arduino mega tft lcd projects quotation

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file:

arduino mega tft lcd projects quotation

Displays are one of the best ways to provide feedback to users of a particular device or project and often the bigger the display, the better. For today’s tutorial, we will look on how to use the relatively big, low cost, ILI9481 based, 3.5″ Color TFT display with Arduino.

This 3.5″ color TFT display as mentioned above, is based on the ILI9481 TFT display driver. The module offers a resolution of 480×320 pixels and comes with an SD card slot through which an SD card loaded with graphics and UI can be attached to the display. The module is also pre-soldered with pins for easy mount (like a shield) on either of the Arduino Mega and Uno, which is nice since there are not many big TFT displays that work with the Arduino Uno.

The module is compatible with either of the Arduino Uno or the Arduino Mega, so feel free to choose between them or test with both. As usual, these components can be bought via the links attached to them.

One of the good things about this module is the ease with which it can be connected to either of the Arduino Mega or Uno. For this tutorial, we will use the Arduino Uno, since the module comes as a shield with pins soldered to match the Uno’s pinout. All we need to do is snap it onto the top of the Arduino Uno as shown in the image below, thus no wiring required.

This ease of using the module mentioned above is, however, one of the few downsides of the display. If we do not use the attached SD card slot, we will be left with 6 digital and one analog pin as the module use the majority of the Arduino pins. When we use the SD card part of the display, we will be left with just 2 digital and one analog pin which at times limits the kind of project in which we can use this display. This is one of the reasons while the compatibility of this display with the Arduino Mega is such a good news, as the “Mega” offers more digital and analog pins to work with, so when you need extra pins, and size is not an issue, use the Mega.

To easily write code to use this display, we will use the GFX and TFT LCD libraries from “Adafruit” which can be downloaded here. With the library installed we can easily navigate through the examples that come with it and upload them to our setup to see the display in action. By studying these examples, one could easily learn how to use this display. However, I have compiled some of the most important functions for the display of text and graphics into an Arduino sketch for the sake of this tutorial. The complete sketch is attached in a zip file under the download section of this tutorial.

As usual, we will do a quick run through of the code and we start by including the libraries which we will use for the project, in this case, the Adafruit GFX and TFT LCD libraries.

With this done, the Void Setup() function is next. We start the function by issuing atft.reset() command to reset the LCD to default configurations. Next, we specify the type of the LCD we are using via the LCD.begin function and set the rotation of the TFT as desired. We proceed to fill the screen with different colors and display different kind of text using diverse color (via the tft.SetTextColor() function) and font size (via the tft.setTextSize() function).

That’s it for this tutorial guys, thanks for reading. If you made some cool projects based on this or you just want to ask questions about this tutorial, feel free to reach out via the comment section below.

arduino mega tft lcd projects quotation

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (5" diagonal) bright (12 white-LED backlight) and colorful 480x272 pixels with individual pixel control. As a bonus, this display has a capacitive touch panel attached on screen by default.

The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino Mega 2560.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!

If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

arduino mega tft lcd projects quotation

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (5" diagonal) bright (12 white-LED backlight) and colorfu 480x272 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel attached on screen by default.

The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).

Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!

For 5 inch screen,the high current is needed.But the current of arduino uno or arduino mega board is low, an external 5V power supply is needed. Refer to the image shows the external power supply position on shield ER-AS-RA8875.

If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.

arduino mega tft lcd projects quotation

In part 1 of this two part series I presented the hardware design and build for the Nokia 6300 TFT that shows how we can connect it directly to the external memory interface of the Arduino Mega and that by doing so we achieve the fastest possible interface between the TFT and the Arduino MCU.

Now the driver software has been updated to support the 2.4″ Nokia N82 LCD that I have reverse engineered. Everything that you can do on the 6300 screen, you can now also do on the N82.

A TFT with the fastest transfer times possible on an Arduino deserves a software library to do it justice, and that’s what I hope to provide here. The software library provides the following functionality:

The library is implemented as a set of C++ templates. This design decision was taken to maximise the performance of the library as much as possible by isolating the choices that you make at design-time, such as the colour depth and orientation of the LCD and making those compile-time template parameters. This means that entire swathes of code simply do not get compiled making your program as fast and as small as it can be.

Note that the code for the design-time decision regarding the LCD orientation is there at runtime even though it’s completely redundant. Contrast this with the template library which might have two function specialisations that look like this:

All of these examples are based around the popular and easy to use Arduino prototyping IDE. Advanced users will find that the library works just as well outside the IDE. My own development environment consists of avr-gcc 4.7.0, Eclipse Indigo and avr-libc 1.8.0 so compatibility with the most advanced toolchain to date is assured.

Download the library zip file from my downloads page and unzip it into your Arduino libraries directory. For me, that directory is C:\Program Files (x86)\arduino-1.0.1\libraries. Adjust that pathname to reflect where you installed the Arduino IDE on your computer.

When you’re finished you should have a new xmemtft directory in the Arduino libraries directory. All of the demos presented below can be accessed under the Arduino File -> Examples -> xmemtft menu.

All you need to do is uncomment the typedef line that corresponds to how you want to use the TFT in your project. Select a colour depth and orientation and you’re good to go. The class constructor for the panel object will take care of powering up the device and sending the initialisation sequence.

The entire library is contained within a namespace called lcd. For code-clarity all these examples will import lcd into the global namespace with a using namespace lcd statement. Advanced users will know the reasons why they don’t want to do this in a real project.

In the above example we show how to initialise the TFT and switch on the backlight. When the TFT is being initialised it contains random data. This is ugly for the user to see so we begin by ensuring that the backlight is off which makes the data on the panel invisible. We then initialise the TFT, clear down the display to a solid colour (black in this case) and then fade up the backlight smoothly.

Unfortunately TFTs photograph and film very badly indeed. I’ll try my best but the images and videos on this page are not representative of the actual picture quality that your eye perceives. Bands and pattern effects seen in the photographs are not present on the actual screen and the colours are a lot more vivid – the rectangle that appears cyan in the picture below is actually a deep solid blue.

It’s unfortunate that I have to pass the direction as a boolean to the doGradientFills function but there is a bug in the Arduino IDE that prevents an enum value being passed to a function in your sketch.

Perhaps of interest here is the type name used for holding colour variables. TftPanel::TColour. It actually resolves down to uint32_t which you can use instead if you like. The type name is for portability if and when I use this library to control other TFTs.

There is a double-to-string conversion in the arduino standard libraries but this version is 17% faster at the expense of 40 bytes of SRAM for an internal lookup table. For the curious, the implementation is a port of this open source library.

Select the Arduino target button and click Save. The adjustments that you have made are saved in an XML file and the font source code in a header file. For example, enter MyFont as the name to save and you will get MyFont.h and MyFont.xml on disk.

Bitmaps have to be converted from the efficient file storage format such as PNG, JPEG etc. to an internal format for optimised for transferring quickly from memory to the display. A Windows command-line utility is provided for this purpose, called bm2rgbi.exe. You can find it in the xmemtft/utility/bm2rgbi sub-directory of your Arduino libraries folder. The syntax is as follows:

In the Arduino IDE I include this hack in a separate tab. What it’s doing is using the GNU assembler .incbin directive to include arbitrary binary into your program. Two symbols are declared (GlobePixels and GlobePixelsSize) and made global so that the C++ code can see them. Wrapping it all in a function that will never be called (_asmStub) ensures that it ends up in flash with your code. Don’t ever call this function because the MCU will try to execute your binary picture as program code!

In this next example we will really showcase how our little Arduino can play with the big boys by simulating a media player interface complete with a live 16 channel ‘graphic equaliser’ that displays the amplitudes of the frequency ranges in an input signal calculated in real-time by the Fast Fourier Transform (FFT).

I have included driver support for displaying JPEG images streamed over the serial port from a connected computer. This frees your application from the memory limitations of the Arduino Mega and opens up the possibility of creating applications such as digital photo frames to showcase your portfolio to unsuspecting family and friends.

This last number, the chunk size, is important. The Arduino Mega library can, by default, receive 63 bytes before its internal buffer overflows. Therefore the ideal chunk size is 63, and that’s what we’ll use.

Now for the other end. I created a small C# command line utility to do the work of sending the jpeg over the serial port. In my demo code I use the Arduino’s built in USB connection, the same one you use to flash your programs.

The serial port support is not limited to actual serial ports. It should work with any peripheral that has a driver that derives from the Arduino Stream class.

Let’s see a video of the serial jpeg link in action. Naturally this mode of operation is not as fast as when the data is compiled into flash because the little Arduino has to devote some time to receiving data over the wire.

The TFT supports a sleep mode in which the display and much of the controller circuitry is powered down, reducing the current usage to a few microamps. The backlight should also be switched off in sleep mode since it’s the biggest current drain.

Here is where we declare the implementation of the terminal that we will use. It must match the orientation and colour depth of the TFT class. The font that you use must be fixed width.

Type ‘B’ boards support the faster 64K driver. Type ‘A’ boards do not. The raw fill rate for the 64K colour mode is 1.32 megapixels/second. It is 1.06 megapixels/second for the 262K and 16M modes on both boards.

arduino mega tft lcd projects quotation

Let"s get started with this creative Arduino project, where you"ll learn about the TFT LCD touch screen and how to use it to create your own colourful calculator. For a basic understanding of touch screen & LCD, a cheap TFT 2.4" Arduino shield is used to create this project. For creating a similar project, one should follow the steps and edit the code for better understanding.

The shield connects ILI9341"s data pins 0-7 to Arduino"s digital pins 2-8 (allowing parallel communication, not SPI. ILI9341"s RESET goes to Arduino analog pin A4. CS (chip select) to A3. RS (CD command/data) to A2. WR and RD to A1 and A0.

Now, open Arduino IDE and select Sketch -> Include Library -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful.

You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with BMP image files, and these images can be displayed on our TFT LCD screen using the Arduino Program.

The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the programming terminal of your Arduino UNO with some insulator, just in case if the terminal comes in contact with your TFT LCD screen.

arduino mega tft lcd projects quotation

The main component of Me TFT LCD Screen module is a LCD display communicating with Makeblock Orion through serial port to show characters and graphics of different size and colors. The module is integrated with MCU and memory chip, and the Chinese characters, letters, and figures stored in the memory chip can be invoked easily through the serial port. Its blue/gray ID means that it has a double-digital signal port and needs to be connected to the port with blue or gray ID on Makeblock Orion.

Since the port of Me TFT LCD Screen has blue/gray ID, you need to connect the port with blue or gray ID on Makeblock Orion when using RJ25 port. Taking Makeblock Orion as example, you can connect to ports No. 5 as follows:

When the Dupont wire is used to connect the module to the Arduino UNO Baseboard, its TX and RX pins should be connected to TX and RX ports respectively as follows:

If you use Arduino to write a program, the library Makeblock-Library-master should be invoked to control the Me TFT LCD Screen. This program serves to display different graphics and characters through Arduino programming.

This module (Me TFT LCD Screen – 2.2 Inch) contains a voltage converter, an STM32 chip, and a serial flash memory of 2M. In contrast with other displays, it needs only serial port for communication, so it is easy to operate and connect.

arduino mega tft lcd projects quotation

This module is designed to plug directly into Arduino UNO R3 (or its clone) boards. It is compatible with CH340 and Atmega16u2 version boards, as well as Mega 2560. This LCD shield may also work with other boards, but the compatibility can"t be guaranteed.

arduino mega tft lcd projects quotation

In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.

The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.

This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.

The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.

The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:

In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.

arduino mega tft lcd projects quotation

Arduino has always helped to build projects easily and make them look more attractive.  Programming an LCD screen with touch screen option might sound as a complicated task, but the Arduino libraries and shields had made it really easy. In this project we will use a 2.4” Arduino TFT LCD screen to build our own Arduino Touch Screen calculator that could perform all basic calculations like Addition, Subtraction, Division and Multiplication.

Before we actually dive into the project it is important to know, how this 2.4” TFT LCD Module works and what are the types present in it. Let us take a look at the pinouts of this 2.4” TFT LCD screen module.

As you can see there are 28 pins which will perfectly fit into any Arduino Uno / Arduino Mega Board. A small classification of these pins is given in the table below.

As you can see the pins can be classified in to four main classifications such as LCD Command Pins, LCD Data Pins, SD Card Pins and Power Pins, We need not know much about the detailed working of these pins since they will be take care by our Arduino Library.

You can also find an SD card slot at the bottom of the module shown above, which can be used to load an SD card with bmp image files, and these images can be displayed in our TFT LCD screen using the Arduino Program.

Another important thing to note is your Interface IC. There are many types of TFT modules available in the market starting from the original Adafruit TFT LCD module to cheap Chinese clones. A program which works perfectly for your Adafruit shield might not work the same for Chinese breakout boards. So, it is very important to know which types of LCD display your are holding in hand. This detail has to be obtained from the vendor. If you are having a cheap clone like mine then it is most probably using the ili9341 driver IC.You can follow this TFT LCD interfacing with Arduino tutorial to try out some basic example programs and get comfortable with the LCD screen. Also check out our other TFT LCD projects with Arduino here:

If you planning to use the touch screen function of your TFT LCD module, then you have to calibrate it to make it work properly.  A LCD screen without calibration might work unlikely, for instance you might touch at one place and the TFT might respond for a touch at some other place. These calibrations results will not be similar for all boards and hence you are left on your own to do this.

The 2.4” TFT LCD screen is a perfect Arduino Shield. You can directly push the LCD screen on top of the Arduino Uno and it will perfectly match with the pins and slid in through. However, as matters of safety cover the Programming terminal of your Arduino UNO with a small insulation tape, just in case if the terminal comes in contact with your TFT LCD screen. The LCD assembled on UNO will look something like this below.

We are using the SPFD5408 Library to get this arduino calculator code working. This is a modified library of Adafruit and can work seamlessly with our LCD TFT Module. You can check the complete program at the end of this Article.

Now, open Arduino IDE and select Sketch -> Include Librarey -> Add .ZIP library. A browser window will open navigate to the ZIP file and click “OK”. You should notice “Library added to your Libraries” on the bottom-left corner of Arduino, if successful. A detailed guide to do the same is given in the Interfacing Tutorial.

Now, you can use the code below in your Arduino IDE and upload it to your Arduino UNO for the Touch Screen Calculator to work. Further down, I have explained the code into small segments.

As said earlier we need to calibrate the LCD screen to make it work as expected, but don’t worry the values given here are almost universal. The variables TS_MINX, TS_MINY, TS_MAXX, and TS_MAXY decide the calibration of the Screen. You can toy around them if you feel the calibration is not satisfactory.

As we know the TFT LCD screen can display a lot of colours, all these colours have to be entered in hex value. To make it more human readable we assign these values to a variable as shown below.

The final step is to calculate the result and display them on TFT LCD Screen. This arduino calculator can perform operation with 2 numbers only. These two numbers are named as variables “Num1” and “Num2”. The variable “Number” gives and takes value from Num1 and Num2 and also bears the result.

The working of this Arduino Touch Screen Calculator is simple. You have to upload the below given code on your Arduino and fire it up. You get the calculator displayed on your LCD screen.