesome library you have to comment/uncomment the right sections. The User_Setup.h file is pretty straight forward. My display used the ILI9488 processor and is run in 8 Bit parallel mode:

When it came to the touchscreen i faced some difficulties. Since the display with 8 bit there is no dedicated "Touch Pin" like other displays use. I decided to use a different library than @Bodmer (no front, still love you and the library <3). I used the ADAFRUIT Touchscreen library in extend:

The Touchscreen sends us four different values if wired correctly. The X-Position, Y-Postition aswell as the pressure applied (XM, YM). These values are received via the following pins:

kuman uno r3 3.5 tft display screen free sample

Frequently Asked Questions About kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 in INDIA

Where can I buy kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 online at the best price in the INDIA?

desertcart is the best online shopping platform where you can buy kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 from renowned brand(s). desertcart delivers the most unique and largest selection of products from across the world especially from the US, UK and India at best prices and the fastest delivery time.

Is kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 available and ready for delivery in INDIA?

desertcart ships the kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 to and more cities in INDIA. Get unlimited free shipping in 164+ countries with desertcart Plus membership. We can deliver the kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 speedily without the hassle of shipping, customs or duties.

Is it safe to buy kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 on desertcart?

Yes, it is absolutely safe to buy kuman 3.5 TFT Touch Screen with SD Card Socket for Arduino touch display compatible R3 Board with Touch Function SC3A-1 from desertcart, which is a 100% legitimate site operating in 164 countries. Since 2014, desertcart has been delivering a wide range of products to customers and fulfilling their desires. You will find several positive reviews by desertcart customers on portals like Trustpilot, etc. The website uses an HTTPS system to safeguard all customers and protect financial details and transactions done online. The company uses the latest upgraded technologies and software systems to ensure a fair and safe shopping experience for all customers. Your details are highly secure and guarded by the company using encryption and other latest softwares and technologies.

kuman uno r3 3.5 tft display screen free sample

hello friends in this video i made a short review video of my order come from banggood banggood gives me a nice experience the in this video we learn how to drive the new, low cost big, 3.5" color tft display for arduino uno and mega. a few weeks ago, amazon shop link: amazon best sellers zgbs?tag=mom036 20 ▻ aliexpress shop link: anche arduino ha il suo monitor touch screen da 3,5". kuman ci ha fornito il suo per testarlo: ecco la recensione! choose hype credit card! free 10€ with this link: hype.it invite 4d615665475046667045343d canale offerte in diesem video zeige ich euch wie man ein tft display mit hilfe eines arduinos ansteuern kann. das tft display kannst du 3.95 inch tft lcd touch screen with sd card for arduino uno r3 eelectronicparts resolution: 480 x 320 combinación arduino mega con la pantralla tft 3.5" de kuman os dejo el programa en overview of uno r3 2.8 tft touch screen with sd card socket for arduino board module. complete with working code where to buy buydisplay default display 5 inch tft arduino touch shield ssd1963 for mega due description spice this video shows how to calibrate the 3.5inch lcd touch screen arduino code download link: tinyurl 3c77p9hx review: 3.5 inch tft with touch screen can display characters, graphics and bmp format images with the help of arduino board.