what is meant by tft display for sale
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
POS, Point Of Sale is a place where a customer executes the payment for goods or services. A typical POS system has one or two screens, bar code / RFID scanner, credit card reader and a scale. POS systems are increasingly interactive. Heavy duty touchscreen TFT LCD displays are an integral part of the restaurants Point of Sale (POS) Systems, retail stores self-checkout kiosks and POS Systems, counters POS touchscreens at grocery stores, bars and nightclubs and at almost all service industry’s point of sale checkout registers.
Also, the intensifying competition in the retail industry and resulting use of POS displays for enticing customers to purchase products have encouraged retailers to demand different custom-made displays capable of serving specific needs across different retail facilities. A touchscreen LCD display is not only replacing traditional keyboard, but also providing sleek and modern look. It is an essential piece to any POS system.
Since TFT LCD is such an important part for POS system, picking the right one is critical to product"s success. Followings are some of the characters, a good TFT LCD should have.
HDMI or LVDS interface - POS screen is not only for displaying billing information, but also video and animation. A future proofed interface that can carry lots data is a must.
Touchscreen - operating POS through touchscreen is a normal pratices. Resistive touch offers a low cost solution that supports glove operation. Capacitive touch supports multiple touch points without sacrificing screen clarity.
Topway has been supplying our European POS manufacturers with 7", 10", 12" and 15" TFT LCD displays for past several years. And we provide optional Anti-Reflection, Anti-Glare, Anti-Finger Print and Anti-Scratch coatings.
TFT (Thin Film Transistor) LCD (Liquid Crystal Display) we are talking here is TN (Twisted Nematic) type TFT displays which is align with the term in the TV and computer market. Now, TFT displays have taken over the majority of low-end color display market. They have wide applications in TV, computer monitors, medical, appliance, automotive, kiosk, POS terminals, low end mobile phones, marine, aerospace, industrial meters, smart homes, consumer electronic products etc. For more information about TFT displays, please visit our knowledge base.
Talking about Pros and Cons of TFT displays, we need to clarify which display they are compared to. To some displays, TFT displays might have advantages, but compared with another display, the same character might become the disadvantages of TFT displays. We will try our best to make clear as below.
Less Energy Consumption: Compared with CRT(Cathode-Ray Tube) VFD ( Vacuum Fluorescent Display) and LED (Light Emitting Diode) display, which made laptop possible.
Excellent physical design. TFT displays are very easy to design and integrated with other components, such as resistive and capacitive touch panels (RTP, CTP, PCAP) etc.
Minimum Eye Strain: Because TFT panel itself doesn’t emit light itself like CRT, LED, VFD. The light source is LED backlight which is filtered well with the TFT glass in front for the blue light.
More Energy Consumption: Compared with monochrome displays and OLED (PMOLED and AMOLED) display, which makes TFT displays less attractive in wearable device.
Poor response time and viewing angle: Compared with IPS LCD displays, AMOLED displays and recent micro-LED display. TFT displays still need to note viewing angle of 6 o’clock or 12 o’clock in the datasheet and still have the gray scale inversion issue.
High tooling cost: Depending on which generation production line to produce and also depending on its size. Building a TFT display fab normally need billions of dollars. For a big size display which needs high generation production line to produce. The NRE cost can be millions dollars.
Sunlight Readability: Because it is very expensive to produce transflective TFT LCD displays, in order to be readable under the sunlight, very bright LED backlight (> 1,000 nits) has to be used. The power needed is high and also need to deal with heat management. If used together with touch panel, expensive optical bonding (OCA or OCR) and surface treatment (AR, AF) technologies have to be used.
As a display device TFT stands for Thin Film Transistor and is used to enhance the operation and usefulness of LCD displays. An LCD is a fluidic display device that uses a crystalline filled liquid to manipulate a rear illumination polarized source by means of an electrostatic field between two thin transparent metal conductors such as indium tin oxide (ITO) in order to present an image to the viewer. This process can be used in both segmented or pixelated display devices but is found synonymous with color TFT displays.
When an LCD is used to display moving images the inherent slow rate of change between fluid states over a large number of pixel elements can be a problem due in part to capacitive effects, which causes moving image blurring. By putting a high speed LCD controlling device in the form of a thin film transistor right at the pixel element on the glass surface, the LCD image speed issue can be greatly enhanced and for all practical purposes eliminates image blurring.
Other benefits of these thin film transistors are they allow for thinner display designs and different pixel designs and arrangements to vastly improve display viewing angles.
TFT displays are found in many applications these days, from mobile devices, appliance, medical devices, instrumentation, aircraft and certainly computer display devices as well as TV’s. The addition of the thin film transistor in LCD design vastly improved the use of LCD’s in all market areas.
TFT stands for thin-film transistor and is used with LCD to improve image quality over older digital display technologies. Each pixel on a TFT LCD has its own transistor on the glass itself, which offers greater control over the images and colors that it renders.
TFT is also an abbreviation for other technical terms including time from transmission, text fix test, Trinitron flat tube, and trivial file transfer protocol.
Since the transistors in a TFT LCD screen are so small, the technology offers the added benefit of requiring less power. However, while TFT LCDs can deliver sharp images, they also tend to offer relatively poor viewing angles. The result is that TFT LCDs look best when viewed head-on, but viewing images from the side is often difficult.
TFT LCDs are found on low-end smartphones as well as basic cell phones. The technology is also used on TVs, handheld video game systems, computer monitors, and GPS navigation systems.
All the pixels on a TFT screen are configured in a row-and-column format, and each pixel is attached to an amorphous silicon transistor that rests directly on the glass panel. This allows each pixel to be given a charge and for the charge to be kept even when the screen is refreshed to produce a new image.
With this type of setup, the state of a particular pixel is being actively maintained even while other pixels are being used. This is why TFT LCDs are considered active matrix displays (as opposed to a passive matrix displays).
Lots of smartphone manufacturers use IPS-LCD (Super LCD), which provides wider viewing angles and richer colors, but newer phones feature displays that utilize OLED or Super-AMOLED technology. For example, Samsung"s flagship smartphones boast OLED panels, while most of Apple"s iPhones and iPads come equipped with an IPS-LCD. Super LCD and Super-AMOLED have their own pros and cons, but they both far exceed the capabilities of TFT LCD technology.
Before you get a new monition for your organization, comparing the TFT display vs IPS display is something that you should do. You would want to buy the monitor which is the most advanced in technology. Therefore, understanding which technology is good for your organization is a must. click to view the 7 Best Types Of Display Screens Technology.
Technology is changing and becoming advanced day by day. Therefore, when you are looking to get a new monitor for your organization, LCD advantages, and disadvantage, you have to be aware of the pros and cons of that monitor. Moreover, you need to understand the type of monitor you are looking to buy.
That is why it is important to break it down and discuss point by point so that you can understand it in a layman’s language devoid of any technical jargon. Therefore, in this very article, let’s discuss what exactly TFT LCDs and IPS LCDs are, and what are their differences? You will also find out about their pros and cons for your organization.
The word TFT means Thin-Film-Translator. Click to view: what is TFT LCD, It is the technology that is used in LCD or Liquid Crystal Display. Here you should know that this type of LCD is also categorically referred to as active-matrix LCDs. It tells that these LCDs can hold back some pixels while using other pixels. So, the LCD will be using a very minimum amount of energy to function. TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the display monitor functions by using a very small amount of energy without running out of operation.
Now, it is time to take a look at its features that are tailored to improve the experience of the monitor users significantly. Here are some of the features of the TFT monitor;
The display range covers the application range of all displays from 1 inch to 40 inches as well as the large projection plane and is a full-size display terminal.
Display quality from the simplest monochrome character graphics to high resolution, high color fidelity, high brightness, high contrast, the high response speed of a variety of specifications of the video display models.
No radiation, no scintillation, no harm to the user’s health. In particular, the emergence of TFT LCD electronic books and periodicals will bring humans into the era of a paperless office and paperless printing, triggering a revolution in the civilized way of human learning, dissemination, and recording.
It can be normally used in the temperature range from -20℃ to +50℃, and the temperature-hardened TFT LCD can operate at low temperatures up to -80 ℃. It can not only be used as a mobile terminal display, or desktop terminal display but also can be used as a large screen projection TV, which is a full-size video display terminal with excellent performance.
The manufacturing technology has a high degree of automation and good characteristics of large-scale industrial production. TFT LCD industry technology is mature, a mass production rate of more than 90%.
It is a perfect combination of large-scale semiconductor integrated circuit technology and light source technology and has great potential for further development.
TFT LCD screen from the beginning of the use of flat glass plate, its display effect is flat right angles, let a person have a refreshing feeling. And LCDs are easier to achieve high resolution on small screens.
The word IPS refers to In-Plane-Switching which is a technology used to improve the viewing experience of the usual TFT displays. You can say that the IPS display is a more advanced version of the traditional TFT LCD module. However, the features of IPS displays are much more advanced and their applications are very much widespread. You should also know that the basic structure of the IPS LCD is the same as TFT LCD if you compare TFT LCD vs IPS.
As you already know, TFT displays do have a very quick response time which is a plus point for it. But, that does not mean IPS displays a lack of response time. In fact, the response time of an IPS LCD is much more consistent, stable, and quick than the TFT display that everyone used to use in the past. However, you will not be able to gauge the difference apparently by watching TFT and IPS displays separately. But, once you watch the screen side-by-side, the difference will become quite clear to you.
The main drawback of the TFT displays as figured above is the narrow-angle viewing experience. The monitor you buy for your organization should give you an experience of wide-angle viewing. It is very much true if you have to use the screen by staying in motion.
So, as IPS displays are an improved version of TFT displays the viewing angle of IPS LCDs is very much wide. It is a plus point in favor of IPS LCDs when you compare TFT vs IPS. With a TFT screen, you cannot watch an image from various angles without encountering halo effects, blurriness, or grayscale that will cause problems for your viewing.
It is one of the major and remarkable differences between IPS and TFT displays. So, if you don’t want to comprise on the viewing angles and want to have the best experience of viewing the screen from wide angles, the IPS display is what you want. The main reason for such a versatile and wonderful viewing angle of IPS display is the screen configuration which is widely set.
Now, when you want to achieve wide-angle viewing with your display screen, you need to make sure it has a faster level of frequency transmittance. It is where IPS displays overtake TFT displays easily in the comparison because the IPS displays have a much faster and speedier transmittance of frequencies than the TFT displays.
Now the transmittance difference between TFT displays and IPS displays would be around 1ms vs. 25ms. Now, you might think that the difference in milliseconds should not create much of a difference as far as the viewing experience is concerned. Yes, this difference cannot be gauged with a naked eye and you will find it difficult to decipher the difference.
However, when you view and an IPS display from a side-by-side angle and a TFT display from a similar angle, the difference will be quite evident in front of you. That is why those who want to avoid lagging in the screen during information sharing at a high speed; generally go for IPS displays. So, if you are someone who is looking to perform advanced applications on the monitor and want to have a wider viewing angle, then an IPS display is the perfect choice for you.
As you know, the basic structure of the IPS display and TFT displays are the same. So, it is quite obvious that an IPS display would use the same basic colors to create various shades with the pixels. However, there is a big difference with the way a TFT display would produce the colors and shade to an IPS display.
The major difference is in the way pixels get placed and the way they operate with electrodes. If you take the perspective of the TFT display, its pixels function perpendicularly once the pixels get activated with the help of the electrodes. It does help in creating sharp images.
But the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.
As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.
As you already know the features of both TFT and IPS displays, it would be easier for you to understand the difference between the two screen-types. Now, let’s divide the matters into three sections and try to understand the basic differences so that you understand the two technologies in a compressive way. So, here are the difference between an IPS display and a TFT display;
Now, before starting the comparison, it is quite fair to say that both IPS and TFT displays have a wonderful and clear color display. You just cannot say that any of these two displays lag significantly when it comes to color clarity.
However, when it comes to choosing the better display on the parameter of clarity of color, then it has to be the IPS display. The reason why IPS displays tend to have better clarity of color than TFT displays is a better crystal oriental arrangement which is an important part.
That is why when you compare the IPS LCD with TFT LCD for the clarity of color, IPS LCD will get the nod because of the better and advanced technology and structure.
IPS displays have a wider aspect ratio because of the wide-set configuration. That is why it will give you a better wide-angle view when it comes to comparison between IPS and TFT displays. After a certain angle, with a TFT display, the colors will start to get a bit distorted.
But, this distortion of color is very much limited in an IPS display and you may see it very seldom after a much wider angle than the TFT displays. That is why for wide-angle viewing, TFT displays will be more preferable.
When you are comparing TFT LCD vs. IPS, energy consumption also becomes an important part of that comparison. Now, IPS technology is a much advanced technology than TFT technology. So, it is quite obvious that IPS takes a bit more energy to function than TFT.
Also, when you are using an IPS monitor, the screen will be much larger. So, as there is a need for much more energy for the IPS display to function, the battery of the device will drain faster. Furthermore, IPS panels cost way more than TFT display panels.
1. The best thing about TFT technology is it uses much less energy to function when it is used from a bigger screen. It ensures that the cost of electricity is reduced which is a wonderful plus point.
2. When it comes to visibility, the TFT technology enhances your experience wonderfully. It creates sharp images that will have no problems for older and tired eyes.
1. One of the major problems of TFT technology is that it fails to create a wider angle of view. As a result, after a certain angle, the images in a TFT screen will distort marring the overall experience of the user.
Although IPS screen technology is very good, it is still a technology based on TFT, the essence of the TFT screen. Whatever the strength of the IPS, it is a TFT-based derivative.
Finally, as you now have a proper understanding of the TFT displays vs IPS displays, it is now easier for you when it comes to choose one for your organization. Technology is advancing at a rapid pace. You should not be surprised if you see more advanced display screens in the near future. However, so far, TFT vs IPS are the two technologies that are marching ahead when it comes to making display screens.
STONE provides a full range of 3.5 inches to 15.1 inches of small and medium-size standard quasi TFT LCD module, LCD display, TFT display module, display industry, industrial LCD screen, under the sunlight visually highlight TFT LCD display, industrial custom TFT screen, TFT LCD screen-wide temperature, industrial TFT LCD screen, touch screen industry. The LCD module is very suitable for industrial control equipment, medical instruments, POS system, electronic consumer products, vehicles, and other products.
The use of TFT (thin film transistor) LCD display has gained popularity over the years, with the advent of high technology such as laptop computers, iPads, televisions, and other gadgets. A TFT LCD module uses complex and advanced technology that allows it to provide the screen a homogenous illumination, making the quality of images better. Aside from gadget users, businesses and companies can also benefit from this technology that can help with productivity.
TFT LCD monitors are less bulky. They can easily be carried and moved around. In fact, they can be mounted on walls. This means that they don’t occupy a lot of space, allowing you to utilize and organize a workstation better. You can make room for more important tasks.
You can save money on electric bills with a TFT LCD screen. Because it uses millions of pixels that provide accurate illumination on less electricity, it’s more energy-efficient than CRT monitors. It consumes 78% less energy. Given this, companies can make better use of their resources.
The visual that a TFT LCD display produces is sharper than a CRT monitor. Every pixel in a TFT LCD is active, preventing flickers and distortions. This means that you can get a clearer picture, which is necessary for work. Blurry images on a screen can affect a person’s productivity. This is also good for helping avoid headaches, eyestrain, and nausea that are caused by too much exposure to computers that produce low quality images.
Adaptability is a reason why graphic and web designers prefer TFT LCD screens. Such technology fits dual monitor configurations. This means that a capable computer can have two monitors that you can use simultaneously. It can help speed up your work because you don’t have to switch between windows on one screen. You can view and work on a main document on one screen and use the other one for other tasks.
These are only some of the reasons to use a TFT LCD screen at work. If you believe that you can benefit from this technology, contact a reliable manufacturer to get the best product for you.
When it comes to choosing what to use for your displays, going with the standard can get you farther ahead than thinking outside the box. TFT LCD display gives you an edge for your advertising needs, television screens, or even phone screens.
A thin-film transistor (TFT) is one of the technologies commonly used for building LCDs. With this technology, your LCD is guaranteed a sharp, clear, and full-color display and high-quality performance.
When a signal sent to a pixel also affects the pixels next to it, crosstalk This runs the risk of distorting the quality of your image. With TFT, crosstalk is significantly reduced with the TFT layer integrated into the screen itself. With every pixel corresponding to the signals meant only for them, you are guaranteed the best resolution and image quality.
In the LCD industry, the most popular kinds of displays are manufactured and innovated the most. Unlike other types of LCD technologies, the TFT module is available in different sizes, ranging from cellphone sizes to larger TV sizes, to suit your needs.
All LCD displays have a determined number of hours of use before they become half as bright than when they were turned on for the first time. This is called half-life. Although research is still ongoing regarding half-life, TFT displays are said to have more than 14,000 hours of half-life.
This does not mean, however, that the LCD will burn out after reaching its half-life. It means that its brightness will only be half of when it was new.
Compared to CRTs, TFT LCD modules have lower heat release. Moreover, they emit lower electromagnetic emissions which significantly decrease visual fatigue. This means that TFTs are ideal for devices and displays that require an audience’s prolonged attention, such as cell phones and television screens.
While the TFT’s power consumption is significantly lower than OLEDs in white displays, there are also emerging TFT displays in the market that integrate smart technologies that can save up to 50% energy on battery-operated devices.
One of the notable disadvantages of TFTs, however, is its cost. The characteristics detailed in the previous section, however, must be considered worthy of investment. Moreover, as the number of TFTs floods the LCD display market, the price for TFTs are decreasing by the day.
At Microtips Technology USA, we only provide you with the best among the best of TFT modules. Our TFT LCD displays assure only full RGB brilliance with up to 16.7 million colors, better picture quality with high resolutions and IPS technology, and affordability.
TFT-based displays have a transistor for each pixel on the screen. This allows the electrical current that illuminates the display to be turned on and off at a faster rate, which makes the display brighter and shows motion smoother. LCDs that use TFT technology are called "active-matrix" displays, which are higher-quality than older "passive-matrix" displays. TFT technology provides the best resolution of all the flat display technologies, but it is also expensive than monochrome lcd. So TFTs are used in high-quality LCD displays, if you see a LCD monitor at your local computer market, it should be an active tft lcd display, Basically, it is a high-quality tft lcd monitor.
Passive-matrix display. A passive-matrix display is anLCD screen display that contains a series of wires that cross each other. See the dual scan display for a full definition on this term.
What is an Active-matrix Display (TFT)? Alternatively referred to as TFT ( thin-film transistor) and AMLCD ( active-matrix LCD ), an active-matrix display is an LCD ( liquid crystal display) introduced with the IBM ThinkPad in 1992.
It uses a matrix of thin film transistors(TFTs) and capacitors to control the image produced by thedisplay. The brightness of each pixel is controlled by modifying the electrical charge of the corresponding capacitors.
Let us start with the basics first; refresh the knowledge about TN and LCD displays in general, later we will talk about TFTs (Thin Film Transistors), how they differ from regular monochrome LCD displays. Then we will go on to the ghosting effect, so we will not only discuss the technology behind the construction of the TFT, but also some phenomena, like the ghosting effect, or grayscale inversion, that are important to understand when using an LCD TFT display.
Next, we will look at different technologies of the TFT LCD displays like TN, IPS, VA, and of course about transmissive and transflective LCD displays, because TFT displays also can be transmissive and transflective. In the last part we will talk about backlight.
Let us start with a short review of the most basic liquid crystal cell, which is the TN (twisted nematic) display. On the picture above, we can see that the light can be transmit through the cell or blocked by the liquid crystal cell using voltage. If you want to learn more about monochrome LCD displays and the basics of LCD displays, follow this link.
What is a TFT LCD display and how it is different from a monochrome LCD display? TFT is called an active display. Active, means we have one or more transistors in every cell, in every pixel and in every subpixel. TFT stands for Thin Film Transistor, transistors that are very small and very thin and are built into the pixel, so they are not somewhere outside in a controller, but they are in the pixel itself. For example, in a 55-inch TV set, the TFT display contains millions of transistors in the pixels. We do not see them, because they are very small and hidden, if we zoom in, however, we can see them in every corner of each pixel, like on the picture below.
On the picture above we can see subpixels, that are basic RGB (Red, Green, Blue) colors and a black part, with the transistors and electronic circuits. We just need to know that we have pixels, and subpixels, and each subpixel has transistors. This makes the display active, and thus is called the TFT display. TFT displays are usually color displays, but there are also monochrome TFT displays, that are active, and have transistors, but have no colors. The colors in the TFT LCD display are typically added by color filters on each subpixel. Usually the filters are RGB, but we also have RGBW (Red, Green, Blue, White) LCD displays with added subpixels without the filter (White) to make the display brighter.
What is interesting, the white part of the RGB and RGBW screen will look exactly the same from a distance, because the lights are mixed and generate white light, but when we come closer to the screen, we will not see white light at all.
Going a little bit deeper, into the TFT cell, there is a part inside well known to us from the monochrome LCD display Riverdi University lecture. We have a cell, liquid crystal, polarizers, an ITO (Indium Tin Oxide) layer for the electrodes, and additionally an electronic circuit. Usually, the electronic circuit consists of one transistor and some capacitors to sustain the pixel state when we switch the pixel OFF and ON. In a TFT LCD display the pixels are much more complicated because apart from building the liquid crystal part, we also need to build an electronic part.
That is why TFT LCD display technologies are very expensive to manufacture. If you are familiar with electronics, you know that the transistor is a kind of switch, and it allows us to switch the pixel ON and OFF. Because it is built into the pixel itself, it can be done very quickly and be very well controlled. We can control the exact state of every pixel not only the ON and OFF states, but also all the states in between. We can switch the light of the cells ON and OFF in several steps. Usually for TFT LCD displays it will be 8-bit steps per color, so we have 256 steps of brightness for every color, and every subpixel. Because we have three subpixels, we have a 24-bit color range, that means over 16 million combinations, we can, at least theoretically, show on our TFT LCD display over 16 million distinct colors using RGB pixels.
Now that we know how the TFT LCD display works, we can now learn some practical things one of which is LCD TFT ghosting. We know how the image is created, but what happens when we have the image on the screen for a prolonged time, and how to prevent it. In LCD displays we have something called LCD ghosting. We do not see it very often, but in some displays this phenomenon still exists.
If some elements of the picture i.e., your company logo is in the same place of the screen for a long period of time, for couple of weeks, months or a year, the crystals will memorize the state and later, when we change the image, we may see some ghosting of those elements. It really depends on many conditions like temperature and even the screen image that we display on the screen for longer periods of time. When you build your application, you can use some techniques to avoid it, like very rapid contrast change and of course to avoid the positioning the same image in the same position for a longer time.
You may have seen this phenomenon already as it is common in every display technology, and even companies like Apple put information on their websites, that users may encounter this phenomenon and how to fix it. It is called image ghosting or image persistence, and even Retina displays are not free of it.
Another issue present in TFT displays, especially TN LCD displays, is grayscale inversion. This is a phenomenon that changes the colors of the screen according to the viewing angle, and it is only one-sided. When buying a TFT LCD display, first we need to check what kind of technology it is. If it is an IPS display, like the Riverdi IPS display line, then we do not need to worry about the grayscale inversion because all the viewing angles will be the same and all of them will be very high, like 80, 85, or 89 degrees. But if you buy a more common or older display technology type, like the TN (twisted nematic) display, you need to think where it will be used, because one viewing angle will be out. It may be sometimes confusing, and you need to be careful as most factories define viewing direction of the screen and mistake this with the greyscale inversion side.
On the picture above, you can see further explanation of the grayscale inversion from Wikipedia. It says that some early panels and also nowadays TN displays, have grayscale inversion not necessary up-down, but it can be any angle, you need to check in the datasheet. The reason technologies like IPS (In-Plane Switching), used in the latest Riverdi displays, or VA, were developed, was to avoid this phenomenon. Also, we do not want to brag, but the Wikipedia definition references our website.
We know already that TN (twisted nematic) displays, suffer from grayscale inversion, which means the display has one viewing side, where the image color suddenly changes. It is tricky, and you need to be careful. On the picture above there is a part of the LCD TFT specification of a TN (twisted nematic) display, that has grayscale inversion, and if we go to this table, we can see the viewing angles. They are defined at 70, 70, 60 and 70 degrees, that is the maximum viewing angle, at which the user can see the image. Normally we may think that 70 degrees is better, so we will choose left and right side to be 70 degrees, and then up and down, and if we do not know the grayscale inversion phenomena, we may put our user on the bottom side which is also 70 degrees. The viewing direction will be then like a 6 o’clock direction, so we call it a 6 o’clock display. But you need to be careful! Looking at the specification, we can see that this display was defined as a 12 o’clock display, so it is best for it to be seen from a 12 o’clock direction. But we can find that the 12 o’clock has a lower viewing angle – 60 degrees. What does it mean? It means that on this side there will be no grayscale inversion. If we go to 40, 50, 60 degrees and even a little bit more, probably we will still see the image properly. Maybe with lower contrast, but the colors will not change. If we go from the bottom, from a 6 o’clock direction where we have the grayscale inversion, after 70 degrees or lower we will see a sudden color change, and of course this is something we want to avoid.
To summarize, when you buy older technology like TN and displays, which are still very popular, and Riverdi is selling them as well, you need to be careful where you put your display. If it is a handheld device, you will see the display from the bottom, but if you put it on a wall, you will see the display from the top, so you need to define it during the design phase, because later it is usually impossible or expensive to change the direction.
We will talk now about the other TFT technologies, that allow us to have wider viewing angles and more vivid colors. The most basic technology for monochrome and TFT LCD displays is twisted nematic (TN). As we already know, this kind of displays have a problem with grayscale inversion. On one side we have a higher retardation and will not get a clear image. That is why we have other technologies like VA (Vertical Alignment), where the liquid crystal is differently organized, and another variation of the TFT technology – IPS which is In-Plane Switching. The VA and IPS LCD displays do not have a problem with the viewing angles, you can see a clear image from all sides.
Nowadays all TV sets, tablets and of course mobile phones are IPS or VA. You can turn them around and see the image clear from all sides. But, for monitor applications the TN technology is still widely used, because the monitor usually is in front of you and most of the time you look directly at it, from top, left or right side, but very rarely from the bottom, so the grayscale inversion viewing angle can be placed there. This technology still is very practical because it is affordable and has some advantages for gamers because it is very fast.
Apart from the different organization of the liquid crystals, we also organize subpixels a little bit differently in a VA and IPS LCD displays. When we look closer at the TN display, we will just see the subpixels with color filters. If we look at the VA or IPS display they will have subpixels of subpixels. The subpixels are divided into smaller parts. In this way we can achieve even wider viewing angles and better colors for the user, but of course, it is more complicated and more expensive to do.
The picture above presents the TN display and grayscale inversion. For IPS or VA technology there is no such effect. The picture will be the same from all the sides we look so these technologies are popular where we need wide viewing angles, and TN is popular where we don’t need that, like in monitors. Other advantages of IPS LCD displays are they give accurate colors, and wide viewing angles. What is also important in practice, in our projects, is that the IPS LCD displays are less susceptible to mechanical force. When we apply mechanical force to the screen, and have an optically bonded touch screen, we push the display as well as squeeze the cells. When we have a TN display, every push on the cell changes the image suddenly, with the IPS LCD displays with in-plane switching, different liquid crystals organization, this effect is lesser. It is not completely removed but it is much less distinct. That is another reason IPS displays are very popular for smartphones, tablets, when we have the touchscreens usually optically bonded.
If we wanted to talk about disadvantages, there is a question mark over it, as some of them may be true, some of them do not rely on real cases, what kind of display, what kind of technology is it. Sometimes the IPS displays can have higher power consumption than others, in many cases however, not. They can be more expensive, but not necessarily. The new IPS panels can cost like TN panels, but IPS panels definitely have a longer response time. Again, it is not a rule, you can make IPS panels that are very fast, faster than TN panels, but if you want the fastest possible display, probably the TN panel will be the fastest. That is why the TN technology is still popular on the gaming market. Of course, you can find a lot of discussions on the internet, which technology is better, but it really depends on what you want to achieve.
Now, let us look at the backlight types. As we see here, on the picture above, we have four distinct types of backlight possible. The most common, 95 or 99 per cent of the TFT LCD displays on the market are the transmissive LCD display type, where we need the backlight from the back. If you remember from our Monochrome LCD Displays lecture, for transmissive LCD displays you need the backlight to be always on. If you switch the backlight off, you will not see anything. The same as for monochrome LCD displays, but less popular for TFT displays, we have the transflective LCD display type. They are not popular because usually for transflective TFT displays, the colors lack in brightness, and the displays are not very practical to use. You can see the screen, but the application is limited. Some transflective LCD displays are used by military, in applications where power consumption is paramount; where you can switch the backlight off and you agree to have lower image quality but still see the image. Power consumption and saving energy is most important in some kind of applications and you can use transflective LCD displays there. The reflective type of LCD displays are almost never used in TFT. There is one technology called Low Power Reflective Displays (LPRD) that is used in TFT but it is not popular. Lastly, we have a variation of reflective displays with frontlight, where we add frontlight to the reflective display and have the image even without external light.
Just a few words about Low Power Reflective Displays (LPRD). This kind of display uses environmental light, ambient light to reflect, and produce some colors. The colors are not perfect, not perfectly clear, but this technology is becoming increasingly popular because it allows to have color displays in battery powered applications. For example, a smartwatch would be a case for that technology, or an electrical bike or scooter, where we can not only have a standard monochrome LCD display but also a TFT LCD color display without the backlight; we can see the image even in
You have app. 15% of the article left. That content is exclusive for our Riverdi University members only. Please fill out the Riverdi University Membership form below and join our community!
strong sunlight and not need backlight at all. So, this kind of TFL LCD display technology is getting more and more popular when we have outdoor LCD displays and need a low power consumption.
On the picture above, we have some examples of how transmissive and reflective LCD displays work in the sunlight. If we have a simple image, like a black and white pattern, then on a transmissive LCD display, even with 1000 candela brightness, the image probably will be lower quality than for a reflective LCD display; if we have sunlight, we have very strong light reflections on the surface of the screen. We have talked about contrast in more detail in the lecture Sunlight Readable Displays. So, reflective LCD displays are a better solution for outdoor applications than transmissive LCD displays, where you need a really strong backlight, 1000 candela or more, to be really seen outdoors.
To show you how the backlight of LCD displays is built, we took the picture above. You can see the edge backlight there, where we have LEDs here on the small PCB on the edge, and we have a diffuser that distributes the light to the whole surface of LCD screen.
In addition to the backlight, we have something that is called a frontlight. It is similar to backlight, it also uses the LEDs to put the light into it, but the frontlight needs to be transparent as we have the display behind. On the example on the picture above we can see an e-paper display. The e-paper display is also a TFT display variation, but it is not LCD (liquid crystal), it is a different technology, but the back of the display is the same and it is reflective. The example you see is the Kindle 4 eBook reader. It uses an e-paper display and a frontlight as well, so you can read eBooks even during the night.
Pacer offers an extensive range of colour TFT LCD panels from 1.8″ through the popular 3.5″ and 5.7″ sizes to 82″. Our range includes sunlight readable panels from 5.6″ to 70″, bar cut panels, and SMART TFT displays with built-in control. We offer TFT displays with high brightness, high contrast ratio, wide viewing angle, wide temperature operation, longer lamp life, and lower power consumption.
TFT displays are used extensively in many industrial, commercial and scientific applications, including ATMs, POS terminals, kiosks, security systems, lottery and gambling gaming machines, medical equipment, factory automation, digital advertisement signage, transportation information, and marine equipment.
TFT technology is being used to replace Mono LCD in many applications, and Raystar Optronics now offers a 5.2″ TFT module designed specifically to fit the footprint of the industry standard RG24064-series 240×64 mono graphic STN LCD. The RFS520A can replace traditional STN displays of 8×2 or 16×2 format as it shares the same 16 pin footprint.
Our TFT modules are fully supported with a variety of options including wide operating temperatures, high brightness and contrast, built-in DC-DC and temperature compensation circuitry and most with white LED backlights. Resistive Touchscreens and Projected Capacitive Touchscreens are available for most models. Many panels can be configured as a kit – see our Interface Kits page for more details.
IMPORTANT ANNOUNCEMENT – Mitsubishi has decided to end production of TFT-LCD modules, as the company is no longer able to maintain the products’ competitiveness after significant price falls in the global market. Production of TFT-LCD modules is scheduled to end in June 2022 with a Last Time Buy date of June 2021. Please contact us as soon as possible to discuss last time buy or identification of suitable alternative displays.
Raystar is a professional TFT (Thin Film Transistor) module manufacturer. Whether you need a TFT display with control board, high brightness, wide viewing angle, monochrome or bar type, we have TFT active matrix display models for you to choose from.
Mitsubishi’s Electric Diode InfraRed sensor (MelDIR) is a thermal sensor for applications in the fields of security, surveillance, crime prevention, people counting, heating, ventilation and air conditioning (HVAC) and smart buildings.
LITEMAX® Industrial Display solution provide a wide range of reliable displays from 5.7″ to 85″ including LCD panel modules, open frame LCD displays, outdoor displays, and panel mount monitors. LITEMAX have developed and focused on LCD display technologies such as high brightness technology, optical bonding solutions, and color enhancement technology that bring more add-on value to enhance their products.
Julia Nielsen is a jack-of-all-trades writer, having written for newspapers, magazines, websites, and blogs for the last 15 years. When she"s not dabbling in the written world, she"s spending time with her beautiful granddaughter. She loves to hear from readers, especially when they offer chocolate.
The two buzzwords the tech world has been chatting about for a number of years now is IPS, (In-Plane Switching) screen technology used for liquid crystal displays or LCD’s for short, and TFT (Thin-Film-Transistor) an active matrix screen technology, which is more expensive, but a sharper image.
Designed in the 1980’s, but not introduced until nearly a decade later, in 1996, by Hitachi, IPS technology is nothing new, and a type of LCD design that affords greater viewing angles and higher-quality color reproduction than the traditional TN or Twisted Nematic LCDs.
When Apple brought it to the public’s attention, it took off, and as they say, the rest is history; but, it really didn’t become widespread or worldwide until just the late 1990’s. Since then, IPS screens have been implemented in homes all over the world, with variations to suit one’s electronic needs.
TFT (Thin-Film-Transistor) Liquid Crystal Display is a thin display type, where a transistor embedded into each crystal gate; these transistors are then printed on thin-transparent film. The technology was designed to improve image qualities, such as contrast and addressability.
Also designed in the late 1980’s, TFT display technologies is just another variation of LCD displays that offer greater color, contrast, and response times as opposed to available passive matrix LCD’s. One of the primary differences between IPS and TFT display technologies is the cost. IPS is more expensive than TN technology. However, there are some key differences between the two that should be noted.
Before we go into the differences, let’s talk about features of each technology. Note that we’re not talking TVs, computer, or tablets, but screens on a much smaller scale, (think 7” or smaller) which uses different rules to fit that scale. First, it’s interesting to discover that the TFT display technologies is the most common type of color display technology; more monochrome displays still out-sell color, due to lower cost and lower power consumption, however, the narrow poor visibility of TFTs in direct sunlight is their downside; but I’m getting ahead of myself here.
Lower power consumption, resulting in longer battery life – again for smaller screens, this works great, because even though this technology requires more power, a smaller screen has less power drain.
Brilliant color image – this is a huge advance in technology, from a Twisted Nematic (TN) display that only produced 6-bit color, to an 8-bit color display with the IPS technology
Variations to help with user’s viewing requirements or desires – there are several different forms of IPS technology: Super-IPS, (S-IPS) Advanced Super IPS, Advanced S-IPS, where the liquid crystal molecules stay parallel to the front and back panels, instead of perpendicular when a voltage is applied
TFT display technologies have developed over the years and have become quite popular in tech circles. The features offered with this advancing technology are:Superior color display – for technology that requires it or for consumers that desire color screens
Features a longer half-life, (half-life is the amount of time in hours before the display is 50% as bright as when it was first turned on), than OLEDs and comes in varying sizes, from under an inch up to over 15 inches
Capacitive Touchscreen or touch panel, which is in the majority of Smartphones and allows for additional functionality, specifically for zooming and scrolling
Variety of displays, which can be interfaced through a variety of bus types, including 18 and 24 bit for red/green/blue, LVDS, and 8 bit and 16 bit for a CPU – many controllers allow for two or more different types of interfaces on the same TFT screen
Okay, now that we’ve covered the features of both technologies, let’s look at the differences between the two. Before we get into the spec differences, let’s first address the main difference: the arrangement of transistors and liquid crystal. Seems vague, doesn’t it?
Let me explain. As you can see, both have excellent color display and clarity; however, IPS screens offer greater color reproduction and viewing angles because of the way crystal orientation and polarizers are arranged. In a TFT screen, the structure of the crystals results in angular retardation in the light. The IPS screens thus offer less distortion properties. Other differences include power consumption and cost. With IPS screens, it takes more power (up to 15% more) than with a TFT screen. If you’re on a monitor, such as a computer screen that’s bigger than 7 inches, it will drain your battery faster than if you’re on a 3.5” screen. Regarding cost, IPS panels are more expensive to produce than TFT panels.
Here’s why:IPS screens are popular and in high demand with professionals including surgeons and photographers or pretty much any profession that requires color reproduction, therefore, because the demand is high, the price goes up. (way to love economics) Also, less manufactures are building IPS at this time.
The color channels increase from 6 bits (TN displays) to 8 bits (IPS displays) to ensure the precision of shades per color channel, thus increasing manufacturing costs
If you want the benefits of having a Smartphone without a huge price tag, then TFT devices are your best bet. Another difference is that IPS screens have longer response times than TFT screens, so the lag output is greater. A few other key differences to be aware of are that with IPS panels, you get a bigger variety of panels, as was discussed above, with their super, advanced, and so forth developments, giving the consumer options, and IPS screens that can display 24-bit TrueColor; they also stay color-accurate and remain stable.
So, are you ready to delve into the pros and cons of these two technologies? Granted, we’ve touched on their features and differences, but now it’s time to ask yourself, which one is better for me or my business?
Because of their superior color and clarity of images, devices using an IPS screens are easy to install on walls, due to their compact form and low-depth. The Super IPS screens offer a higher angle of 170˚ for better clarity and wider viewing, particularly at night. Images remain stable and clear and not sparkly, shiny, like other screens; they also have a longer battery life and screen life, (on smaller screens of course) because of the lower electrical output. The release of heat is lower, again because of the reduced electrical consumption. The colors are also more vibrant and clear, not pixelated like other lower quality-type devices. As mentioned earlier, there are also many variations of IPS technology to suit your needs and desires.
Now we will go over the downside of IPS screens, which we briefly touched on above, which includes a major disadvantage: cost. If you’re just looking for an average Smartphone or don’t need all the fancy coloring and clarity for LCD displays, then cost may not be a big factor; however, this is the main reason why IPS technology is beginning to come down. As with every new invention, discovery or technology, demand is everything. Another disadvantage is that colors may not always transcribe correctly or accurately, which may or may not be a deterrent. Also, high resolutions are not always readily available for personal applications. In certain circumstances, the brightness may not be enough, especially in darkness.
Steve Jobs said it best: “Design is not just what it looks like and feels like. Design is how it works.” I tend to agree with him. With TFT display technologies, less energy consumption is a big deal, especially when dealing with bigger screens, and of course less electricity means lower cost, overall. The visibility is sharper, meaning no geometric distortion, which is great for these tired, old eyes. The response time and physical design of the screens are also appealing. TFT displays can also save space and be placed virtually anywhere in an office or home, because of the brightly lit feature and crisp clear images.
Some cons of TFT screens deal with the viewing angle, which create distortion, resulting in a less-than-perfect image. Static resolution, meaning the resolution can’t be changed, may also cause a problem, but newer models seem to have tackled that issue. The accuracy of the display of colors is not perfect, specifically strong blacks and bright whites, so when printing an image, it may not display the spectrum of colors.
And there you have it. In the future, even this superb technology will change and new, more exciting technology will take its place. But until then, IPS & TFT screens are forging ahead with their own advances and improvements, so stayed tune. You don’t want to miss it.
Focus Display Solutions (www.FocusLCDs.com) offers off-the-shelf Color TFT display technologies in both TN and IPS. Many of the color modules contain built in touch panels.
Rear view monitors and cameras mounted in your vehicle can aid you in backing up the car. You can select from a variety of display designs and cameras to upgrade your vehicle. Here are some questions that may come up when looking for rear view monitors.What is a TFT display?
Some TFT LCDs will have thin-film transistors that allows for a thin design called TFT displays. This allows the displays to be thin enough to fit in a compact frame. TFT displays are considered active matrix displays since their pixels are charged at all times, delivering images in HD.What types of rear view monitors are available?Replacement rear view mirror: This type of TFT LCD replaces the existing rear view mirror and incorporates an LCD monitor into the design. Some models will attach a separate screen to the right or left of the mirror and clip onto the panel. These screens are designed to turn on and activate the rear camera when the vehicle is put into the reverse gear, making it so that you no longer have to turn and struggle to see around your headrest when you need to back up your vehicle.
In-dash display: This type of screen typically replaces the the section where the radio or CD player is located. Some in-dash displays will have touch-screens along with multimedia functions to take over for what the CD player control panel would do.
On-dash: These displays sit on top of your dash and are connected by either a suction cup for temporary ones or a mount that is screwed or glued onto the dash panels for permanent ones.How do you select a rearview TFT monitor?Review your vehicle information: You will want to know what power options are available so that you can select a TFT LCD display that can support the voltage requirements.
Choose a display size: Larger resolutions may have a split design that allows you to use one or more cameras in a system. Check the contrast ratio to ensure your video output will be satisfactory for your needs.What types of kits are available?Wireless: The camera end will have both a receiver and transmitter. The receiver will receive signals from the TFT LCD monitor, such as when the the vehicle is put in reverse. This notifies the camera to turn on and transmit the feed to the LCD monitor. These cameras will connect to the power in the taillight section.
Wired: Wired camera and monitor kits will have a wire ran from the camera up to the monitor. This allows the signals to travel via a video cable, and the camera can be powered from the input monitor.
The screen is 1.77" diagonal, with 160 x 128 pixel resolution. The TFT library interfaces with the screen"s controller through SPI when using the TFT library. Refer to the screen"s data sheet for complete details.
The Arduino TFT library extends the Adafruit GFX, and Adafruit ST7735 libraries that it is based on. The GFX library is responsible for the drawing routines, while the ST7735 library is specific to the screen on the Arduino screen. The Arduino specific additions were designed to work as similarly to the Processing API as possible.
The TFT library relies on the SPI library, which must be included in any sketch that uses the scree. If you wish to use the SD card, you need to include the SD library as well.
Our Educational Primer Series presents a deep dive into the technical elements that bring together the world of 4D Systems and what we have to offer. You’ll find that this information series, developed with our experts and engineers, is the perfect place to power up your knowledge and take your understanding of our hardware and software to the next level. As always, feel free to reach out and get in touch. The best learning is interactive and we’d love to hear from you.
While buying a television, computer or a mobile, you would have come across the term TFT and wondered what it really meant. Simply put, TFT stands for “Thin Film Transistor”.
It is a type of LCD flat-panel display screen, wherein each pixel is controlled by one to four transistors. Also known as active-matrix LCDs, TFT technology offers the best resolution of all the flat-panel techniques. However, that makes it one of the most expensive ones too.
TFT transistors are normally used in high-quality flat-panel LCDs. Such displays come with at least one transistor for each pixel on the screen. This makes it possible for the electrical current that illuminates the display to be turned on and off quicker. This, in turn, results in brighter display and smoother motions. LCDs with TFT technology are active-matrix displays and are higher-quality than the older passive-matrix displays. Active matrix simply means that every pixel is attached to an individual transistor and capacitor.
So, the next time you see a label TFT AM LCD monitor at your local computer store, don’t be baffled. It simply means that the monitor comes with a “thin-film transistor active-matrix liquid crystal display”. In other words, it is an excellent flat-screen monitor. Good colours make everything look brighter and more appealing.
The advent of LCDs made viewing a better experience than ever. Soon, a world of high-end colour LCD Modules became the preferred choice. But thanks to the technological evolution of embedded devices, more and more sophisticated products and designs came into being.
Design is no longer about what things look like and feel like. Design is more about how it works. As such, the TFT LCD modules on our TV, computer monitors, kindles, mobile phone and navigation systems are all excellent designs. They are not only highly effective but also add to the look and feel of the devices.
Less energy consumption – because of the construction of TFT structures with pixel-like materials, they do not consume too much energy, to begin with. When compared with the CRT monitor, the TFT monitor consumes far less power and is therefore a preferred choice.
Sharper visibility with superb visual quality - the images displayed on a TFT display do not rely on scanning the electron beams. Hence they are flicker-free and offer a crisp image, with no geometric distortion.
Excellent physical design – the physical design of TFT display is in such a manner that they save a lot of space. The devices can be placed anywhere in the office or home even if there is very little space available.
Faster response time – as there are individual transmitters and conductors, the response time is much faster than that of the normal LCD or CRT displays. There is virtually no delay in turning on the screen, which makes it preferable to other types of displays.
Low strain on the eye – thanks to the quality of pictures displayed and the absence of any rays emitting from the screen, viewing is rather pleasant and strain-free for the eyes.
Poor viewing experience at angles – TFT screen offers the best viewing experience right at the front. Any change in the angle of view could mean a distorted view. Still, TFT displays are far superior in quality than the older versions and would be expected to improve in the future.
Technology is ever-changing. So it is no wonder TFT is also undergoing frequent changes. For instance, now you have IPS. It stands for In-Plane Switching and is a further improvement on TFT LCDs.
In the case of IPS, the manner in which the crystals are electrically excited on them is different. Also, the orientation of the crystal array is rotated. As a result of this change in orientation, the viewing angles are improved, along with the contrast ratio and colour reproduction.
Although energy consumption is low compared to TFT LCDs, and they are better than TFT LCDs, they are more expensive. But IPS TFT LCD technology is now widely used for high-performance computers, laptops, tablets, and smart phones.