tft lcd vs oled supplier
In market, LCD means passive matrix LCDs which increase TN (Twisted Nematic), STN (Super Twisted Nematic), or FSTN (Film Compensated STN) LCD Displays. It is a kind of earliest and lowest cost display technology.
LCD screens are still found in the market of low cost watches, calculators, clocks, utility meters etc. because of its advantages of low cost, fast response time (speed), wide temperature range, low power consumption, sunlight readable with transflective or reflective polarizers etc. Most of them are monochrome LCD display and belong to passive-matrix LCDs.
TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.
Normally, we say TFT LCD panels or TFT screens, we mean they are TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology. TFT is active-matrix LCDs, it is a kind of LCD technologies.
TFT has wider viewing angles, better contrast ratio than TN displays. TFT display technologies have been widely used for computer monitors, laptops, medical monitors, industrial monitors, ATM, point of sales etc.
Actually, IPS technology is a kind of TFT display with thin film transistors for individual pixels. But IPS displays have superior high contrast, wide viewing angle, color reproduction, image quality etc. IPS screens have been found in high-end applications, like Apple iPhones, iPads, Samsung mobile phones, more expensive LCD monitors etc.
Both TFT LCD displays and IPS LCD displays are active matrix displays, neither of them can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to make LCD showing colors. If you use a magnifier to see your monitor, you will see RGB color. With switch on/off and different level of brightness RGB, we can get many colors.
Neither of them can’t release color themselves, they have relied on extra light source in order to display. LED backlights are usually be together with them in the display modules as the light sources. Besides, both TFT screens and IPS screens are transmissive, it will need more power or more expensive than passive matrix LCD screens to be seen under sunlight. IPS screens transmittance is lower than TFT screens, more power is needed for IPS LCD display.
A new form of display technology called Organic Light-Emitting Diode (OLED) is sweeping the display world today. Let’s take a look at what TFT display VS OLED display and how it stacks up to TFTs.
OLED display uses a light-emitting diode (LED) that features an organic compound as its emissive electroluminescent layer. Electric current is applied to the diode, activating the organic compound film and giving off light as a result. The organic compound film is typically situated between two electrodes, one of which is transparent.
OLEDs are mostly used in smartphones and limited releases of high-end smart televisions. It can also be used in computer monitors and handheld game consoles.
OLED displays naturally emit light, so using them on a display panel doesn’t require a backlight. Meanwhile, LCDs need backlights because the liquid crystals cannot create light on their own. OLED’s natural light emission also paves the way for creating lighter screen devices than those using TFT LCD display.
LCD displays are brighter than OLED. This is due to the LCD’s use of backlights that can brightly light up the entire screen. While OLEDs emit good brightness levels from their light, they can never match the brightness that LCD backlights have.
OLED wins in the black levels feature. It’s because OLEDs can perfectly turn off a pixel, causing it to become completely black. LCDs can’t create perfect black screens even with their full-array local dimming feature. LCDs are also prone to blooming, where a bright part spoils the darkness of an adjacent black area.
OLED screens have better viewing angles than LCDs display. Some LCDs improve their viewing angles by using in-plane switching panels (IPS). However, the clarity of images and videos can’t match that of OLEDs when viewed from extreme side angles. This is because LCDs inherently block light due to their filtering layers, and that creates added depth which makes LCD viewing angles limited.
LCD displays are a bit more energy-efficient than OLEDs. Energy consumption in OLED displays depends on the screen brightness. Less brightness used means lower power consumption, but this may not be ideal because the contrast ratio will suffer when brightness is reduced. This is not ideal if, for instance, you’re using an OLED smartphone under bright sunlight.
Meanwhile, the backlights form the bulk of power consumption in TFT displays. Putting the backlight to a lower setting significantly improves the energy efficiency of TFT displays. For instance, reducing the backlight brightness of an LCD TV with a LED backlight won’t affect the picture quality but will draw less power consumption than an OLED TV.
Both OLED and LCD create high-quality images with a wide color gamut on a screen. OLED display wins over TFT display regarding blackness levels and viewing angle. However, the TFT display takes the cake for brightness and energy efficiency.
AMOLED is another emerging display technology lately. It stands for Active Matrix Organic Light-Emitting Diodes. AMOLED is a type of OLED display used in several smartphones, digital cameras, televisions, and media players.
Thin film transistors (TFTs) and capacitors are attached to each pixel LED component of the panel. At least two TFTs are attached to one pixel – one to control the capacitor’s charging and another to give a voltage source.
AMOLED displays have better color accuracy than LCDs. What makes the color more accurate in AMOLED displays is largely due to the precise pixel control achieved by AMOLED panels.
Whites and blacks appear perfect in AMOLED displays. Whites produced by LCDs may carry a bluish tint due to the backlight. Blacks don’t completely appear dark in LCDs, too.
AMOLED provides a greater color gamut than LCDs. AMOLEDs (and all OLED displays in general) have additional blue and green saturation. While these hues greatly widen AMOLED’s color options, some people find the resulting colors a bit unnatural to look at.
Meanwhile, LCDs have subdued greens and quite compelling red hues. Its color gamutmay not be as wide as AMOLED’s, but many people still find it satisfying. That’s because LCD’s color range closely matches the Standard RBG color gamut profile, the one most utilized in videos and images.
LCD’s backlights help maintain the color balance of the entire screen. The backlights ensure that color balance remains consistent across the display. Meanwhile, AMOLED tends to suffer from very slight color balance drifts because of variances in the diodes’ light-emitting capacity over time.
LCDs often have a lower contrast ratio and are prone to light bleeds. That’s due to the backlights remaining open even if light has been blocked and the pixels are supposed to show black color. This is not a problem with AMOLED displays because the panel can simply switch off the pixel to create a pure black color. AMOLEDs have a better contrast ratio as exhibited by their pure black and white levels.
Since AMOLED displays do not require filtering layers and backlights, they’re more suited for use in handheld mobile devices such as smartphones and gaming consoles. LCD may be used in mobile devices as well, but the filtering layers and backlights tend to add a slight bulk to the device. Hence, many manufacturers are now switching to thinner and lighter AMOLED displays.
To sum up this part, AMOLED displays fare better than LCDs in terms of color gamut, accuracy, contrast, and mobile device suitability. However, LCDs have the potential for longer lifespans and carry a better color balance across the display device.
If you compare color LCD vs Display P3, you’ll find a significantly wider color range in Display P3 than the typical sRGB used in color LCDs. LCD monitors, especially those used in computers and laptops, are configured to accurately represent the sRGB gamut as precisely as possible. Meanwhile, Display P3 has been consistently used in Apple products since 2015, starting with the iMac desktop.
That’s all the basic information you need to know about LCD display screens. And the difference between TFT Display VS OLED Display. Now, you know How LCD Works, its possible lifespan, components, and how it compares to other display technologies.
Armed with this information, you can better appreciate and take care of your LCD display devices. And in case you’re planning to add display devices to your business, the information you’ve learned will help you make educated choices regarding the display technologies you’ll utilize.
Engineers should choose TFT vs OLED for new designs…and here’s why. OLED (organic light-emitting diode) technology continues to increase in popularity, but its growth has really exploded in the last few months due to such large-scale mass production of consumer products such as: e-cigarettes (personal vaporizers), smart-watches, cell phones and other wearables.
But these advantages have worked against OLEDs in new products as more and more new designs have incorporated OLEDs, increasing demand, while the supply side of this technology has failed to keep pace.
“There are only a handful of factories here in Shenzhen that produce OLED screens,” says Alex Liu, President of EC Supply Inc., a leading distributor of vape and electronic cigarette products. “These factories are extremely understaffed for the tens of millions of OLED screens that are in demand, yet everyone wants to jump on board the wearable technology craze. These factories simply lack the work force and raw materials to keep up with production of wearables, let alone fulfill relatively small orders for the vape industry in time for the holiday season.”
Adding to the OLED supply nightmare is the labor shortage in China coupled with many OEM customers increasing their order quantities in a race to beat the Chinese New year shut down.
“I strongly recommend customers purchase any MODs with OLED screens through a trusted source that can guarantee inventory.” – Alex Liu, President of EC Supply Inc.
TFT technology has been in production for several years and is here to stay. There are several TFT glass suppliers to support current demand and they have a great deal of capacity for increased demand.
Focus Displays carries TFT Displays as a standard stock item and can be shipped the same day from our online store as well as from distributor: Allied Electronics
It"s an organic light-emitting display. OLED display technology is different from the traditional LCD display mode, without backlight. It uses a very thin coating of organic materials and a glass substrate, which emit light when an electric current passes through. Moreover, OLED screen module can be made lighter and thinner, with larger viewing angle, and can significantly save power.
AMOLED is panel-self luminous. The TFT is illuminated on the LCD panel by backlight. AMOLED effect is more colorful and brighter. The screen can be seen clearly outside during the day. The most important is that the power consumption of AMOLED is much lower. AMOLED screen is more expensive than TFT LCD touch screen. The life of AMOLED screens is also longer.
AMOLED, after all, is a new technology, which has a bright future. TFT LCD touch screen can be thinned, and LTPS technology is still relatively stable. AMOLED module has low qualified rate and long lead time. So if the size and resolution are the same, buy the cheapest one.
Kingtech LCD is one of the leading TFT LCD OEM / ODM LCD display manufacturers in China. Customizing industrial equipment, medical, POS, logistics equipment, smart home applications and other projects is allowed.
TFT LCD is a mature technology. OLED is a relatively new display technology, being used in more and more applications. As for Micro LED, it is a new generation technology with very promising future. Followings are the pros and cons of each display technology.
TFT Liquid Crystal Display is widely used these days. Since LCD itself doesn"t emit light. TFT LCD relies on white LED backlight to show content. This is an explanation of how TFT LCD works.
Relatively lower contrast:Light needs to pass through LCD glasses, liquid crystal layer, polarizers and color filters. Over 90% is lost. Also, LCD can not display pure black.
Organic Light-Emitting Diode is built from an electro-luminescent layer that contains organic compounds, which emit light in response to an electric current. There are two types of OLED, Passive Matrix OLED (PMOLED) and Active Matrix OLED (AMOLED). These driving methods are similar to LCD"s. PMOLED is controlled sequentially using a matrix addressing scheme, m + n control signals are required to address a m x n display. AMOLED uses a TFT backplane that can switch individual pixels on and off.
Low power consumption and flexible: OLED doesn"t rely on backlight and consumes less power. OLED is essentially created on plastic film. It is bendable and easy to process.
High contrast and vivid color: OLED emits light itself, can produce very bright image with beautiful color. And because OLED can be turned off, it can produce true black.
Stroboscopic effect: most OLED screen uses PWM dimming technology. Some people who are easy perceive stroboscopic frequency may have sore eyes and tears.
Micro LED, sometimes called μLED is made up of tiny LED, measure less than 100μm. Another way of looking at this is that MicroLEDs are simply traditional LEDs shrunk down and placed into an array.
Replacing organic material with inorganic GaN material eliminates the need of polarizing and encapsulation layer, found in OLED. Micro LED is smaller and thinner, consumes less power.
If you’re designing a display application or deciding what type of TV to get, you’ll probably have to choose between an OLED or LCD as your display type.
LCDs utilize liquid crystals that produce an image when light is passed through the display. OLED displays generate images by applying electricity to organic materials inside the display.OLED and LCD Main Difference:
graphics and images visible. This is the reason you’re still able to see light coming through on images that are meant to be dark on an LCD monitor, display, or television.
OLEDs by comparison, deliver a drastically higher contrast by dynamically managing their individual pixels. When an image on an OLED display uses the color black, the pixel shuts off completely and renders a much higher contrast than that of LCDs.OLED vs LCD - Who is better at contrast?
Having a high brightness level is important if your display is going to be used in direct sunlight or somewhere with high ambient brightness. The display"s brightness level isn"t as important if it’s going to be used indoors or in a low light setting.OLED vs LCD - Who is better at Brightness?
This means the display is much thinner than LCD displays and their pixels are much closer to the surface of the display, giving them an inherently wider viewing angle.
You’ll often notice images becoming distorted or losing their colors when tilting an LCD or when you view it from different angles. However, many LCDs now include technology to compensate for this – specifically In-Plane Switching (IPS).
LCDs with IPS are significantly brighter than standard LCDs and offer viewing angles that are on-par with OLEDs.OLED vs LCD - Who is better at Viewing Angles?
LCDs have been on the market much longer than OLEDs, so there is more data to support their longevity. On average LCDs have proven to perform for around 60,000 hours (2,500) days of operation.
With most LCDs you can expect about 7 years of consistent performance. Some dimming of the backlight has been observed but it is not significant to the quality of the display.
OLEDs are a newer technology in the display market, which makes them harder to fully review. Not only does OLED technology continue to improve at a rapid pace, but there also hasn’t been enough time to thoroughly observe their performance.
You must also consider OLED’s vulnerability to image burn-in. The organic material in these displays can leave a permanent afterimage on the display if a static image is displayed for too long.
So depending on how your OLED is used, this can greatly affect its lifespan. An OLED being used to show static images for long periods of time will not have the same longevity as one displaying dynamic, constantly moving images.OLED vs LCD - Which one last longer?
There is not yet a clear winner when it comes to lifespans between LCD and OLED displays. Each have their advantages depending on their use-cases. It’s a tie!
For a display application requiring the best colors, contrast, and viewing angles – especially for small and lightweight wearable devices – we would suggest an OLED display.
LCD: liquid crystal display. Works by adjusting the amount of light blocked. Usually has a backlight but might not (clocks, calculators, Nintendo Gameboy). The green-black ones can be very cheap and are a mature technology. Response time can be slow.
TFT: is a type of LCD with a thin film transistor attached to each pixel. All computer LCD screens are TFT since early 2000s; older ones had slower response times and poorer colour. Cost is now very good; power consumption is fairly good but dominated by the backlight. Has to be manufactured out of glass.
LED: light emitting diode. As the name suggests, emits light rather than blocking it like LCD. Used for red/green/blue/white indicator lights everywhere.
Some manufacturers advertise "LED" displays that are TFT screens with a white LED backlight, which is just confusing. Ones that are real LED screens are usually OLED.
OLED: organic LED (rather than silicon or germanium based like regular LEDs). Comparatively recent technology, so cost still quite variable and not available in really large sizes. In theory can be printed on plastic, resulting in lighter flexible displays with good brightness, good power consumption and good response time.
When it comes to choosing what to use for your displays, going with the standard can get you farther ahead than thinking outside the box. TFT LCD display gives you an edge for your advertising needs, television screens, or even phone screens.
A thin-film transistor (TFT) is one of the technologies commonly used for building LCDs. With this technology, your LCD is guaranteed a sharp, clear, and full-color display and high-quality performance.
When a signal sent to a pixel also affects the pixels next to it, crosstalk This runs the risk of distorting the quality of your image. With TFT, crosstalk is significantly reduced with the TFT layer integrated into the screen itself. With every pixel corresponding to the signals meant only for them, you are guaranteed the best resolution and image quality.
In the LCD industry, the most popular kinds of displays are manufactured and innovated the most. Unlike other types of LCD technologies, the TFT module is available in different sizes, ranging from cellphone sizes to larger TV sizes, to suit your needs.
All LCD displays have a determined number of hours of use before they become half as bright than when they were turned on for the first time. This is called half-life. Although research is still ongoing regarding half-life, TFT displays are said to have more than 14,000 hours of half-life.
This does not mean, however, that the LCD will burn out after reaching its half-life. It means that its brightness will only be half of when it was new.
Compared to CRTs, TFT LCD modules have lower heat release. Moreover, they emit lower electromagnetic emissions which significantly decrease visual fatigue. This means that TFTs are ideal for devices and displays that require an audience’s prolonged attention, such as cell phones and television screens.
While the TFT’s power consumption is significantly lower than OLEDs in white displays, there are also emerging TFT displays in the market that integrate smart technologies that can save up to 50% energy on battery-operated devices.
One of the notable disadvantages of TFTs, however, is its cost. The characteristics detailed in the previous section, however, must be considered worthy of investment. Moreover, as the number of TFTs floods the LCD display market, the price for TFTs are decreasing by the day.
At Microtips Technology USA, we only provide you with the best among the best of TFT modules. Our TFT LCD displays assure only full RGB brilliance with up to 16.7 million colors, better picture quality with high resolutions and IPS technology, and affordability.
AMOLED and TFT are two types of display technology used in smartphones. AMOLED (active-matrix organic light-emitting diode) displays are made up of tiny organic light-emitting diodes, while TFT (Thin-Film Transistor) displays use inorganic thin-film transistors.
AMOLEDs are made from organic materials that emit light when an electric current is passed through them, while TFTs use a matrix of tiny transistors to control the flow of electricity to the display.
Refresh Rate: Another key difference between AMOLED and TFT displays is the refresh rate. The refresh rate is how often the image on the screen is updated. AMOLED screens have a higher refresh rate than TFT screens, which means that they can display images more quickly and smoothly.
Response Time: The response time is how long it takes for the pixels to change from one colour to another. AMOLED screens have a shorter response time than TFT screens..
Colour Accuracy/Display Quality: AMOLED screens are more accurate when it comes to displaying colours. This is because each pixel on an AMOLED screen emits its own light, which means that the colours are more pure and true to life. TFT screens, on the other hand, use a backlight to illuminate the pixels, which can cause the colours to appear washed out or less vibrant.
Viewing Angle: The viewing angle is the angle at which you can see the screen. AMOLED screens have a wider viewing angle than TFT screens, which means that you can see the screen from more angles without the colours looking distorted.
Power Consumption: One of the main advantages of AMOLED displays is that they consume less power than TFT displays. This is because the pixels on an AMOLED screen only light up when they need to, while the pixels on a TFT screen are always illuminated by the backlight.
Production Cost: AMOLED screens are more expensive to produce than TFT screens. This is because the manufacturing process for AMOLED screens is more complex, and the materials used are more expensive.
Availability: TFT screens are more widely available than AMOLED screens and have been around for longer. They are typically used in a variety of devices, ranging from phones to TVs.
Usage: AMOLED screens are typically used in devices where power consumption is a concern, such as phones and wearable devices. TFT screens are more commonly used in devices where image quality is a higher priority, such as TVs and monitors.
AMOLED and TFT are two different types of display technology. AMOLED displays are typically brighter and more vibrant, but they are more expensive to produce. TFT displays are cheaper to produce, but they are not as bright or power efficient as AMOLED displays.
The display technology that is best for you will depend on your needs and preferences. If you need a screen that is bright and vibrant, then an AMOLED display is a good choice. If you need a screen that is cheaper to produce, then a TFT display is a good choice. However, if you’re worried about image retention, then TFT may be a better option.
Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.
Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:
Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:
MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:
Sony produces and sells commercial MicroLED displays called CLEDIS (Crystal-LED Integrated Displays, also called Canvas-LED) in small quantities.video walls.
LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.
"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.
"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.
"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.
Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.
www.etnews.com (30 June 2017). "Samsung Display to Construct World"s Biggest OLED Plant". Archived from the original on 2019-06-09. Retrieved 2019-06-09.
Shilov, Anton. "LG"s New 55+ inch OLED Plant in China Opens: Over 1m+ per Year". www.anandtech.com. Archived from the original on 2019-09-14. Retrieved 2019-12-18.
"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.
Shilov, Anton. "JOLED Starts Construction of New Printed OLED Facility". www.anandtech.com. Archived from the original on 2019-06-30. Retrieved 2019-06-30.
Displays are a standard component of almost any device, application or machine. From the simple monochrome LCD character display used in portable testing equipment, to full colour graphic TFT screens used for infotainment, we have become well accustomed to the visual display of information and messages. Each area of application has specific requirements for its displays, and Telerex has a range of display technologies and product lines from trusted suppliers.
Both character and graphic LCD displays use only a moderate amount of electricity and take up only a moderate amount of space, and are therefore very suited to mobile applications on batteries. In TFT displays every pixel is directed by a tiny semiconductor that controls the amount of light that is allowed to pass through, which results in better resolution, contrast, and speed. With OLED displays a major step has been taken thanks to their very clear resolution, high contrast, wide viewing angle, and significantly lower power consumption. Finally, e-Paper displays provide the ideal solution for applications such as e-readers, interactive billboards, and interactive price tags in supermarkets, for which power consumption is critical and the display must remain static for a long period of time.
When searching for a component supplier for visual displays, there are many options to explore. The benefits of TFT vs OLED or LCD displays are dependent on the end application, and with evolving technologies many companies are not aware of the current capabilities of the different offerings, or the challenges they may entail. Let Pace help you identify the solution that will work best for your product. Pace has extensive industry experience to help match the ideal visual display to your project priorities and price point.
The Smart TFT display range from Raystar features built-in control, making design into a product or system much easier. A 5.7″ smart TFT display is now available in addition to 3.5″ and 4.3″ smart models.
TFT is being used to replace Mono LCD in many applications, and Raystar can supply a 5.2″ TFT module designed specifically to fit the footprint of the industry standard RG24064-series 240×64 mono graphic STN LCD. The RFS520A can replace traditional STN displays of 8×2 or 16×2 format as it shares the same 16 pin footprint.
IPS High Bright TFT-LCD Modules from Raystar offer 1000 nits typical brightness and wide viewing angle compared to TN TFT. The RFK101 series includes models with very high brightness, sunlight readability, wide temperature, and a choice of interfaces and touch screen technologies.
OLED Display Panels are made from organic light emitting diodes – solid state devices composed of thin films of organic molecules that create light with the application of electricity. OLED displays emit light, so they have the advantage of not requiring backlighting, making them ideal for handheld instrumentation, automotive displays, portable media players, audio visual display systems and mobile phones.
Established in 2007, Raystar has built its reputation by offering advanced products in PMOLED display and modules as well as in FSTN / STN LCD Display Module, COG LCD, TFT LCD Display.