raspberry pi projects lcd display quotation

Rather than plug your Raspberry Pi into a TV, or connect via SSH (or remote desktop connections via VNC or RDP), you might have opted to purchase a Raspberry Pi touchscreen display.

Straightforward to set up, the touchscreen display has so many possibilities. But if you"ve left yours gathering dust in a drawer, there"s no way you"re going to experience the full benefits of such a useful piece of kit.

The alternative is to get it out of the drawer, hook your touchscreen display to your Raspberry Pi, and reformat the microSD card. It"s time to work on a new project -- one of these ideas should pique your interest.

Let"s start with perhaps the most obvious option. The official Raspberry Pi touchscreen display is seven inches diagonal, making it an ideal size for a photo frame. For the best results, you"ll need a wireless connection (Ethernet cables look unsightly on a mantelpiece) as well as a Raspberry Pi-compatible battery pack.

Several options are available to create a Raspberry Pi photo frame, mostly using Python code. You might opt to script your own, pulling images from a pre-populated directory. Alternatively, take a look at our guide to making your own photo frame with beautiful images and inspiring quotes. It pulls content from two Reddit channels -- images from /r/EarthPorn and quotes from /r/ShowerThoughts -- and mixes them together.

Rather than wait for the 24th century, why not bring the slick user interface found in Star Trek: The Next Generation to your Raspberry Pi today? While you won"t be able to drive a dilithium crystal powered warp drive with it, you can certainly control your smart home.

In the example above, Belkin WeMo switches and a Nest thermostat are manipulated via the Raspberry Pi, touchscreen display, and the InControlHA system with Wemo and Nest plugins. ST:TNG magic comes from an implementation of the Library Computer Access and Retrieval System (LCARS) seen in 1980s/1990s Star Trek. Coder Toby Kurien has developed an LCARS user interface for the Pi that has uses beyond home automation.

Building a carputer has long been the holy grail of technology DIYers, and the Raspberry Pi makes it far more achievable than ever before. But for the carputer to really take shape, it needs a display -- and what better than a touchscreen interface?

https://www.anrdoezrs.net/links/7251228/type/dlg/sid/UUmuoUeUpU10530/https://www.youtube.com/supported_browsers?next_url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Djpt3PiDNdEk

Setting up a Raspberry Pi carputer also requires a user interface, suitable power supply, as well as working connections to any additional hardware you employ. (This might include a mobile dongle and GPS for satnav, for instance.)

Now here is a unique use for the Pi and its touchscreen display. A compact, bench-based tool for controlling hardware on your bench (or kitchen or desk), this is a build with several purposes. It"s designed to help you get your home automation projects off the ground, but also includes support for a webcam to help you record your progress.

The idea here is simple. With just a Raspberry Pi, a webcam, and a touchscreen display -- plus a thermal printer -- you can build a versatile photo booth!

Various projects of this kind have sprung up. While the versions displayed above uses a thermal printer outputting a low-res image, you might prefer to employ a standard color photo printer. The wait will be longer, but the results better!

Projects along these lines can also benefit from better use of the touchscreen. Perhaps you could improve on this, and introduce some interesting photo effects that can be tweaked via the touchscreen prior to printing?

How about a smart mirror for your Raspberry Pi touchscreen display project? This is basically a mirror that not only shows your reflection, but also useful information. For instance, latest news and weather updates.

Naturally, a larger display would deliver the best results, but if you"re looking to get started with a smart mirror project, or develop your own from scratch, a Raspberry Pi combined with a touchscreen display is an excellent place to start.

Many existing projects are underway, and we took the time to compile six of them into a single list for your perusal. Use this as inspiration, a starting point, or just use someone else"s code to build your own information-serving smart mirror.

Want to pump some banging "toons" out of your Raspberry Pi? We"ve looked at some internet radio projects in the past, but adding in a touchscreen display changes things considerably. For a start, it"s a lot easier to find the station you want to listen to!

This example uses a much smaller Adafruit touchscreen display for the Raspberry Pi. You can get suitable results from any compatible touchscreen, however.

Alternatively, you might prefer the option to integrate your Raspberry Pi with your home audio setup. The build outlined below uses RuneAudio, a Bluetooth speaker, and your preferred audio HAT or shield.

Requiring the ProtoCentral HealthyPi HAT (a HAT is an expansion board for the Raspberry Pi) and the Windows-only Atmel software, this project results in a portable device to measure yours (or a patient"s) health.

With probes and electrodes attached, you"ll be able to observe and record thanks to visualization software on the Pi. Whether this is a system that can be adopted by the medical profession remains to be seen. We suspect it could turn out to be very useful in developing nations, or in the heart of infectious outbreaks.

We were impressed by this project over at Hackster.io, but note that there are many alternatives. Often these rely on compact LCD displays rather than the touchscreen solution.

Many home automation systems have been developed for, or ported to, the Raspberry Pi -- enough for their own list. Not all of these feature a touchscreen display, however.

One that does is the Makezine project below, that hooks up a Raspberry Pi running OpenHAB, an open source home automation system that can interface with hundreds of smart home products. Our own guide shows how you can use it to control some smart lighting. OpenHAB comes with several user interfaces. However, if they"re not your cup of tea, an LCARS UI theme is available.

Another great build, and the one we"re finishing on, is a Raspberry Pi-powered tablet computer. The idea is simple: place the Pi, the touchscreen display, and a rechargeable battery pack into a suitable case (more than likely 3D printed). You might opt to change the operating system; Raspbian Jessie with PIXEL (nor the previous desktop) isn"t really suitable as a touch-friendly interface. Happily, there are versions of Android available for the Raspberry Pi.

This is one of those projects where the electronics and the UI are straightforward. It"s really the case that can pose problems, if you don"t own a 3D printer.

raspberry pi projects lcd display quotation

some jokes (dark jokes preferably, because I"m a horrible human being) displayed from JokeApi. I basically copied the example script and started from there.

raspberry pi projects lcd display quotation

first of all let me say that I dont have any experience with a Raspberry, Arduino etc. at all, and also dont own any equipment yet. This is more a general question to the more experienced members here, so please bear with me if this comes across as a big unfocused

What I would like to do is built a keystand for my girlfriend in a NES case, that includes a function to display random quotes in the cardridge slot on key press. Basically, everytime she leaves the house in the morning she can press a button and a nice random quote from storage will be displayed on a LED. Thats it!

I have read through a lot of post here and other forums, and I found things similar to this (I found a post about random fortune cookie quotes), but those were all a bit more focused on the coding in itself, which is not really accessible to me (i have only very basic programming knowledge, and I am not sure if I have time to learn the basics fully). I am trying to catch up on everything myself, but thought that asking my be helpful. So I just wanted to ask for opinions on the following things:

3) Is there are generally very well regarded resource for such tutorials? I have started reading the "Beginning with Raspberry Thread" here, but just in case I thought it might be good to ask.

raspberry pi projects lcd display quotation

Connecting an LCD display to your Raspberry Pi is sure to take any project up a notch. They’re great for displaying sensor readings, songs or internet radio stations, and stuff from the web like tweets and stock quotes. Whatever you choose to display, LCDs are a simple and inexpensive way to do it.

In this tutorial, I’ll show you two different ways to connect an LCD to the Raspberry Pi with the GPIO pins. The first way I’ll show you is in 8 bit mode, which uses 10 GPIO pins. Then I’ll show you how to connect it in 4 bit mode, and that uses only 6 pins. After we get the LCD hooked up I’ll show you how to program it with C, using Gordon Henderson’s WiringPi LCD library.

I’ll show you how to print text to the display, clear the screen, position the text, and control the cursor. You’ll also see how to scroll text, create custom characters, print data from a sensor, and print the date, time and IP address of your Pi.

There’s another way to connect your LCD that uses only two wires, called I2C. To see how to do that, check out our tutorial How to Set Up an I2C LCD on the Raspberry Pi.

Most people probably want to connect their LCD in 4 bit mode since it uses less wires. But in case you’re interested, I’ll show you how to connect it in 8 bit mode as well.

In 8 bit mode, each command or character is sent to the LCD as a single byte (8 bits) of data. The byte travels in parallel over 8 data wires, with each bit travelling through it’s own wire. 8 bit mode has twice the bandwidth as 4 bit mode, which in theory translates to higher data transfer speed. The main downside to 8 bit mode is that it uses up a lot of GPIO pins.

In 4 bit mode, each byte of data is sent to the LCD in two sets of 4 bits, one after the other, in what are known as the upper bits and lower bits. Although 8 bit mode transfers data about twice as fast as 4 bit mode, it takes a longer time for the LCD driver to process each byte than it takes to transmit the byte. So in reality, there isn’t really a noticeable difference in speed between 4 bit mode and 8 bit mode.

If you’ve never worked with C programs on the Raspberry Pi, you may want to read our article How to Write and Run a C Program on the Raspberry Pi first. It will explain how to write, compile, and run C programs.

WiringPi is a C module that makes it easy to program the LCD. If you already have WiringPi installed on your Pi, you can skip this section. If not, follow the steps below to install it:

WiringPi has it’s own pin numbering system that’s different from the Broadcom (BCM) and RPi physical (BOARD) pin numbering systems. All of the programs below use the WiringPi pin numbers.

To use different pins to connect the LCD, change the pin numbers defined in lines 5 to 14. You’ll need to convert the WiringPi pin numbers to the physical pin numbers of the Raspberry Pi. See here for a diagram you can use to convert between the different numbering systems.

To use the LCD in 4 bit mode, we need to set the bit mode number to 4 in the initialization function (line 20 below). The following code prints “Hello, world!” to the screen in 4 bit mode:

By default, text is printed to the screen at the top row, second column. To change the position, use lcdPosition(lcd, COLUMN, ROW). On a 16×2 LCD, the rows are numbered from 0 to 1, and the columns are numbered from 0 to 15.

The function lcdClear(lcd) clears the screen and sets the cursor position at the top row, first column. This program prints “This is how you” for two seconds, clears the screen, then prints “clear the screen” for another two seconds:

Each LCD character is a 5×8 array of pixels. You can create any pattern you want and display it on the LCD as a custom character. Up to 8 custom characters can be stored in the LCD memory at a time. This website has a nice visual way to generate the bit array used to define custom characters.

To print a single custom character, first define the character. For an example of this see lines 12 to 19 below. Then use the function lcdCharDef(lcd, 2, omega) to store the character in the LCD’s memory. The number 2 in this example is one of the 8 locations in the LCD’s character memory. The 8 locations are numbered 0-7. Then, print the character to the display with lcdPutchar(lcd, 2), where the number 2 is the character stored in memory location 2.

Here’s an example of using multiple custom characters that prints the Greek letters omega, pi, and mu, plus thermometer and water drop symbols for temperature and humidity:

As an example to show you how to display readings from a sensor, this program prints temperature and humidity readings to the LCD using a DHT11 temperature and humidity sensor. To see how to set up the DHT11 on the Raspberry Pi, see our article How to Set Up the DHT11 Humidity Sensor on the Raspberry Pi.

Hopefully this helped you get your LCD up and running on your Raspberry Pi. The programs above are just basic examples, so try combining them to create interesting effects and animations.

If you have any problems or questions about installing the LCD or programming it, just leave a comment below. And don’t forget to subscribe to get an email when we publish new articles. Talk to you next time!

raspberry pi projects lcd display quotation

I recently received a new Raspberry Piand wanted to create an Intro to Raspberry Pi project. My Pi included a 16x2 LCD display and a Wi-Pi Card so I created the Wireless Raspberry Pi Powered Joke Machine. Just press the push-buttons and the machine will look up a one-liner and scroll through it. (Admission of guilt here...I originally thought it would be neat to create a desk-toy that could display inspiring and educational famous quotes...the Joke Machine cando this, but when I found I could just as easily generate one-liners, I decided that would be more fun :-) )

This Step by Step Instructable walks you through the process of setting up a new Raspberry Pi, adding the the PiFace Control and Display LCD, the WiPi wireless and the provided python script TheQuoteMachine.py which looks up jokes and quotes on a free service called iheartquotes.com. it"ll also describe how to access your Pi without need for a keyboard or Display using VNC remote access.

A Raspberry Pi comes with "Do it Yourself Filling", that is you decide what flavor of Linux you want on it. An easy way to do this is to use a NOOBS SD card to install Linux

NOOBS stands for New Out of the Box Software. You can buy a pre-installed NOOBS SD card (what I used for this project) or download your own from http://www.raspberrypi.org/downloads.

Next I set up VNC so that I could access my Pi from my normal laptop computer. Vnc is a process that allows me to use Graphical applications without connecting any screen up to the Pi itself.  Here"s how to set it up Install vncserver by running this command on the Pi:

connect from your laptop using the ipaddress and port of the vncserver (and the password you created above) To use vnc when you don"t have a Monitor on the Pi, you can either set up the Pi so vncserver starts automatically at boot time, or connect to the pi by using ssh or winscp to log on commandline style to the Pi and start the server.

Python is already installed on the Raspberry Pi, so to run my Quote Machine script you simply need to Download the script from instructables.com (to your Raspberry Pi)

Now you can run /home/pi/bin/TheQuoteMachine.py  It will connect to the free service http://www.iheartquotes.com and display hilarious one-liners. It does this by running a URL that returns the one-liners back in straight text, splitting the text up into 16 character wide segments and then monitoring the PiFace button events that let you scroll up and down through those segments.

Button 4 is the Quit ButtonInstall Your Quote Machine in a Project Box -steps vary depending on the box you use I used a Sharpie to mark where the LCD display should be mounted on the project box

Im having an issue it might be because I don"t have the pi face installed into it yet but the code Chomd +x /home/pi/TheQuoteMachine.py it doesn"t work I tried to run it in the terminal and python0

Nice one , I was also struck with same idea to create something called "words of wisdom" with Pi. But I would rather like to use C for programming Pi. I"m using WiringPi for GPIO control , can you plase tell me is it possible to replicate that with C. Thanks0

This is a really cool idea! I like the prospect of the joke machine. I had an idea for another function. I am thinking about taking your design and making a Fortune Cookie Machine. I found this little metal fortune cookie at a bookstore and I thought it would be cool to make a device like this and attach the metal cookie thing to it and make it generate fortunes. I have not worked with a Raspberry Pi yet, but I think this would be a really cool project to start working with it, when I can spare some cash to get supplies.

thx! I"d like to see what the fortunecookie looks like. The website I get jokes from also has fortunes. You could find a thermal printer and print them out! surplus stores sometimes have them as old credit card machines. use a model a pi to save some money and store the quotes on the sd card to reduce the need for the Wii pi csrd. Good luck!0

raspberry pi projects lcd display quotation

Touchscreen display has so many possibilities when used with Raspberry Pi boards. Here"s a list of top 10 must try raspberry pi touchscreen display projects:

The official Raspberry Pi touchscreen display is seven inches diagonal, making it an ideal size for a photo frame. For the best results, you’ll need a wireless connection (Ethernet cables look unsightly on a mantelpiece) as well as a Raspberry Pi-compatible battery pack.

Several options are available to create a Raspberry Pi photo frame, mostly using Python code. You might opt to script your own, pulling images from a pre-populated directory. Alternatively, take a look at our guide to making your own photo frame with beautiful images and inspiring quotes. It pulls content from two Reddit channels — images from /r/EarthPorn and quotes from /r/ShowerThoughts — and mixes them together.

The idea here is simple. With just a Raspberry Pi, a webcam, and a touchscreen display — plus a thermal printer — you can build a versatile photo booth!

Various projects of this kind have sprung up. While the versions displayed above uses a thermal printer outputting a low-res image, you might prefer to employ a standard color photo printer. The wait will be longer, but the results better!

How about a smart mirror for your Raspberry Pi touchscreen display project? This is basically a mirror that not only shows your reflection, but also useful information. For instance, latest news and weather updates.

Naturally, a larger display would deliver the best results, but if you’re looking to get started with a smart mirror project, or develop your own from scratch, a Raspberry Pi combined with a touchscreen display is an excellent place to start.

Want to pump some banging “toons” out of your Raspberry Pi? We’ve looked at some internet radio projects in the past, but adding in a touchscreen display changes things considerably. For a start, it’s a lot easier to find the station you want to listen to!

This example uses a much smaller Adafruit touchscreen display for the Raspberry Pi. You can get suitable results from any compatible touchscreen, however.

Requiring the ProtoCentral HealthyPi HAT (a HAT is an expansion board for the Raspberry Pi) and the Windows-only Atmel software, this project results in a portable device to measure yours (or a patient’s) health.

With probes and electrodes attached, you’ll be able to observe and record thanks to visualization software on the Pi. Whether this is a system that can be adopted by the medical profession remains to be seen. We suspect it could turn out to be very useful in developing nations, or in the heart of infectious outbreaks.

Another great build, and the one we’re finishing on, is a Raspberry Pi-powered tablet computer. The idea is simple: place the Pi, the touchscreen display, and a rechargeable battery pack into a suitable case (more than likely 3D printed). You might opt to change the operating system; Raspbian Jessie with PIXEL (nor the previous desktop) isn’t really suitable as a touch-friendly interface. Happily, there are versions of Android available for the Raspberry Pi.

raspberry pi projects lcd display quotation

For instance, a Raspberry Pi 3 Model B has a higher power requirement (2.5A) and, thus, necessitates a specific power brick. It will definitely still work, but a Raspberry Pi 2 Model B

The ideal board for the job is the £9.30 or AU$14.96) for the board. To set up and connect the Raspberry Pi, you will need a short HDMI cable and a microSD card of at least 8GB.

Finally, you will need supplies to mount the Raspberry Pi, the monitor"s power supply, all the cables and the female end of the extension cord on the back of the monitor. I used two-sided mounting tape. And I used duct tape to keep the excess cord attached as tightly to the back of the monitor as possible.

Typically, there isn"t enough room to install a Raspberry Pi inside the original backplate -- unless you"re using a Pi Zero W. Even then, the excess cords and the power supply for the monitor won"t fit. The monitor will sit closer to the wall without the back cover, so it"s best to discard it.

Connect the Raspberry Pi to the HDMI port on the monitor and -- without plugging in the extension cord -- connect the power cables to both the Raspberry Pi and the monitor. Use this to figure out the best layout of all the parts to keep everything as slim as possible.

As for the picture-hanging wire, there were no decent places to connect on the Dell monitor I used, so I drilled one hole on either side of the rear bezel that held the back cover on. This is where you might have to get creative, since no two monitors are the same.

Surprisingly, this project doesn"t require any special code for the Raspberry Pi. In fact, it will be running on Raspbian OS, a Linux distribution specifically for the Raspberry Pi.

DAKboard is the web interface used to display all the information on the monitor. It can be set up from the Raspberry Pi or from a computer, phone or tablet.

For background options, you can choose between a host of different sources, such as Instagram, Google Photos, Dropbox, OneDrive, Bing, Flickr, etc. After that, you can connect up to two ICAL calendars for free, select between Yahoo and AccuWeather for the forecast source, add a single RSS feed for rotating headlines, and connect Todoist, Wunderlist or Microsoft To-Do as a task manager to display and add a custom message to the DAKboard.

The idea is that, when powered on, the Raspberry Pi will automatically boot to your DAKboard. If you want to hang the monitor vertically instead of horizontally, you will also need to rotate the display.

First, power on the Raspberry Pi, open Terminal and type in sudo raspi-config. Once in the configuration tool:Go to Boot Options > Desktop Autologin Desktop GUI and press Enter.

Next, you will want to edit the config.txt file to rotate the screen 90 degrees. In Terminal, type sudo nano /boot/config.txt and press Enter. This opens the config file in the nano text editor. Add these lines to the end of the file (without the bullet points):# Display orientation. Landscape = 0, Portrait = 1

Finally, to force the screen to stay on and automatically boot with dakboard.com loaded in Chromium, type sudo nano ~/.config/lxsession/LXDE-pi/autostart and press Enter. Inside nano, add these four lines (without the bullet points):@xset s off

Once the Raspberry Pi has fully rebooted, use a connected mouse and keyboard to log in to DAKboard. Click Login and enter your credentials. Your DAKboard should load with your previously configured settings. If you want to change anything, click the settings cog in the upper right corner of the display (move the cursor to make it appear).

Hang the monitor on the wall and you"ll have yourself a digital clock and calendar, the week"s forecast, important headlines and beautiful pictures on display all day.

DAKboard is a great way to set up a Raspberry Pi display in a hurry. It"s easy and user-friendly and it looks great. However, it has its limitations and encourages users to upgrade to Premium to unlock the best features.

raspberry pi projects lcd display quotation

This repository contains all the code for interfacing with a 16x2 character I2C liquid-crystal display (LCD). This accompanies my Youtube tutorial: Raspberry Pi - Mini LCD Display Tutorial.

During the installation, pay attention to any messages about python and python3 usage, as they inform which version you should use to interface with the LCD driver. For example:

It is possible to define in CG RAM memory up to 8 custom characters. These characters can be prompted on LCD the same way as any characters from the characters table. Codes for the custom characters are unique and as follows:

For example, the hex code of the symbol ö is 0xEF, and so this symbol could be printed on the second row of the display by using the {0xEF} placeholder, as follows:

This demo uses ping and nc (netcat) to monitor the network status of hosts and services, respectively. Hosts and services can be modified by editing their respective dictionaries:

exchangerate-api.com / free.currencyconverterapi.com: There are a lot of currency apis but these ones offer free currency exchange info. Both are used, one as main, the other as backup. Requires an API key to use.

In order to use the script, you need to get API key tokens for both exchange rate services and the weather api. Once you"ve done that, edit the script to put your tokens in the USER VARIABLES section.

raspberry pi projects lcd display quotation

Looking for a display solution for a Raspberry PI? Crystalfontz has displays specifically designed for use with Raspberry PI"s in many sizes and touchscreen options. Whether you"re looking for a small 5" resistive touchscreen TFT or a 10.1" HDMI display; we"ve got you covered. These displays are a turnkey solution, simply plug them in with our accessory connectors and you"re ready to go.

raspberry pi projects lcd display quotation

The Snake Eyes Bonnet is a Raspberry Pi accessory for driving two 128x128 pixel OLED or TFT LCD displays, and also provides four analog inputs for sensors. It"s perfect for making cosplay masks, props, spooky sculptures for halloween, animatronics, robots...anything where you want to add a pair of animated eyes!

raspberry pi projects lcd display quotation

That’s right! In today’s tutorial I show you how to wire up and program your very own mini LCD display to your Raspberry Pi! By the end the of this video you will be printing your own messages to your very own screen module and will understand all of the Python code behind it. A good, cheap and enjoyable little project for Raspberry Pi – with plenty of scope for your own further developments!

raspberry pi projects lcd display quotation

This CPU Info 1.6-inch LCD screen has a resolution of 84*48. Through the internal program of the Raspberry Pi, the CPU occupancy rate and memory occupancy rate running on the Raspberry Pi, the IP address of the Raspberry Pi, and the CPU temperature are displayed on the LCD screen.

Because of the 26Pin GPIO pin header compatible design, the LCD screen can be compatible with the whole series of Raspberry Pi motherboards of Pi0/Pil/Pi2/Pi3/Pi4 at the same time. After inserting the LCD screen into the Raspberry Pi motherboard, the occupied pins will still be drawn out on the LCD screen, which will not affect the secondary use.

The LCD screen is equipped with back light control. When the Raspberry Pi is used as a server, the operating status of the motherboard can be clearly seen at night. There is a back light jumper on the back, which can be controlled by a program.

Through programming, the LCD screen can be used to display numerical experiments, such as display ultrasonic distance measurement, temperature and humidity measurement and other experiments, and observe the experimental data in real time.