lcd panel ips vs va pricelist

There’s an almost overwhelming amount of options in the display market: OLED, MicroLED, and TN panel types just to name a few. But if you’re looking for a gaming monitor or simply don’t want to drain your bank account on a display, IPS and VA are generally the best choices. In-plane switching (or IPS) is an LCD-based technology that is used in just about every kind of display, whereas Vertical Alignment (or VA) is a more niche LCD technology used in gaming monitors, gaming TVs, and wide displays.

Although IPS is much more popular than VA and is often seen as the more premium option, both panel types have strengths and weaknesses that you should consider before you buy.

IPS panels have traditionally been used for making displays that have high color accuracy and large coverage of wide color gamuts like DCI-P3 or Adobe sRGB. Not only do IPS displays usually look good, but they also look good from wider angles, so you don’t need to look exactly head on at an IPS monitor to get accurate colors.

Color accuracy and coverage can be good on VA displays (even at wide angles), but colors across VA displays aren’t always uniform. Depending on the viewing angle and the distance between the viewer and the display, the center of VA monitors often have more gamma than the edges of the screen, making colors less accurate.

Although IPS is generally better than VA when it comes to color accuracy and coverage, VA panels have perfectly fine color accuracy and coverage for the vast majority of users. Only professional photo and video editors could really be disappointed with a VA monitor that only covers 90% of the DCI-P3 color space, which is actually a very good amount of coverage for gamers and content consumers.

Contrast ratio is a metric that measures how dark the color black is depicted on a display, measured as a ratio of x:1. The higher x is, the better. Although IPS is very good with color accuracy in general, it really struggles with making the color black, and even the best IPS monitors and TVs can only show a very dark grey rather than true black. Most IPS monitors are rated at a 1000:1 contrast ratio, which isn’t terrible but isn’t great either. Some monitors can get up to around 2000:1 however.

Despite VA’s general color accuracy issues, it’s actually amazing at depicting black as truly black. Even the worst VA displays can easily muster a 2000:1 contrast ratio, and some can even achieve higher than 5000:1. In fact, VA is second only to OLED when it comes to contrast ratio, and OLED actually delivers perfect contrast ratios of ∞:1. Because of this, a VA display can look better than an IPS counterpart in darker scenes.

Some displays can boost contrast ratio by using local dimming and HDR. By using a more complex backlight with multiple LEDs that can be turned on or off, local dimming helps IPS and VA displays look even darker when it matters. On the other end of the spectrum, HDR boosts brightness for colors that need it. With these two factors combined, some displays can boost the contrast ratio significantly. However, these features aren’t going to make an IPS display’s contrast ratio as good as the average VA display’s, and poorly implemented local dimming can backfire by creating more visual problems than it solves.

Response time is the amount of time it takes to fully refresh the display and show a new image. This is an area where both IPS and VA struggle, but nowadays very good IPS displays have overcome traditional issues with response times, and VA displays have not shown the same amount of progress. There is no standard that display manufacturers adhere to when it comes to measuring response time, but according to BenQ, which makes both IPS and VA monitors and TVs, IPS has a response time of 1-2ms whereas VA can only achieve 4-5ms. The specific values here aren’t important because this is a best-case scenario. What’s really important is that VA is much slower.

Very high response times can result in very animated scenes looking blurry and smeared. This issue is called ghosting, and it’s particularly annoying for discerning gamers playing fast-paced games like Counter-Strike: Global Offensive. Both IPS and VA displays have solutions and workarounds to avoid ghosting, the most important being overdrive. Overdrive that’s too aggressive can cause reverse ghosting, which is when the display tries to change a pixel’s color so quickly that it accidentally overshoots and ends up with the wrong color for a few frames. Ghosting and reverse ghosting both cause smearing, so if overdrive is too weak or too strong, the end result is similar: It looks bad.

Although the best IPS panels beat the best VA panels when it comes to response time, there are plenty of IPS displays that have very bad response times. It’s also worth noting that response time only needs to be equal to the refresh rate of the monitor for there to be no smearing. On a 60Hz display, for instance, it takes 16.66ms to show a new image, so a response time of 1ms doesn’t really do much. Response time matters much more at higher refresh rates, and even at 144Hz a response time of around 7ms is sufficient to avoid ghosting.

IPS is capable of significantly higher refresh rates than VA. IPS is capable of hitting 500Hz while VA caps out at 240Hz. However, the vast majority of VA displays are only capable of 144Hz or 165Hz; there are only a few VA monitors that can do 240Hz. For those wanting extremely high refresh rates, IPS is the clear winner.

Even if VA was capable of 360Hz however, it probably wouldn’t be very good because of its weakness in response times. A 360Hz display refreshes every 2.7ms, which is well below what VA is generally capable of.

While IPS displays are usually a safe recommendation for most people, sometimes there are very good reasons to buy VA monitors and TVs. VA has found its home in midrange gaming monitors, gaming TVs, and ultrawide displays, and many of the best gaming monitors use VA. If you’re shopping outside of these categories, however, you probably won’t have to worry about choosing between IPS and VA because VA is not very often used elsewhere.

If you do have the choice between VA and IPS, you’re going to have to evaluate what you prefer in a display, and you should definitely read some monitor reviews just to make sure if VA or IPS is going to deliver what you want in your next display purchase. After all, even an IPS display can have bad color accuracy or bad response time, so don’t assume IPS means quality and that VA means budget.

lcd panel ips vs va pricelist

Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.

LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).

Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.

Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.

IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.

Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.

IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.

VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.

This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.

TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.

The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.

A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).

While impressive color production is possible on both display types, IPS panels tend to offer wider colors, given the nature of their hardware. While a wider range of colors tends to spell better color accuracy, the advent of additional TV technologies like quantum-dot color have evened the playing field considerably. In other words, you’re far more likely to notice the benefits of an IPS TV’s wider viewing angle than you are to notice its tendency for wider color.

Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.

Unfortunately, not only is it rare to find a TV’s panel type listed on a manufacturer’s website, but it’s increasingly rare for a brand to reveal a TV’s panel type at all—even when we contact brands directly for information. The reason for this caginess has everything to do with marketing; it’s better to keep shoppers focused on the bells, whistles, and impressive performance specs of a TV rather than its potential shortcomings.

To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.

Fortunately, it’s relatively easy to determine panel type if you have the proper equipment and you know what to look for. Certain test results and viewing characteristics act as tell-tale signs. This is why my colleagues and I make a point of discussing panel type in just about every TV review we publish, and why you should make a point of reading reviews before making a purchase.

Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.

Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).

If you focus on single-player gaming, or your multiplayer gaming happens online, the excellent contrast of VA is the way to go. The most gaming benefits you’ll see will come from extra features like Variable Refresh Rate (VRR), Auto Low Latency Mode (ALLM), or cloud game capabilities.

If you’re buying a large screen and intend to host movie nights with friends and family, a TV with an IPS-style panel is far more accommodating thanks to its superior viewing angle. Just be aware that certain content—particularly dark content—won’t pop as much on account of the panel’s shallower black levels.

On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.

lcd panel ips vs va pricelist

Choosing a monitor never gets easier. Every year that passes by, new technology redefines the limits of previous technology. It used to be that every monitor on the market was a TN panel. Then, along came IPS with a significantly improved picture quality with a much wider range of color and wider viewing angles. These two competing technologies still dominate the market today. However, there is a third. Vertical alignment, or VA, panels were developed to bridge the gap between TN and IPS in the early days.

VA panels are capable of better viewing angles than TN panels, but not as good IPS. They are also more consistently available in higher refresh rates like 120Hz or 144Hz. In the modern market, the 144Hz refresh rate is not rare or exclusive to panel technology. IPS still tends to shine as a better technology than both TN and VA panels with the best range of color and viewing angles available. However, IPS displays are typically the most expensive of the three.

It used to be that VA panels were easier to get a faster response time on than IPS panels. That has also changed. IPS panels can come with 4 ms response times and 280Hz refresh rates without losing color contrast, gamut, or viewing angles. VA panels can come to similar performance, but with a much slower response time. This makes IPS panels a better option for gaming, while VA may be a better option for office use due to its cheaper price.

It is worth noting that when discussing prices of modern monitors with VA, TN, or IPS panel technology that cost has significantly been reduced. 20” monitors with any panel technology run from as cheap as $50 to around $200. The price is dictated by more than just the panel technology, of course.

Vertical alignment, or VA, panels are a type of liquid crystal display, LCD, technology that uses vertically aligned crystals. This means that the nematic liquid crystals are vertically aligned with respect to the glass substrate. When power is applied, the crystal molecules will tend to organize perpendicular to the electric field and therefore parallel to the substrate surfaces. When the panel is unpowered, the axis of the LC molecules is positioned vertically to the substrate which prevents light from reaching through the screen like window shades.

VA was created after IPS in an attempt to create a mixture of the two technologies. It creates a better contrast ratio and includes the wide viewing angles of IPS LCD display panels. The idea for vertical alignment panels was born in 1971, but the final product wasn’t released until shortly after IPS technology. VA panels are most known for their ability to reach high refresh rates without incurring a heavier cost which is fantastic for budget gamers.

Vertical alignment panels have a bad habit of ghosting images. When a VA panel TV or a monitor is left active for too long on an unchanging image, the image can be burned into the screen. Some users may be familiar with this as movie DVD menus may have accidentally been left on overnight causing a burnt image. This is what’s known as image “ghosting”. Unfortunately, there isn’t a way to prevent this other than ensuring the panel is powered down when not in use.

In-Plane Switching, or IPS, is one of the display technologies for TFT-LCDs, which stands for Thin Film Transistor Liquid Crystal Displays. It was created to provide an alternate solution to twisted nematic display panels. IPS was first developed by Hitachi. They had found a way to change the physical behavior of the liquid crystal layer by moving the liquid crystal molecules in parallel with the thin film transistors. This created much wider viewing angles when compared to traditional TN panel technology.

Since then, LG has developed IPS into the next level with S-IPS, super in-plane switching, and AH-IPS, advanced high-performance in-plane switching. The first version of IPS already offered a much wider color gamut compared to TN display panels, but the extra enhancements from decades of development have brought IPS to the point where TN only outperforms IPS displays when it comes to response time. IPS panels are typically measured at 4 ms response time. TN panels still boast a consistent 1 ms response time. For office work, school projects, home management, and organizational uses, the difference in response time will mean nothing. A user who enjoys PC gaming will notice the difference in racing or competitive Shooters rather quickly.

IPS displays are also much better for entertainment purposes. The wide viewing angle is well-suited for TV use and watching movies with a wide seating arrangement. The viewing angle stops image quality loss when viewers aren’t directly in front of the screen, so even guests sitting at the furthest ends of the group will still be able to see the movies or TV shows clearly.

IPS has wider viewing angles with no shift in color between horizontal and vertical directions. VA panels have poor viewing angles that show picture degradation.

lcd panel ips vs va pricelist

When choosing a new computer monitor, the type of panel used by the display is a key piece of information that reveals a lot about how the monitor will behave and perform. By far the most common types of display panels are TN, IPS and VA.

Monitor LCD panels are made up of many layers, including a backlight, polarizing filters and the liquid crystal layer. It"s this liquid crystal layer that determines the intensity of light let through from the backlight, and in what colors, whether red, green or blue. To control this intensity, a voltage is applied to the liquid crystals, which physically moves the crystals from one position to another. How these crystals are arranged and how they move when voltage is applied, is the fundamental difference between TN, VA and IPS.

Our original explainer about display technology and the difference between TN vs. VA vs. IPS was published almost three years ago, and while most of that information remains accurate to this day, we"ve seen the introduction of much faster IPS displays as well as a revolutionary updates to VA panels, particularly from Samsung Odyssey gaming monitors. We"ve also since tested over 100 monitors, so we have a lot more insights to share about performance.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

VA, stands for vertical alignment. As the name suggests, this technology uses vertically aligned liquid crystals which tilt when a voltage is applied to let light pass through. This is the key difference between IPS and VA: with VA, the crystals are perpendicular to the substrates, while with IPS they are parallel.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

There are various subvariants to these technologies which can tweak things further, and you"ll also see different brand names depending on the panel manufacturer. For example, AU Optronics use "AHVA" to refer to an IPS-type panel, not a VA panel. Samsung use PLS, while brands like LG simply use "IPS". Then on the VA side we have AU Optronics "AMVA" and Samsung"s "SVA" among others.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

The most immediately obvious difference when viewing a TN, IPS or VA panel for the first time is in viewing angles. This is one area that hasn"t significantly changed since the introduction of these technologies.

TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs and can impact the experience for productivity where any shifts to color impact accuracy for things like photo editing.

VA and IPS panels are significantly better for viewing angles, with IPS panels generally giving the best overall experience. Here you"ll commonly see 178/178 ratings for viewing angles, and while there can still be some shift to colors and brightness viewing at off-center angles, this will be far less noticeable than on a TN panel. Of all the IPS panels we"ve reviewed over the years, I"d describe the majority of them as having excellent viewing angles, a non-issue for modern IPS displays.

VAs are also good but not as good as IPS and can have a greater degree of contrast shifting than IPS. But the thing that impacts VA viewing angles more than this is the fact that many VA monitors today are curved, and any introduction of a curve reduces viewing angles. That"s something to keep in mind when choosing between IPS and VA

Because the liquid crystal layer is separate to the backlight layer, there is no technical reason why TN, IPS or VA monitors should differ in terms of brightness. Across the 100 displays we"ve tested using our latest test suite, the average SDR brightness for IPS panels was 385 nits, versus 367 nits for TN and 346 nits for VA - so really there"s not much of a difference.

Contrast ratio, on the other hand, is where another major difference occurs. TN panels have the worst contrast ratios, with the twisting technique not particularly great at producing deep blacks. In the best cases you"ll see contrast ratios around 1000:1, but typically after calibration these numbers are lower, in the 700:1 to 900:1 range. Of the monitors we"ve tested, the average TN has a contrast ratio of 872:1, which is poor so if you want rich, beautiful blacks - well maybe just buy an OLED but if you"re buying LCD, don"t get a TN.

IPS is the next step up, though generally IPS contrast ratios aren"t that different from TN. In the worst cases - in particular LG"s current line-up of Nano IPS panels - you won"t see contrast performance any different from a typical TN, with a ratio below 1000:1. However outside of those worst cases, it"s much more common to see contrast at or above 1000:1, with some best case examples pushing up to 1500:1 which is about the ceiling I"ve seen for IPS. Of the IPS panels we"ve tested, an average contrast ratio of 1037:1 was recorded, 19% higher than the average contrast of a TN.

If you really want an LCD to produce deep blacks though, you"ll have to go with a VA panel. The design of these panels is much more conducive to great contrast ratios, which typically start at 2000:1, higher than even the best IPS alternatives.

We"ve measured ratios up to 5000:1 for VAs, and some TVs can push this even higher. The range of typical contrast ratios is also quite a bit larger than with the other two technologies, but when manufacturers list a 3000:1 ratio for their VA monitor they"re usually correct - on average we measured a 2898:1 contrast ratio for VAs. With that in mind you can see VAs are usually 2.5 to 3 times better at producing blacks than IPS or TN, great for night scenes.

We often get asked whether these differences in contrast ratios actually matter. Almost all monitors use some sort of matte anti-glare coating, which can reduce the effective contrast ratio in brighter viewing environments. So if you"re using your monitor during the day, or under artificial lights, the difference between TNs, IPSs and VAs in contrast ratio is going to be less noticeable. But if you typically use your monitor in a dimmer environment, like gaming with the lights off or having a cheeky late night incognito browser session, you"ll much more easily spot the massive superiority VAs have in this area.

It"s also worth mentioning that while IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type, and can vary between individual units.

Before when discussing TN vs. VA vs. IPS, we spent some time talking about the differences between TNs, VAs and IPS in terms of bit depth -- or the difference between 6-bit, 8-bit and 10-bit panels. But we feel this is less relevant these days when the vast majority of displays are native 8-bit panels, with the exception of a few low-end panels that are 6-bit, and a few professional grade high-end panels that are 10-bit.

It remains the case that most displays advertised as "10-bit" or having "1 billion colors" are not true 10-bit panels, instead achieving this through FRC or dithering, and the type of LCD panel technology makes little difference.

There also isn"t a significant difference these days between LCD types when it comes to coverage of "standard" color spaces like sRGB or Rec. 709, which is used by default in Windows and is widely used for video content.

Even TN panels, which historically have had the "worst" color quality, these days will cover over 95% of the sRGB color space at a minimum for any monitor worth buying. The exceptions to this are entry-level junk some OEMs like to punish their low-end laptop buyers with; it"s rare for a desktop monitor to go below 90% sRGB coverage and certainly you shouldn"t buy it if it does.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

The main differences between TN, IPS and VA for color quality these days comes in coverage of wider gamut, such as DCI-P3, Adobe RGB or Rec. 2020. DCI-P3 and the larger Rec. 2020 are important for HDR videos and gaming, while Adobe RGB is common for work with wide gamut images.

As far as gaming monitors are concerned, which is the majority of monitors we test, it"s uncommon for TN panels to exceed the sRGB color space and produce a wide color gamut. We"ve seen it on occasion, with DCI-P3 coverage topping out around 92% in the best cases, but the majority of TN displays are standard gamut which is fine for SDR content.

The next best panel type for color gamut is VA. Some entry-level VAs will start at only sRGB coverage, but today"s wide gamut VA monitors typically cover between 85 and 90% DCI-P3, or up to around 66% of Rec. 2020. They don"t generally have adequate Adobe RGB coverage (below 85%), making them most suited to a basic wide gamut experience for videos or games. We"ve also yet to test a VA monitor with a really wide color gamut, like 98% DCI-P3, despite the highest end models of today using Quantum Dot enhancement films. Still, VA is decently mid-range for gamut coverage.

If you want the widest color gamut, you"ll need to get an IPS monitor. While basic IPS panels will be limited to sRGB only, the best wide gamut IPS displays offered these days can achieve much higher gamuts than TN or IPS.

We"ve measured up to 97% DCI-P3 and over 99% Adobe RGB in the same panel - usually a high-end model from AU Optronics - which leads to excellent Rec. 2020 coverage above 80%. This tends to make IPS the most, or at times only suitable technology for color critical wide gamut work like video or photo editing, and it"s the tech I"d choose for that task.

Time to talk about speed. Whereas before there was a pretty clear cut distinction between the technologies: TN was the fastest, IPS sat in the middle, and VA was the slowest. In 2021, that is no longer the case, and there"s a lot less separating each technology.

Historically, the highest refresh rate displays on the market were almost all TN models, but that"s not true anymore. Currently there are TN, IPS and VA monitors capable of 240Hz speeds, or sometimes in excess of 240Hz, including at resolutions like 1440p.

The highest refresh rate displays on the market today are capable of 1080p 360Hz speeds, and use an IPS panel from AU Optronics, not a TN. There is lower demand for TN panels than other panel types these days, so a lot of development effort on high refresh models has gone into IPS instead. This makes IPS the highest refresh technology for now, with all three technologies being available at 1440p 240Hz.

Response times have also improved substantially for IPS and VA monitors, especially for high-end panels. There is no longer a clear distinction between TN and the rest of today"s contenders, thanks to big speed gains headed by LG"s Nano IPS and Samsung"s new-gen VA.

The fastest TN panels that we"ve measured using our current, strict test methodology are able to hit the 4ms mark on average with a cumulative deviation of around 400. Cumulative deviation tells us how close a monitor"s response times get to the ideal instant response, and also show the balance between response times and overshoot. The HP Omen X 27 is definitely a fast monitor with its 1440p 240Hz spec. However, the Samsung Odyssey G7 and G9 are actually slightly faster, with response times between 3.4 and 4.0 ms and cumulative deviation below 400.

This puts the best VA monitors of today slightly ahead of the best TN monitors that we"ve tested, which we definitely couldn"t have said a few years ago. With these new panels, Samsung have also fixed the unsightly dark level smearing issue that plagued last-generation VA panels, giving the latest VA panels an overall experience similar to the best LCDs have to offer.

Meanwhile over at the IPS camp, the best IPS panels are slightly slower than VA and TN, but still highly competitive with the best of today. The fastest we"ve seen is a response time average of 4.5ms, with cumulative deviation around 460. That"s less than 20% off the best from other technologies, giving us a pretty small difference in 2021 between the three LCD panel types in a best vs best comparison.

With that said, this discussion of response times only applies to high end monitors. Currently in the mid-range and entry-level markets, the performance differences between TN, IPS and VA are more traditional. TN monitors can still be quite fast, with performance in the 4ms range even with basic 1080p 144Hz panels. Basically if you buy a TN in any market segment, you know it will be fast.

The next step down is IPS in lower price segments, with performance varying a bit depending on the exact model. The reason for this is that mid-range and entry-level IPS monitors tend to use more last-generation panels, which aren"t as fast as the best of today. Still, performance between 6 and 9ms on average is pretty common, and cumulative deviation is still quite competitive, especially in the value-oriented IPS market. Not as fast as TN, but still generally good for motion clarity.

Budget-oriented VA panels are, unfortunately, nowhere near as fast as the best panels of today used in Samsung"s Odyssey G7 and G9 series. It"s much more common to get a 9ms to 13ms average response time here, which puts the best budget VA panels behind an average budget IPS in performance. You"ll also get dark level smearing, which is seen as a dark trail following moving objects, which you don"t get with the other two LCD technologies.

Backlight strobing or black frame insertion is also a popular feature these days for some, particularly those after a high performance gaming monitor for esports. Generally speaking, the performance of backlight strobing is dictated by response time performance, so you can get good results with all three monitor types depending on the implementation, especially with high-end panels.

However these days the most focus tends to go into TN-based esports-oriented monitors when it comes to backlight strobing, so monitors like the BenQ XL2546K can be highly attractive offerings and preferred over the best IPS or VA monitors in this feature. We"ve also seen really good implementations with IPS and VA monitors, but TN is known to be the best.

Summarizing each of the three main LCD technologies is much harder today than in previous years, as there"s been a lot of focus on improving IPS and VA panels. This has led to much better gaming monitors for all, and many more displays to analyze and keep us busy which is always a good thing.

If we had to summarize the LCD ecosystem today... TN panels are a dying breed and their main strengths have been countered in recent years. TN panels are still very fast and great for competitive gaming, but aren"t as much of an outright speed leader anymore, especially at the high end. The main advantage to buying a TN is their affordability and consistency of speed even with entry-level panels, but this comes with weaknesses like viewing angles, contrast ratio and gamut coverage, which makes them unsuitable for a lot of stuff and probably not what you"d want to choose these days.

VA panels are a real mixed bag. At the high end, VAs are very competitive with excellent motion performance, no dark level smearing, decent contrast ratios and good colors. They have to some degree replaced IPS as the middle-ground technology that offers a bit of everything. However in the lower-end of the market, VAs retain the great contrast ratios they are known for, but suffer in motion performance due to the use of last-generation panels and end up quite slow. That"s offset by affordable prices which makes them a decent budget buy in some monitors.

IPS panels have received the most attention and continue to improve each year. IPS monitors are typically the most balanced choice, with strengths in many areas including motion performance, gamut coverage and viewing angles. These strengths tend to apply consistently in all market segments, whether high-end or entry-level, and that can make IPS a great bang for buck option.

Due to the prevalence of flat panels with great uniformity and very wide gamuts, IPS is also the most suitable technology for gaming and content creation on the same display, though contrast ratios are still well behind what VA panels can achieve.

But really there"s no right answer to which monitor technology is best. You might want excellent black levels and great speed, in which case a high-end VA is best for you. Or you might want Adobe RGB coverage, in which case you"ll need to go IPS. There"s no overall winner in the LCD space right now, it"s all about which individual qualities matter most to you.

lcd panel ips vs va pricelist

If you"re in the market for a new gaming monitor, you"re going to brush up against three distinct types of displays that all come with their own pros and cons. We"re here to break down exactly what you need to know about TN, IPS, and VA panels and help you make the right choice for your exact gaming needs.

There are three display panel types that cover most gaming monitors (cutting-edge technology like mini-LED and OLED are coming, but we won"t cover that here). TN (twisted nematic), IPS (in-plane switching), and VA (vertical alignment) all use the same technology at their core--molecules that react according to different voltages to move and produce an image--but their differences and evolutions have made each one good for specific use cases.

TN panels have the worst viewing angles of the three, with colors able to drastically shift from even slight angles off the center of the display. TN also has the worst color coverage, with the inability to show a high color depth and producing noticeable banding due to interpolation. Contrast ratios are also poor, with the overall image looking washed out compared to IPS and VA.

So, if TN is this poor, why is it still on the market? For one, TN panels are incredibly cheap, which is why you"ll often find them in budget gaming monitors that can still deliver a good, if not great, image. TN is also still the fastest panel type on the market, with pixel response times (the time it takes for a pixel to change color) as fast as 1ms. While IPS and VA panels have managed to get there, they often make use of methods that lead to other issues (such as smearing or inverted ghosting), which keeps TN panels relevant for speed.

For that reason, TN panels are ideal for competitive gaming, especially in the realm of esports where response time is much more important than image quality. If you"re primarily playing Counter-Strike: Global Offensive, Fortnite, or Call of Duty: Warzone, you"ll probably benefit the most from a TN monitor if all you care about is securing those wins. Plus, you"ll save a bunch of money in the process.

On the other end of the spectrum is IPS, or in-plane switching. Although many manufacturers use IPS displays now, the term was initially coined by LG and used exclusively by the company. Nowadays, though, it"s not uncommon to see the likes of Dell, Asus, and AOC producing IPS displays.

In the past, one of the biggest compromises you had to make with IPS displays was pixel response time and refresh rate, but as the technology has evolved it has managed to shake these off. You can now find IPS displays with refresh rates well into the 240Hz range, with response times matching that of the 1ms on TN. You"ll pay a premium for that, with most high-end displays on the market featuring these specs, but it"s also possible to enjoy some of the benefits with cheaper IPS products. You might get a response time closer to 4ms and maybe a limited refresh rate ranging from 60-144Hz, but if you care about what your games look like then it"s a massive step up from TN.

One big disadvantage across the board with IPS panels are their poor contrast ratios, making them worse options for dark rooms than VA. It can make dark areas in games look more milky grey than black, made worse by the uneven backlighting that can be viewed at different angles (also known as IPS glow). The color reproduction is still the best it can be on an IPS display, but if you mostly play games at night or in a dim room, you might want to consider a VA panel.

Speaking of VA (vertical alignment) panels, there"s a reason the majority of LCD TVs use this panel type. It"s the jack-of-all-trades panel, with better color reproduction than TN panels as well as a much better contrast ratio compared to IPS. VA panels, depending on the overall display specs, can also be cheaper than IPS panels in most cases, occupying a good middle ground between performance and price that is difficult to argue against.

One area where VA truly excels is contrast. It"s a night-and-day difference compared to IPS, with VA panels able to produce far inkier blacks and really accentuate dark areas in games, especially when you"re playing in a dim environment. This is one of the strongest reasons for owning a VA panel, especially if the "IPS glow" really bothers you. You do, however, lose out on the wider viewing angles that IPS offers.

One issue with VA is its response times, like IPS. It can reach 1ms in very specific cases, but this often leads to a lot of smearing or inverse ghosting (where ghost trails behind shifting pixels have colors inverted), which make the gains moot. On average, a VA panel will have worse smearing at the same pixel response times when compared to an IPS panel, primarily down to how the vertical alignment of the molecules in the display function. It"s something you might notice when playing at very high refresh rates and in fast-paced games, but it"s also something that a lot of people don"t have an issue with at all.

If getting the fastest response times and highest frame rates possible is crucial to your gaming, there"s no question that a TN panel is still your best option. Competitive gamers who benefit from the fractions of a second that a pixel can take to update will find no corners cut on any TN panel out there, and they"ll benefit from the high refresh rates most offer.

Similarly, if you"re on a very tight budget and you"re looking for the right monitor to accompany a machine built for games like League of Legends, Dota 2, or Fortnite, then choosing a TN panel could help you put more money toward the hardware that powers your games instead. You"ll be missing out on the better color reproduction that TN lacks, but if you"re just planning to play games casually and not take in their sights, then you can save yourself a lot of money.

If single-player games are mostly what you use your PC for and you"re strictly keeping it for recreational use, then it"s difficult to argue against a VA panel. It"s a considerable step up from TN and will let you enjoy your games with visuals as their designers intended. The deep blacks will let you immerse yourself in moody atmospheres, while the cheaper prices could afford you the ability to get a bigger monitor with a decently high refresh rate.

VA panels also give you a lot of range to stretch your budget, whether you"re just looking for a slightly-above-average display or one to really bring out the best in your hardware. From 1080p to 4K, it"s easy to find a great VA-equipped display that won"t break the bank or go ultra-premium with one of Samsung"s top-of-the-line products. The company"s latest G7 (or Odyssey G9, if you have the space and the money for it) feature outstanding HDR support, incredible contrast, and great color, if you"re willing to invest in their high price points.

If you"re looking for a monitor that can do it all, there"s nothing beating out an IPS panel. Many new monitors feature the more advanced fast IPS panels, which remove many of the compromises you used to have to make with regards to pixel response times and high refresh rates.

The viewing angles, the color reproduction, and the overall experience of an IPS panel just can"t be beat right now, making it the perfect accompaniment to a high-powered gaming PC, console, or workstation. They"re accurate enough for some professional work, whether you"re color-correcting photos or videos, and fast enough to keep up with your favorite competitive games or engrossing single-player adventures.

IPS panels are also ideal for local multiplayer gaming with their wide viewing angles, but these come at the cost of good contrast ratios and potential backlight bleeding. If you"re only planning to play games in a dark environment, a VA might be better suited to your needs. But if you"re looking for a panel with the fewest compromises, it"s hard to argue against IPS.

We"ve highlighted some of our favorite monitors with each display panel type above, but if you"re looking for more options for well-priced displays, check out our guide to the best cheap gaming monitors on the market right now as well as the best monitors for PS5 and Xbox Series X. If monitors are just too small, we also have recommendations for the best 4K TVs for PS5 and Xbox Series X, some of which can also work well for PC gaming. If you’re looking for some more information on the types of monitors out there, we’ve got a list of the differences between LCD and LED Monitors. Let us know what your favorite displays are in the comments below.

lcd panel ips vs va pricelist

IPS panels offer the best color accuracy and the best viewing angles; TN panels provide the best prices; and VA panels have the best contrast and offer a good balance between visuals and performance, but their response times tend to be higher.

In this guide, we will offer brief explanations regarding the three dominant panel types mentioned in the title and discuss the pros and cons of each one.

IPS stands for “in-plane switching,” and is a very popular type of panel used by a wide range of devices, be it monitors, TVs, smartphones, or others. Its primary benefits are superb visuals, excellent color reproduction and great viewing angles.

In this regard, they are a much better choice than TN panels, although VA panels tend to have a better contrast ratio. Moreover, most IPS panels come with response times of 4ms or more, although there are now models out there that can manage response times as low as 1ms.

As for the downsides, IPS panels usually have somebacklight bleed issues, such as the infamous “IPS glow.” If you’re after an IPS monitor with a high refresh rate, you’d have to spend a little bit extra, as 144Hz monitors start a bit higher than their TN and VA counterparts.

Moreover, while they are no longer the only panel that can achieve 1ms response times, they are still the most affordable choice for those who primarily look for performance in a gaming monitor.

But as mentioned above, TN panels don’t exactly offer the best visuals. Colors tend to look washed out, and the viewing angles are rather weak, so they won’t be appealing for users who prioritize visuals over performance.

On top of that, it should also be noted that very few TN panels support HDR, and those that do rarely have the kind of contrast necessary to make full use of it.

And finally, VA (vertical alignment) panels are something of a middle ground between IPS and TN panels. The color reproduction and the viewing angles offered by VA panels are generally close to what IPS panels can achieve. Still, VA panels also have superior contrast on top of that.

However, these panels are usually the slowest of the three, as they tend to have higher response times and can suffer from ghosting issues, something that can be particularly distracting in dark scenes or fast-paced games.

Apart from that, some VA panels can also have issues with clouding and backlight bleed, but again, all of this depends on the quality of the panel itself.

When it comes to picking the right type of panel, the first thing you should consider is what’s more relevant to you: visuals or performance? And secondly, there’s always the matter of pricing.

If you’re looking for the best possible performance, potentially at a lower price, TN would be the way to go, since they are the fastest and cheapest type of panel currently available.

IPS is the go-to solution for anyone who prioritizes visuals over performance. However, as mentioned in the article, you can always get the best of both worlds with a 144 Hz IPS monitor, provided that you’re willing to spend a little more.

And finally, VA panels will be most appealing to those who want both visuals and performance at a more approachable price point. However, keep in mind that a jack of all trades is a master of none, so a VA panel will not quite match an IPS panel in terms of color reproduction nor will it be as responsive as a TN one.

lcd panel ips vs va pricelist

When most people go shopping for a gaming monitor, their primary concerns are resolution and refresh rate. Those are certainly important considerations, but if you’ve ever had to put up with dull colors, murky blacks or terrible viewing angles, you’ll understand that panel types are important too.

TN, or Twisted Nematic panels, are the oldest variety of LCD panels, but they’re still quite common even today. They’re cheap to produce, and they have very low input lag, which makes them appealing for gamers. They also support refresh rates of up to 240Hz, another plus for fast-paced environments.

The problem with TN panels is that they have very poor color reproduction. While modern TN panels are far better than earlier models, it’s still relatively rare to find a TN panel with close to full sRGB reproduction. Even if they do have good color reproduction when you’re looking at them straight on, their viewing angles are limited, and they look washed out when viewed from the sides.

If you’re on a budget, enjoy playing competitive shooters or strategy games where reaction times matter, a TN panel could be fine for you. But if you want something that doubles as a media player, the average TN monitor might disappoint.

Fortunately, our GFT27CXB monitor is far from “average.” We engineered our TN panel to do what most TN panels simply cannot: deliver stunningly accurate colors. And with its 99% sRGB gamut, colors are rich and vibrant. And it’s fully customizable, with space to store up to 3 unique user profiles. So you get amazing color. But you also get full HD resolution with lightning-fast speeds up to 240hz refresh rate and 1ms response times.

IPS, or In-Plane Switching, monitors are almost the exact opposite of TN panels. They offer much wider viewing angles than TN panels as well as better black reproduction. The trade-off is that they’re more expensive. They have a history of slower refresh rates, too, although that has been changing lately. Today’s IPS panels can reach max. refresh rates as high as 200-240Hz.

There are some IPS monitors with very good refresh rates and response times, but they’re on the pricier side. You can expect to pay more than $500 for an IPS monitor with a 1ms response time. If you’re looking for a more budget-friendly IPS monitor, then you’ll have to settle for response times of 4ms or slower. IPS panels are also prone to backlight issues. Color reproduction is better than on TN panels, even at extreme angles, but the backlight can sometimes be seen.

Our REAPER series monitor—starting with the RFI25CBA—has been designed to overcome this particular issue. It’s been engineered to reduce the amount of backlight bleed-through on its IPS panel. The monitor also features an MRPT Mode to produce extremely clear moving pictures with excellent color while significantly reducing backlight issues.

VA, or Vertical Alignment, panels are somewhere in between TN and IPS, offering the best of both worlds. This type of panel is common in TVs but is relatively uncommon for gaming monitors. TN panels offer very good contrast ratios, so you can expect vibrant colors and good color reproduction. They also offer good viewing angles, and while brightness may vary depending on the angle you’re looking at the screen from, they’re not susceptible to the backlight issues of IPS panels.

The downside of VA panels is that they have slower response times. As with IPS panels, newer models do have high refresh rates, but the slow response time means you may see ghosting or motion blur in fast-paced, competitive games. Fortunately, all VIOTEK monitors come with AdaptiveSync, which works with AMD® FreeSync® and NVIDIA® G-Sync™ technologies. AdaptiveSync eliminates image distortion (e.g., tearing, stuttering, ghosting and judder) and other glitches that can happen if the monitor’s refresh rate doesn’t match the frame rate of the computer’s GPU. The result is smoother action with clearer images.

There are benefits and downsides to each panel type, and there’s no one correct answer to the question of “which is best.” It depends on your budget, the type of games you enjoy playing, whether you prize response times over other features, and what else you do with the monitor.

If you’re a competitive gamer who wants the absolute best response time on a budget, TN panels will get the job done, but they may disappoint when you’re playing a heavily modded game of Skyrim and want to stop and enjoy the scenery. IPS panels can deliver a similar experience if you’re willing to spend a lot of money. But if you’re like most of us, you’d rather put that extra cash towards a slightly better GPU.

VA monitors are a great “Jack of all trades.” The NBV24CB2, for example, is a highly affordable 1080P monitor that offers a 75Hz refresh rate and AdaptiveSync technology—along with some other nice extras. Those extras include GAMEPLUS targeting crosshairs and FPS/RTS display modes to help give you the advantage while playing first-person shooter games. This monitor is ideal for gamers with mid-range systems. If you’re playing marathon sessions, the NBV24CB2 has a blue-light filter to help reduce eye strain. And there’s great color reproduction for watching videos.

Looking for something with a little more power? The GNV32CBO or GFV24CB are two 1080p monitors. These offer super-fast 165Hz refresh rates for pro-motion with reduced input lag. They’re also VA panels, delivering great color reproduction, AMD FreeSync to reduce image ghosting, and other game-friendly features.

lcd panel ips vs va pricelist

With their vibrant colors and relatively constant picture appearance from multiple angles, IPS displays are suitable if your focus is on accuracy. When you can"t afford the pricey nature of these monitors, LEDs present a budget solution.

The benefits of using LED TVs are minimal energy consumption, a long-lasting backlight with pictures being bright. IPS displays offer more image accuracy and have better color reproduction in small viewing angles. In short, LEDs are cheaper, though the advantage of an IPS screen is better picture quality. Having said that, Samsung"s Quantum Dot technology could boast of dramatically enhanced color compared to IPS panels.

Although LED panels are excellent in competitive gaming, IPS gaming monitors have various tricks, like better image colors than other technologies, including TN and VA panels (see VA panel vs IPS). If you want to play while getting the most accurate color depiction, choose IPS and make sure to go over our review of the best 32-inch gaming monitors, including this affordable Dell gaming monitor.

LED and IPS monitors (see also QLED) have excellent attributes with disadvantages as well. Before looking at the differences of screens featuring the two technologies, here is a look at the LCD (Liquid Crystal Display) technologies and also a LED vs LCD comparison.

LED (Light Emitting Diode) is a type of backlight technology in which the pixels light up. Many people confuse the difference between LED and LCD displays.

An LED monitor is a type of LCD monitor, and while both utilize liquid crystals for picture formation, the difference lies in LEDs featuring a backlight.

Notably, some IPS displays incorporate LED technology. Some reasons why some brands produce IPS displays infused with LEDs are the resultant sleekness and compactness.

The benefit of using LED panel technology is how bright the displays are while still maintaining an efficient energy consumption lower than other screen technologies.

If you need LCD monitors with a quick response time, consider an LED display panel using either VA or TN technology. Such an LCD screen typically offers a 1ms response time. However, remember that these monitors tend to have smaller viewing angles and inferior image quality than an IPS monitor. Regardless, you can still get a considerably good performance when planning quick-action games provided you sit directly in front of the screen. In that case, vertical monitors may prove a viable option.

Below are some combinations of these two technologies:LCD monitors incorporating IPS panels and LED backlightLED-backlit with IPS panel or TN panel featuresIPS display featuring LCD or LED backlight technology

Another big difference between IPS displays and LED monitors lies in the energy uptake. An IPS monitor provides better visual quality than an LED monitor, leading to more power consumption to maintain excellent on-screen performance.

Although LED monitors provide brighter screens, their power consumption is much less than IPS panel technology. That explains why they are a favorite Liquid Crystals Display technology amongst those looking for affordable electronics.

Because IPS monitors take up much power, they release more heat than their LED alternatives. Despite LED display monitors providing bright pictures, they produce relatively less heat than monitors with IPS display technology.

The cost of a monitor using IPS screen technology is approximately $100 or more, depending on whether the panel infuses other technologies like a TN panel or another type of LCD.

Notably, mid-range IPS monitors usually go for more than high-end LED monitors. When it comes to LED monitor prices, you can get an excellent monitor under $200, $100 and even $50, depending on your model and the included attributes.

While both offer superb monitor selections, the differences between IPS and LEDs make one a better option for you than the other. Apart from these two, there are other display types to choose from so it can be hard to decide which suits you best. Nonetheless, here are vital questions to answer before deciding.

When picking a monitor, it is essential to get one that aligns with your application. If you want a monitor for creative visual applications, go for an IPS monitor. This LCD panel allows you to sit at more diverse angles, get elaborate graphics, and features color accuracy.

If you want gaming monitors for fast-paced shooting games, LED monitors might be the ideal option to consider. Ideally, the type of LED monitor you pick should feature a TN panel to cater to the limited viewing angle and lower display quality. Other excellent options to consider are Organic Light-Emitting Diodes (OLED monitors), given their improved display quality over pure LED monitors.

As noted, IPS monitors provide impeccable visual quality. Unfortunately, you"ll have to put up with the increased energy consumption. Sometimes, an IPS monitor may get quite hot, leading to a concern in the unit"s longevity. That explains why various individuals consider IPS displays unreliable and not as good in terms of performance as LED monitors.

While you won"t have the impressive visual and color accuracy of a high-quality IPS display, LED monitors to suffer less from overheating issues. Many consider LED monitor performance as dependable and consistent.

When purchasing monitors, it"s wise to work with a realistic price range depending on the attributes expected. The more specs and panel combinations, the steeper the cost, irrespective of whether they are LED or IPS monitors. For example, monitors that include other Liquid Crystal Display panel types like VA and TN are typically pricier than pure IPS panels.

If you want value for your bucks" worth, consider getting LED monitors. Besides the availability of numerous LED monitors at budget prices like this S2318HN monitor by Dell, you are likely to have more attribute compatibility with them than with IPS technology.

Yes, they are less likely to cause eye strain than LEDs. With them, you get decent color representation and excellent contrast ratios. For these reasons, they minimize the effort your eyes take to decipher things. Some of these panels operate even at a refresh rate of 280Hz to reduce input lag and combat unpleasant screen effects like tearing that may lead to straining - click here for the best monitors for eye strain.

Both IPS and LEDs have critical upsides that might be key to your application. Irrespective of the technology you prefer, the trick is identifying which coincides best with what you envision for your monitor.

In sum, IPS monitors are fantastic if you have a more flexible budget and you prefer intensive viewing angles with impressive color reproduction and image accuracy. Something to remember is the increased overheating potential because of the relatively higher power consumption.

An LED monitor might be your go-to alternative if you want to spend less. Besides, you can pick from multiple options featuring LCD and TN panels to circumvent some shortcomings synonymous with LED displays. What"s more, their performance is more reliable.

lcd panel ips vs va pricelist

When choosing a computer monitor, always take into account the type of panel display uses in addition to the other technical specifications. Flat screens LCD monitors primarily use three different panel types: TN, IPS or VA (i