2.2 tft lcd display v1.0 free sample
If you already have experience with the rectangular LCD modules, you will gain one more experience here: namely the round LCD module which is the size of a men"s wristwatch. DFRobot offers it with example-codes for ESP and Arduino as Fermion: 2.2 ”TFT SPI Interface LCD Display (Breakout).
A graphic could also be converted into hex values with a desktop program and displayed accordingly on the LCD. However, I am inexperienced in using the Chinese characters and have not tried the example program.
This is a 2.2” TFT LCD Display Module with an input voltage of 3.3V~5.5V, which is used to display colorful patterns and characters. The fastest screen refresh speed is about 256ms. The module is able to display multiple patterns in a cycle and realize dynamic display effect. At present, there are 19 common defined colors in the library, and users can also customize16-bit color codes. If we take the central point of the display as the origin of coordinates, the maximum absolute value of the positive and negative axis will be 64.
Note: the parameter “2.2 inches” is noted according to the Display Specification provided by the display manufacture, the real display area is about 1.26 inches (diameter: 32mm).
The graphic display coordinates and the text display coordinates of the 2.2”screen are two different coordinates systems. The origin of the graphic display coordinates begin from the centre point of the screen while that of the later one begins from the top left hand side of the screen.
The following codes are just one part of the API funciotn description. For more information, please refer to ST7687S Library Introduction and Display Library Introduction.
* @The formal parameter size refers to the text size based on the font(6×8). Size is rounded to the integer greater than 0; if size is 1, the pixel points the font occupied will be 6×8. if it is 2, that will be 12×16. The text out of the screen cannot be displayed;
The function of the program: realize the refreshing of the background color of the 2.2”screen and the switching of background color among red, white and black; there are 19 common defined color in the library, and users can also customize 4-bit hexadecimal code or decimal color code (0~65535) to alter the background color of the screen.
The function of the program: taking the centre point of the 2.2”screen as the starting point(note: the graphic display coordinates and the text display coordinates are two different coordinates, the centre point of the graphic display coordinates is (64, 64) while that of the later one is (0, 0)), display a character string ”fire” with red text background box, white font and the size of the font 2 on the screen. The formal parameter size of the function to set font size tft.setTextSize (uint8_t size) should be greater than 0 and the text out of the screen cannot be displayed.
The function of the program: use the software image2lcd.exe to extract the bitmap of one image and display it on the centre part of the 2.2”screen(note: for the reason of UNO’s internal memory, the following demo cannot be accepted on UNO since the image file is too large, but it can be displayed on ESP32. So you’d better choose small image file if you want to display it on UNO. ) The parameter selection of the software is provided below.
The ST7789 TFT module contains a display controller with the same name: ST7789. It’s a color display that uses SPI interface protocol and requires 3, 4 or 5 control pins, it’s low cost and easy to use. This display is an IPS display, it comes in different sizes (1.3″, 1.54″ …) but all of them should have the same resolution of 240×240 pixel, this means it has 57600 pixels. This module works with 3.3V only and it doesn’t support 5V (not 5V tolerant).
The ST7789 display module shown in project circuit diagram has 7 pins: (from right to left): GND (ground), VCC, SCL (serial clock), SDA (serial data), RES (reset), DC (or D/C: data/command) and BLK (back light).
As mentioned above, the ST7789 TFT display controller works with 3.3V only (power supply and control lines). The display module is supplied with 3.3V (between VCC and GND) which comes from the Arduino board.
To connect the Arduino to the display module, I used voltage divider for each line which means there are 4 voltage dividers. Each voltage divider consists of 2.2k and 3.3k resistors, this drops the 5V into 3V which is sufficient.
The first library is a driver for the ST7789 TFT display which can be installed from Arduino IDE library manager (Sketch —> Include Library —> Manage Libraries …, in the search box write “st7789” and install the one from Adafruit).
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
A full color 240xRGBx320 pixel TFT display module with 2.2" diagonal active area. Very small text and images look sharp on this graphic display, with its dense pixel pitch of 0.141 x 0.141 millimeters. The TFT"s 6:00 o" clock viewing direction works well for devices that must be easy to read above eye level without fading, such as signal analyzers or other benchtop laboratory equipment.
With a built-in Sitronix ST7789V or compatible display controller, the logic voltage range of 2.5v to 3.3v allows direct connection to 3.3v processors.
Buy with confidence. Our Logistics department is experienced at sending products anywhere in the world where permitted. This TFT display module has a limited 1-year warranty and free technical support.
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
I used 5v to led pin, 3.3v to vcc and 1k / 1.5k resistor voltage dividers to get it to work. 1k resistor in series from Arduino to tft logic pin, 1.5k from tft pin to ground. The Adafruit ILI9341 library worked fine. The PNG diagram off the Arduino forum was very helpful... Sorry, Amazon doesn’t allow links. Fairly, easy to find though...
This new library is a standalone library that contains the TFT driver as well as the graphics functions and fonts that were in the GFX library. This library has significant performance improvements when used with an UNO (or ATmega328 based Arduino) and MEGA.
Examples are included with the library, including graphics test programs. The example sketch TFT_Rainbow_one shows different ways of using the font support functions. This library now supports the "print" library so the formatting features of the "print" library can be used, for example to print to the TFT in Hexadecimal, for example:
To use the F_AS_T performance option the ILI9341 based display must be connected to an MEGA as follows:MEGA +5V to display pin 1 (VCC) and pin 8 (LED) UNO 0V (GND) to display pin 2 (GND)
In the library Font 0 (GLCD font), 2, 4, 6 and 8 are enabled. Edit the Load_fonts.h file within the library folder to enable/disable fonts to save space.
TFT_ILI9341 library updated on 1st July 2015 to version 12, this latest version is attached here to step 8:Minor bug when rendering letter "T" in font 4 without background fixed