1.8 spi tft lcd arduino factory
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
I am using the 1.8″ color ST7735 TFT display a lot. The reason for that is that this display is very easy to use, it costs less than $5 and it offers color! At the back, the display has an SD card slot.A brief summary of the pins (adapted from Adafruits thorough summary):
RST – this is the TFT reset pin. Connect to ground to reset the TFT! Its best to have this pin controlled by the library so the display is reset cleanly, but you can also connect it to the Arduino Reset pin, which works for most cases.CS – this is the TFT SPI chip select pinD / C – this is the TFT SPI data or command selector pinDIN – this is the SPI Master Out Slave In pin (MOSI), it is used to send data from the microcontroller to the SD card and / or TFTSCLK – this is the SPI clock input pinVcc – this is the power pin, connect to 5VDC – it has reverse polarity protection but try to wire it right!LED – this is the input for the backlight control. Connect to 5VDC to turn on the backlight.GND – this is the power and signal ground pinNow that we know what we’re dealing with it’s time to start wiring!
This is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and 162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface.
In electronics world today, Arduino is an open-source hardware and software company, project and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (‘shields’) or breadboards (for prototyping) and other circuits.
The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs. The microcontrollers can be programmed using the C and C++ programming languages, using a standard API which is also known as the “Arduino language”. In addition to using traditional compiler toolchains, the Arduino project provides an integrated development environment (IDE) and a command line tool developed in Go. It aims to provide a low-cost and easy way for hobbyist and professionals to create devices that interact with their environment using sensors and actuators. Common examples of such devices intended for beginner hobbyists include simple robots, thermostats and motion detectors.
In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.
The sizes are 0.96” (160×80), 1.13” (240×135), 1.3” ((240×240), 1.33” (128×128), 1.54” (240×240), 1.77” (128×160), 2.0” (240×320), 2.3” (320×240), 2.4” (240×320), 2.8” (240×320), 3.2” (240×320).
Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.
TFT displays are full color LCDs providing bright, vivid colors with the ability to show quick animations, complex graphics, and custom fonts with different touchscreen options. Available in industry standard sizes and resolutions. These displays come as standard, premium MVA, sunlight readable, or IPS display types with a variety of interface options including HDMI, SPI and LVDS. Our line of TFT modules include a custom PCB that support HDMI interface, audio support or HMI solutions with on-board FTDI Embedded Video Engine (EVE2).
Alibaba.com offers 411 arduino tft screen products. About 58% % of these are lcd modules, 21%% are lcd touch screen, and 5%% are integrated circuits (old).
This ST7735S 1.8" TFT Display features a resolution of 128×160 and SPI (4-wire) communication. Integrated with an SD card slot, it allows to easily read full-color bitmaps from the SD card. The module provides users with two wiring methods: pin header wiring and GDI (General Display interface). You can directly use an FPC cable to connect the display to any controller with GDI interface like FireBeetle-M0. Plug and play, easy to wire. Besides, the display supports low refresh rate and offers good display effect and strong versatility. It can be used in applications like sensor monitoring and alarm, Arduino temperature monitor, fan controller, etc.
This product is a breakout module that features SPI communication mode and onboard GDI interface, which could reduce the complexity of wiring. It can easily display the read content from the SD card.
screen.drawXBitmap(/*x=*/(screen.width()-146)/2,/*y=*/(screen.height()-128)/2,/*bitmap gImage_Bitmap=*/gImage_XBitmap,/*w=*/146,/*h=*/128,/*color=*/0x0000);
screen.drawRGBBitmap(/*x=*/(screen.width()-146)/2,/*y=*/(screen.height()-128)/2,/*bitmap gImage_Bitmap=*/(const unsigned uint16_t*)gImage_RGBBitmap,/*w=*/146,/*h=*/128);
To purchase the computer, you must have visited the computer stores. And, if you have gone there, you must have seen the TFT AMLCD monitor there. The thin-film transistor active matrix display, the high-quality flat screen monitor. The technology is often known as the active matrix. Moreover, it’s are of greater quality than the passive matrix. Because it uses exceptional image qualities like contrast and addressability. Hence, used in video games, etc. So, if you are looking to build some entering projects, this tutorial is for you. Because, In this tutorial, we are going to interface “1.8 TFT Color Display ST7735 with Arduino UNO”.
A TFT display has a liquid crystal layer between the substrate and the pixel electrode. When the change of the voltage is applied to the liquid crystal, it changes the transmittance of panels. Thus, changes the quantity of light from the backlight. As a result, LCD generates full-color images.
Assemble the circuit according to the above schematic to Interface Display 1.8 TFT with Arduino UNO. Further, open your Arduino IDE and paste the above-mentioned code. After that, upload that code. Arduino will pass the commands to the display. Now, you will see that shapes would appear on the TFT screen.
Now include the TFT library. Also, include the SPI library to communicate with the external display. After that, define the display pins that are connected with the pins of Arduino.
In the void setup, initialize the TFT display by using the TFTscreen. begin ( ). Then, set the background colors of a display by using the TFTscreen.background( ).
In the void loop, generate a random color by giving the random( ) command. Choose the random font color by giving the command TFT. stroke( ).Draw the line on a display by using TFTscreen. line( ). Use TFTscreen.rect( ) to draw a square. Use TFTscreen.circle( ) to draw a circle. At last, to clear the display set the background to 0 by using TFTscreen. background(0, 0, 0).