3 5 tft lcd shield arduino library supplier

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (5" diagonal) bright (12 white-LED backlight) and colorfu 480x272 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel attached on screen by default.

The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).

This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!

For 5 inch screen,the high current is needed.But the current of arduino uno or arduino mega board is low, an external 5V power supply is needed. Refer to the image shows the external power supply position on shield ER-AS-RA8875.

If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

3 5 tft lcd shield arduino library supplier

As it stands I am not able to use the LCD screen. When I run the program graphictest_kbv I get an "image" but it is full static (like an old VCR player)

3 5 tft lcd shield arduino library supplier

This module is a 3.5-inch TFT LCD module with “320X480” resolution and 65K color display. It is suitable for Arduino Uno and Mega2560 development boards, and also supports SD card expansion function. It uses 8-bit parallel port communication, and the driver IC is ILI9486.

The 3.5-inch display is a ready-made shield for Arduino Uno, which can also be placed on the Arduino Mega. The pins of this shield are designed to be easily installed on the Arduino. The bad point about these modules is that they use all Arduino Uno pins.

my_lcd.Fill_Triangle(x_spec+i*side_len-1,y_spec+(i+1)*h_len-1,x_spec+side_len/2+i*side_len-1,y_spec+i*h_len-1,x_spec+(i+1)*side_len-1,y_spec+(i+1)*h_len-1);

my_lcd.Fill_Triangle(x_spec+i*side_len-1,y_spec+(5-i)*h_len-1,x_spec+side_len/2+i*side_len-1,y_spec+(4-i)*h_len-1,x_spec+(i+1)*side_len-1,y_spec+(5-i)*h_len-1);

my_lcd.Draw_Line(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34));

my_lcd.Draw_Rectangle(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34));

my_lcd.Draw_Round_Rectangle(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),5);

my_lcd.Draw_Triangle(2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34),2+random(my_lcd.Get_Display_Width()-4),17+random(my_lcd.Get_Display_Height()-34));

my_lcd.Fill_Round_Rectangle(my_lcd.Get_Display_Width()/2-1-120+1, my_lcd.Get_Display_Height()/2-1-60+1, my_lcd.Get_Display_Width()/2-1+120-1, my_lcd.Get_Display_Height()/2-1+60-1,5);

3 5 tft lcd shield arduino library supplier

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

The next example is controlling an RGB LED using these three RGB sliders. For example if we start to slide the blue slider, the LED will light up in blue and increase the light as we would go to the maximum value. So the sliders can move from 0 to 255 and with their combination we can set any color to the RGB LED,  but just keep in mind that the LED cannot represent the colors that much accurate.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file:

3 5 tft lcd shield arduino library supplier

i had the same issues with this 3,5" TFT LCD and wiring it to an ESP32 and making the TouchScreen work. However i managed to find a solution to the problem. Lets start with the wiring:

Next lets focus on the software side. In bodmers awesome library you have to comment/uncomment the right sections. The User_Setup.h file is pretty straight forward. My display used the ILI9488 processor and is run in 8 Bit parallel mode:

When it came to the touchscreen i faced some difficulties. Since the display with 8 bit there is no dedicated "Touch Pin" like other displays use. I decided to use a different library than @Bodmer (no front, still love you and the library <3). I used the ADAFRUIT Touchscreen library in extend:

3 5 tft lcd shield arduino library supplier

I bought four MCU Friend 3.5″ TFT shields.  And, unfortunately, they have spiraled me into a deep, dark place trying to figure out how to use them.  The the documentation consists of a sticker on the antistatic bag, a picture of the shield with a list of 5 different possible LCD drivers, a pinout, and a block of code that supposedly represents the startup code.  The unfortunate part is that none of these have been exactly right – they all have errors.  This article is a description of the journey to figuring out how to use them.

Here is a picture of the bag. (the QR code is a number “181024202132” which I thought might be a phone number but isn’t.  It also doesn’t match anything in google, so i’m not sure what it is.

It also has a picture which says the LCD has one of several different controllers (and after digging in I know for a fact that two of mine were made by Raydium and are not on the list)

And finally a table of pins.  Which is interesting as it lists 37 pins when the shield has no where near that number.  And it shows the shield as  16-bit interface which it isnt … and it shows some LEDs which aren’t there either.

I bought 4 different shields.  One came broken.  The other three are all different.  When you look at the boards there are two visibly different configurations

The first thing I did was try to use the MCUFRIEND_kbv library to see if the screens worked.  The first board identified as ID=0x9403 and did not work.  Apparently, the tool just spits out the ID if it doesn’t know it, which it did not.

One of the boards identified as ID=0x6814 worked perfectly, and one had a blue cast to all of the screens.  The crazy part is the two boards that identified as ID=0x6814 had different PCBs.  According to the comments in the MCUFRIEND_kbv.cpp ID=0x6814 is an RM68140 and ID=9403 is unknown.

Next, I started down the path of trying to figure out what the controllers were by using register reads.  David Prentice (the guy who wrote/maintains the MCU Friend_kbv Arduino library) has an absolute ton of responses on the Arduino forum trying to help people figure out what their shield is.  He asks them to post the register report from his example program LCD_ID_readnew which is included as an example in the library.

When you look at these LCD controllers they all have some variant of “Read ID” which responds with 1-6 bytes.  The basic idea of this program is to look at what bytes are returned to try to identify the controller.  Here is an example of what I got when I ran the LCD_ID_readnew program on my shields:

The key thing to see in this output is the register 0x04 which says 54,80,66 which identifies this as a Raydium RM68140 LCD controller.  Here is a snapshot from the data sheet.

Presumably the “68 14” corresponds to a Raydium 68140, but who knows?  When I posted this on the Arduino forum, David Prentice responded (David does yeoman’s labor helping people and should be Thanked for all of his pro-bono work and putting up with a bunch of really bad questions)

After digging some more, I decided that it is super ugly out there, as you find that there are a significant number of LCD controllers that are clones, copies, pirated etc… and that they all present themselves differently.  And, in hindsight I think that this is the reason that my ILI9341 from the previous article doesnt quite work correctly.

At this point I have spent a frightening amount of time figuring out how these screens work.  Although it has been a good learning experience, I have generally decided that using unknown displays from China with LCD drivers of questionable origin is not worth the pain of trying to sort out the interface.  Beyond that:

3 5 tft lcd shield arduino library supplier

For beginners to Arduino, it can be daunting and risky to wire LCD driver circuits - one wrong connection and your component can be damaged. This LCD expansion board removes all the complications and risks.

The TELEMATICS 3.5" TFT Touch LCD Shield is an Arduino compatible display designed by DFRobot, with a resolution of 320x480, three serial ports, and one I2C interface. It is perfectly compatible with Arduino DUE, Mega1280/2560, and Bluno Mega1280/2560. There is an on-board voltage switch which supports changing the output voltage between 3.3V and 5V to ensure that it won"t damage your DUE. In addition, the LCD shield comes with a MicroSD card slot on the back that can be used for data storage up to a maximum of 32GB. We also offer a variety of driver packages to help you implement different features.

Note: Since the operating voltage of DUE and MEGA are different, the backlight brightness will change if you replace your Arduino platform. Please adjust the D8 PWM signal to control the brightness of the backlight.

3 5 tft lcd shield arduino library supplier

LCD-specified initialization code is provided, so that you can save time to optimize power control register and gamma curves for best display performance. We have test the provided code, it gives the best display performanace