tft lcd shield 9335 brands

This note introduces a low-cost Thin Film Transistor (TFT) display to enhance the operation and usefulness of Liquid Crystal Display(LCD) devices. TFT technology controls the pixel element on the glass surface thereby greatly reducing image blurring and improving viewing angles.

The test board chosen for this exercise is the Elegoo Arduino UNO board from the corresponding Super Starter Kit. The kit already has several simple numeric and text displays. The TFT display may perhaps provide better ways to interact in applications.

The controller for the illustrated model of the TFT display is SSD1297.This information is important because the display (owing to its low cost and high popularity) has many different manufacturers who may not leverage the same controller instruction set. The specification of the controller in the coding exercises is examined in the Appendix section of this note.

Of course, the display can be mounted elsewhere and the pins connected to the Arduino directly or indirectly using, for example, a breadboard. Other components can then use the breadboard in lieu of a shield with custom connectors. Of course, without access to such anon-standard or readily available breadboard, it is impossible to illustrate this arrangement in this note.

The output from the diagnostic program, LCD_ID_reading.ino, is shown below:Read Registers on MCUFRIEND UNO shieldcontrollers either read as single 16-bite.g. the ID is at readReg(0)or as a sequence of 8-bit valuesin special locations (first is dummy)reg(0x0000) 97 97ID: ILI9320, ILI9325, ILI9335, ...reg(0x0004) 97 97 97 97Manufacturer IDreg(0x0009) 97 97 97 97 97Status Registerreg(0x000A) 97 97Get Power Modereg(0x000C) 97 97Get Pixel Formatreg(0x0061) 97 97RDID1 HX8347-Greg(0x0062) 97 97RDID2 HX8347-Greg(0x0063) 97 97RDID3 HX8347-Greg(0x0064) 97 97RDID1 HX8347-Areg(0x0065) 97 97RDID2 HX8347-Areg(0x0066) 97 97RDID3 HX8347-Areg(0x0067) 97 97RDID Himax HX8347-Areg(0x0070) 97 97Panel Himax HX8347-Areg(0x00A1) 97 97 97 97 97RD_DDB SSD1963reg(0x00B0) 97 97RGB Interface Signal Controlreg(0x00B4) 97 97Inversion Controlreg(0x00B6) 97 97 97 97 97Display Controlreg(0x00B7) 97 97Entry Mode Setreg(0x00BF) 97 97 97 97 97 97ILI9481, HX8357-Breg(0x00C0) 97 97 97 97 97 97 97 97 97Panel Controlreg(0x00C8) 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMAreg(0x00CC) 97 97Panel Controlreg(0x00D0) 97 97 97Power Controlreg(0x00D2) 97 97 97 97 97NVM Readreg(0x00D3) 97 97 97 97ILI9341, ILI9488reg(0x00D4) 97 97 97 97Novatek IDreg(0x00DA) 97 97RDID1reg(0x00DB) 97 97RDID2reg(0x00DC) 97 97RDID3reg(0x00E0) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Preg(0x00E1) 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97GAMMA-Nreg(0x00EF) 97 97 97 97 97 97ILI9327reg(0x00F2) 97 97 97 97 97 97 97 97 97 97 97 97Adjust Control 2reg(0x00F6) 97 97 97 97Interface Control

tft lcd shield 9335 brands

2.4" TFT Display Module ILI9335 Breakout Shield LCD Touch Screen SD for Arduino. Presenting 1 x 2.4 Inch TFT Display with T ouch screen shield and SD socket for Arduino. ( Library WORKS UNDER Arduino 0022 IDE ONLY! Provided on DropBox, please message us for the download link when you receive the LCD!) Description: If you are looking for an inexpensive graphical interface for your Arduino, this could be it. Plug in directly onto UNO/Duemilanove/Diecimila board, NO SOLDERING, NO WIRING Required. DO NOT WORK WITH MEGA. Our 2.4″ Colour TFT display built with four wire resistive touch screen, a micro SD card socket and a convenient arduino shield footprint. TFTLCD Library provided on dropbox ( Works only for Arduino 0022 IDE, if you are a pro and know C programming language,perhaps you can try to add more library for touch screen) Specification: Screen Size : 2.4 inch Resolution : 240 x 320 LCD Color : 65k LCD Driver : ILI9335 Interface : 8080 8 data bit with 4 control bits Touchscreen : 4 Wire Resistive Touchscreen Arduino Pin Connections: Arduino Pin LCD Shield Pin 3.3V 3.3V Power 5V 5V Power GND GND Power A0 LCDRD LCD Control A1 LCDWR TOUCHYP LCD Control / Touch Data A2 LCDRS TOUCHXM LCD Control / Touch Data A3 LCDCS LCD Control A4 LCDRST LCD Reset D2 LCDD2 LCD Data D3 LCDD3 LCD Data D4 LCDD4 LCD Data D5 LCDD5 LCD Data D6 LCDD6 / TOUCH XP LCD Data/ Touch Data D7 LCDD7 / TOUCH YM LCD Data / Touch Data D8 LCDD0 LCD Data D9 LCDD1 LCD Data D10 SDCS SD Select D11 SDDI SD Data D12 SDDO SD Data D13 SDSCK SD Clock WARNING!! The USB B-type port on the Arduino Uno R3 is taller then the headers on the board. As a result,it can contact the metal shielding of the USB port, causing damage. The simplest way to avoid this is to place a piece of electrical tape, or Kapton tape, on top of the USB port to insulate it. As with all Arduino Shields, connecting to the arduino is simply a matter of plugging the shield in. Take care to align the pins correctly, and ensure the bottom of the shield does not make contact with the Arduino USB port. Package Include: 1 x 2.4 Inch TFT Display with T ouch screen shield and SD socket Shipping: Free Shipping to worldwide! -ePacket with tracking to U.S/Russia -Malaysia Post with tracking to Canada, France, Germany, Spain, Netherlands. -Hongkong Post with no tracking to other destinations. Refund and Return: Full Refund if item not arrive 30 days return accepted after item received Thanks for looking!

tft lcd shield 9335 brands

I have one of these TFT LCD shields, but mine is a ILI9335. It has taken me nearly 2 weeks to find a working Library and code for my 9335 driver and I am now setting about creating sketches based around my working Library.

Unfortunately most sellers of these shields (excluding good reputable companies) do not adivise of which Driver is onboard the shield and it becomes difficult to locate a working Library for the driver of the purchased shield.

If there is no Library specific to your 6767 Driver (and I must say I have not seen one in my searches for the 9335 Driver) then you may have to download as many different Libraries to locate a sketch that works for yours.

tft lcd shield 9335 brands

I bought four MCU Friend 3.5″ TFT shields.  And, unfortunately, they have spiraled me into a deep, dark place trying to figure out how to use them.  The the documentation consists of a sticker on the antistatic bag, a picture of the shield with a list of 5 different possible LCD drivers, a pinout, and a block of code that supposedly represents the startup code.  The unfortunate part is that none of these have been exactly right – they all have errors.  This article is a description of the journey to figuring out how to use them.

It also has a picture which says the LCD has one of several different controllers (and after digging in I know for a fact that two of mine were made by Raydium and are not on the list)

And finally a table of pins.  Which is interesting as it lists 37 pins when the shield has no where near that number.  And it shows the shield as  16-bit interface which it isnt … and it shows some LEDs which aren’t there either.

I bought 4 different shields.  One came broken.  The other three are all different.  When you look at the boards there are two visibly different configurations

Next, I started down the path of trying to figure out what the controllers were by using register reads.  David Prentice (the guy who wrote/maintains the MCU Friend_kbv Arduino library) has an absolute ton of responses on the Arduino forum trying to help people figure out what their shield is.  He asks them to post the register report from his example program LCD_ID_readnew which is included as an example in the library.

When you look at these LCD controllers they all have some variant of “Read ID” which responds with 1-6 bytes.  The basic idea of this program is to look at what bytes are returned to try to identify the controller.  Here is an example of what I got when I ran the LCD_ID_readnew program on my shields:

The key thing to see in this output is the register 0x04 which says 54,80,66 which identifies this as a Raydium RM68140 LCD controller.  Here is a snapshot from the data sheet.

After digging some more, I decided that it is super ugly out there, as you find that there are a significant number of LCD controllers that are clones, copies, pirated etc… and that they all present themselves differently.  And, in hindsight I think that this is the reason that my ILI9341 from the previous article doesnt quite work correctly.

At this point I have spent a frightening amount of time figuring out how these screens work.  Although it has been a good learning experience, I have generally decided that using unknown displays from China with LCD drivers of questionable origin is not worth the pain of trying to sort out the interface.  Beyond that:

tft lcd shield 9335 brands

Note: The following picture is the connection diagram of the 2.8-inch TFT screen and Arduino uno, but this product is connected in exactly the same way.

This product uses the same LCD control chip and touch panel control chip as the 3.5-inch TFT screen of the same series of our company, so the code is completely compatible. The following takes 3.5-inch TFT as an example to introduce.

LCD_Show can display colorful patterns with different shapes and times. LCD_ShowBMP is for displaying the picture in BMP, and LCD_Touch is for using the touching function.

The display controller used in this product is ILI9486, and we need to initialize the controller through the SPI communication protocol, and the initialization functions are written in LCD_Driver.cpp.

The function functions related to the screen display are written in LCD_GUI.cpp. The function of each function and the parameters passed are explained in the source code. You can call it directly when you need to use it.

Before using LCD_ShowBMP to display pictures, first copy the pictures in the PIC folder in the data to the root directory of the SD card (you should understand that in the root directory, that is to save the pictures directly to the SD card, do not put them in any subfolders folder.).

These functions are all written in LCD_Bmp.cpp. In fact, the image data in BMP format with a specific file name is read from the SD card, and then the display function written by us is called to re-express the data as an image.

In fact, you can also use Image2Lcd image modulo software to convert images of different sizes and formats into array data, and then use the functions we wrote to display them.

Note: The following picture is the connection diagram of the 2.8-inch TFT screen and XNUCLEO-F103RB, but this product is connected in exactly the same way.

The demos are developed based on the HAL library. Download the program, find the STM32 program file directory, and open STM32\XNUCLEO-F103RB\lcd4in-demo\MDK-ARM\ lcd4in-demo.uvprojx.

This product uses the same LCD control chip and touch panel control chip as the 3.5-inch TFT screen of the same series of our company, so the code is completely compatible. The following takes 3.5-inch TFT as an example to introduce.

Before using LCD_ShowBMP to display pictures, copy the pictures in the PIC folder in the data to the root directory of the SD card, and then insert the SD card into the SD card slot on the back of the screen to start the download program verification.

In fact, you can also use Image2Lcd image modulo software to convert images of different sizes and formats into array data, and then use the functions we wrote to display them.