usb port 1602 lcd module for pi lcd2usb pricelist

-Select-AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijan RepublicBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia and HerzegovinaBotswanaBrazilBritish Virgin IslandsBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape Verde IslandsCayman IslandsCentral African RepublicChadChileChinaColombiaComorosCongo, Democratic Republic of theCongo, Republic of theCook IslandsCosta RicaCroatia, Republic ofCyprusCzech RepublicCôte d"Ivoire (Ivory Coast)DenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Islas Malvinas)FijiFinlandFranceFrench GuianaFrench PolynesiaGabon RepublicGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIraqIrelandIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, SouthKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorwayOmanPakistanPalauPanamaPapua New GuineaParaguayPeruPhilippinesPolandPortugalPuerto RicoQatarReunionRomaniaRwandaSaint HelenaSaint Kitts-NevisSaint LuciaSaint Pierre and MiquelonSaint Vincent and the GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSurinameSwazilandSwedenSwitzerlandTaiwanTajikistanTanzaniaThailandTogoTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican City StateVenezuelaVietnamVirgin Islands (U.S.)Wallis and FutunaWestern SaharaWestern SamoaYemenZambiaZimbabwe

usb port 1602 lcd module for pi lcd2usb pricelist

To be eligible for a return, your item must be in the same condition that you received it, unworn or unused, with tags, and in its original packaging. You’ll also need the receipt or proof of purchase.

To start a return, you can contact us atalex@friendlyarmtr.com. If your return is accepted, we’ll send you a return shipping label, as well as instructions on how and where to send your package. Items sent back to us without first requesting a return will not be accepted.

Certain types of items cannot be returned, like perishable goods (such as food, flowers, or plants), custom products (such as special orders or personalized items), and personal care goods (such as beauty products). We also do not accept returns for hazardous materials, flammable liquids, or gases. Please get in touch if you have questions or concerns about your specific item.

The fastest way to ensure you get what you want is to return the item you have, and once the return is accepted, make a separate purchase for the new item.

We will notify you once we’ve received and inspected your return, and let you know if the refund was approved or not. If approved, you’ll be automatically refunded on your original payment method. Please remember it can take some time for your bank or credit card company to process and post the refund too.

usb port 1602 lcd module for pi lcd2usb pricelist

Driver free on raspberry pi system – install python module by command “sudo pip install lcd2usb”. Should be also possible for many linux based projects.

usb port 1602 lcd module for pi lcd2usb pricelist

Adding a display to Raspberry PI Pico allows getting real time information from connected devices without using a computer from USB port. I2C LCD displays (with PCF8574 backpack) are one of best solution to keep wiring simple

I2C LCD displays are common LCD displays, usually composed of 16 columns x 2 rows blocks, but also different configurations can be found. Differently from simple LCD displays, they include a small panel soldered in its backside, including chips able to reduce their connection wires. The I2C LCD display usually has a PCF8574 chip, which is a device able to convert I2C serial communication into parallel connections.

To connect an I2C LCD Display with your Raspberry PI Pico, you just need to wire the Vcc and GND PINs from display to VSYS and a GND PINs of RPI Pico, then SDA and SCL PINs from the I2C Display to a couple of SDA and SCL PINs from Raspberry PI Pico, belonging to the same I2C bus, as shown in the picture on the following wiring diagram chapter.

A working solution uses the dhylands-python_lcd module including a generic API to interface to LCD displays. But this class implements commands to be sent to the LCD without caring about how to send them. The reason is that there are many different backpacks and every solution can be implemented in many different ways. The ones created with a PCF8574 use I2C as communication protocol, in this case, you need a sort of driver able to send commands via I2C. This function is implemented with a second module from T-622 user, also available from T-622 GitHub page.

As usual, I suggest adding from now to your favourite e-commerce shopping cart all the needed hardware, so that at the end you will be able to evaluate overall costs and decide if continue with the project or remove them from the shopping cart. So, hardware will be only:

Prepare cabling according to the previous paragraph. Connect RPI Pico to Thonny (you can refer to my tutorial about First steps with Raspberry PI Pico).

Before going into the usage explanation, you have to be sure that your LCD’s I2C address is correct. This is a unique address shared between I2C devices to make them able to talk on the same shared wire. This is usually a hexadecimal value and all devices connected to your RPI Pico can be scanned by copy-paste of the following code in your Thonny shell (you can copy all lines together):

As I2C LCD with PCF8574 backpack use PCF8574 chip for I2C communication, you will probably get its default address (0x27). But if your project includes more PCF8574-based chips, then you will need to identify the LCD one between those that will be shown. In case of missing devices, please check your cabling.

Starting to use your LCD device, you can run a generic test with the T-622 test script, which I have pre-configured for 16×2 LCDs using I2C0 channel (ports GP0 and GP1 according to my wiring diagram). This modified script can be get from my download area (use the following link: i2c_lcd_test). Save this file in your Raspberry PI Pico root folder or in your computer and open it with Thonny IDE.

If you will see nothing, please check your cabling. Another common issue with I2C LCD display is getting a clean screen which is only powering on and off. This means that your connection is correct and everything is working, you have only to adjust your LCD contrast by rotating the screw positioned in your LCD backside, which controls a potentiometer managing contrast:

The LCD API used has a flexible feature allowing users to display also complex icons inside a single cell. Some special characters are already available and depend on your LCD ROM (Read Only Memory, space not visible to the user). You can use these chars with “lcd.putchar(chr())” function.

The first 8 characters (from 0 to 7) character-generator RAM. This means that you can define and design any icon you want to display by identifying pixels to be put on/off for each char block, made of 8 rows and 5 columns of pixels. Each row A good description of how to define a generic icon is explained in https://github.com/dhylands/python_lcd.

You can use the generated code with “lcd.custom_char()” command. An example usage is built in my pico_i2c_lcd script. Download and open it in your Thonny IDE.

usb port 1602 lcd module for pi lcd2usb pricelist

The CFA633 series of advanced display modules will be changing from the current firmware v2.1 to v2.2. Design changes were made for backwards compatibility.

CFA633 firmware version 2.2 is considered a fit and form replacement. Testing of new firmware is recommended when the new hardware version 2.1 is available.

CFA633 hardware v2.1 is scheduled to begin shipping Q1 2017 after current inventory of hardware v2.0 is depleted following FIFO standards. Engineering samples for testing / validation will be available during this same time frame.

The CFA633 series of advanced display modules will be changing from the current hardware v2.0 to v2.1. Design changes were made for backwards compatibility.

As part of our continuous improvement, design changes have been made to the hardware of the CFA633 series of advanced display modules for improved manufacturability, improved quality, and a lower current profile.

Factory default configuration has no functional changes. Standard and custom configurations are not affected by the new hardware layout. CFA633 hardware version 2.1 should replace previous version of the CFA633 with no physical changes and is considered a fit and form replacement.

Solder jumper are still in place for configuration after jumper resistor removed. Jumpers will appear open. Configuration changes not performed by Crystalfontz America, Inc. will need to make note of this manufacturing change.

CFA633 hardware v2.1 is scheduled to begin shipping Q1 2017 after current inventory of HW v2.0 is depleted following FIFO standards. Engineering samples for testing / validation will be available during this same time frame.

Starting August 1, 2015 the "Drive Bay Kit Configurator" located at https://www.crystalfontz.com/products/select_kit.html will no longer be functional for ordering one of our Serial or USB displays (CFA533, CFA631, CFA632, CFA633, CFA634, CFA635, and CFA735) in a bracket or SLED. This functionality is being moved to the Customize and Add to Cart process when checking out. This will allow for further customization by our customers to better fit their needs.

The new part numbers will have the bracket / SLED and overlay type as a PREFIX to the configured part number. The choice for bracket / SLED to a display order will be via the cart options. Our CFA835 displays were introduced with these configuration options.

Place orders prior to 2015-08-01 for upcoming production needs via our website or by contacting our logistics department via email: sales@crystalfontz.com, or by calling 1-888-206-9720 (International call +1-509-892-1200).

The WRUSBY33 cable is replacing the WRUSBY11 cable as our standard offering for product bundles and cable options for an internal USB connection for our line of intelligent modules.

The WRUSBY11 has four individual connectors for +5v, -Data, +Data, and Ground. WRUSBY11 Product Page: https://www.crystalfontz.com/product/wrusby11-usb-motherboard-cable

Based on customer requests and feedback, the WRUSBY33 has a much simpler connection to the main board of a system with a 0.100" standard USB header. The mainboard end of the WRUSBY33 is a single piece 4 pin connector, vs the individual single pin connectors on the WRUSBY11.

Based on customer requests and feedback, the WRUSBY33 has a much simpler connection to the main board of a system with a 0.100" standard USB header. The mainboard end of the WRUSBY33 is a single piece 4 pin connector, vs the individual single pin connectors on the WRUSBY11.

The change should have no fit, form, or function change if the system board being used has a standard 0.100" four pin header for USB connectivity that follows the the standard pin out configuration.

If you currently use a Semi-Custom, or Defined Part (DP) number and would like to change to the WRUSBY33 for your part, please contact Engineering Services via support@crystalfontz.com and request the change.

As part of our continuous improvement process, Crystalfontz America, Inc. is releasing a new version of firmware for the 2v0 hardware based CFA633 family of intelligent modules.

Customers with Defined Part (DP) numbers will not have their modules shipped with this new firmware automatically. Please contact our engineering support team at support@crystalfontz.com.

usb port 1602 lcd module for pi lcd2usb pricelist

NanoPi R2C Plus:The NanoPi R2C PLUS is a FriendlyElec mini-router with edge-computing and dual Gbps Ethernet ports. It is highly compact with a dimension of 54.3 x 57.5 mm.

The NanoPi R2C PLUS uses Rockchip"s quad-core A53 RK3328 SoC with powerful performance. Its default frequency is 1.2GHz. The NanoPi R2C PLUS has 1GB (or optional 2GB RAM, 8G eMMC flash, dual Gbps Ethernet ports, a GPIO connector etc. It uses RK805 PMU chip and supports dynamic frequency scaling. It has one USB 2.0 port that can interface with 4G modules, USB HD cameras, USB WiFi modules etc.

The NanoPi R2C Plus suppors TF card booting. It works with FriendlyWrt, Ubuntu Core, Armbian etc and has good support from various communities among which OpenWrt supports it in the mainline versions. These systems are based on Linux-5.4 (LTS). The NanoPi R2C Plus is powered through USB Type-C. It is a good choice for applications that need to be deployed in compact

NanoPi R2C:The NanoPi R2C (as "R2C") is a FriendlyElec mini-router with edge-computing and dual Gbps Ethernet ports. It is highly compact such that it could be perfectly enclosed in a custom metal case of 60 x 62 x 27.5 mm.

The NanoPi R2C uses Rockchip"s quad-core A53 RK3328 Soc with powerful performance Its default frequency is 1.2 GHz. The NanoPi R2C has 1 GB (or optional 2 GB) RAM, dual Gbps Ethernet ports. It uses RK805 PMU chip and supports dynamic frequency scaling. It has one USB 2.0 port that can interface with 4G modules, USB HD cameras, USB WiFi modules etc.

The NanoPi R2C supports TF card booting. It works with FriendlyWrt , UbuntuCore, Armbian etc and has good support from various communities among which OpenWrt supports it in the mainline versions. These systems are based on Linux-54(LTS). The NanoPi R2C is powered through USB Type-C. It is a good choice for applications that need to be deployed in compact space and need strong networking performance.

usb port 1602 lcd module for pi lcd2usb pricelist

LCD2USB is a open source/open hardware project. The goal of LCD2USB is to connect HD44780 based text LCD displays to various PCs via USB. LCD2USB was meant to be cheap and to be made of easily available parts. It is therefore based on the Atmel AVR Mega8 CPU and does not require any difficult to obtain parts like separate USB controllers and the like. The total cost (without display and pcb) are about 5 to 10 Euros. LCD2USB currently comes with a simple demo application that works under Linux, MacOS X and Windows.

LCD2USB is currently supported by lcd4linux (LCD2USB support is built-in), LCD Smartie (requires a seperate driver), and LCDProc (LCD2USB support is built-in).

The hardware of the LCD2USB interface consists of the Atmel AVR Mega8 CPU, a cheap and easy to obtain microcontroller with 8 KBytes flash (of which ~3k are used in this application) and 2 KBytes RAM. The processor is surrounded by few parts, mainly connectors to interface to the PC and the LCD.

A power LED (LED1) indicates that the system is powered via USB. The system clock is derived from a 12Mhz crystal. This frequency is necessary due to the fact that the software USB implementation requires a precise timing with respect to the USB.

The USB interface of the LCD2USB interface is based on a pure software implementation and uses three pins of the AVR (PC0, PC1 and PD2). This software implementation supports low speed USB only which is signalled to the PC by resistor R1. The current version 1.1 of the LCD2USB operates the USB data lines at 3.6V which complies to the USB spec and increases compatibility over version 1.0.

The USB connection may be done via a USB B style connector. This is the square connector that is typically used for USB devices (unlike the flat A style connector used at USB hosts). The USB connector is to be mounted at the solder side (the rear side of the PCB without the white printing). Mounting it to the component side may damage the LCD2USB or even the PC when plugging it in. Alternally a cable may directly be attached to the component side of the board as depicted in the image below.

The whole device a so called bus powered device. This means that the complete device is powered directly from USB. Therefore the AVR and the LCD are powered from the USB VBUS signal. This signal can deliver max 500mA to a device. The power supply is filtered and buffered by C3 and C6.

The LCD2USB interface supports several different HD44780 based text displays. It supports single controller displays (tested with 162, 202 and 204) and dual controller displays (tested with 274 and 40*4). The LCD2USB interface uses the 4 bit interface provided by the HD44780.

Two different connectors (JP1 and JP2) are present to interface to most common HD44780 displays. The extension connector JP6 expands JP2 for the dual controller display connectors as used on e.g. 404 displays. See figures for details. Since the power supply of the 404 connection varies from the 202 connector style, the solder bridges SJ2 and SJ3 allow to adjust the power supply polarity on JP2. The default setting is for the 202 style connection. The following image shows how to change the settings for a 4x40 display:

Warning: Using the wrong polarity will most likely destroy the LCD, the interface and may even damage the PCs USB port. Please make sure, that the connector of the display matches the signal layout on the LCD2USB board. You might want to use a USB hub between the LCD2USB and your PC during the first trials. This lowers the risk of damanging the PC if you didn"t get the LCD power supply correctly. However, you may still damage the LCD2USB, the LCD and your hub.

Special care has to be taken with displays with backlighting. The LCD2USB has been designed to draw at most 75mA which is fine for typical LCDs with LED backlighting. This value is also reported to the host PC via the USB configuration. The LCD2USB interface hardware is able to supply up to 100mA via its software adjustable backlight control. This is a limitation of the transistor T1. If the backlighting draws more than 100mA, transistor T1 has to be replaced (see the section "part list remarks" below for more details) and special care has to be taken not to overload the USB which can source at most 500mA in total to a bus powered device. An increased backlight current should be reflected in the USB configuration of the device by adjusting the value of USB_CFG_MAX_BUS_POWER in the file usbconfig.h of the firmware sourcecode. You"ll then have to recompile the firmware to make it signal its increased power consumption via USB. These firmware changes may not be necessary with all PCs but some may even shut down the power supply for a device that actually draws more current than its USB descriptors indicate.

The firmware is uploaded using the standard 10 pin AVR ISP connector (SV1). A separate programming cable is required to load the firmware onto the LCD2USB. A simple do-it-yourself cable will be sufficient. A PC software like e.g. Ponyprog or UISP will then be used to upload the firware via this cable to the AVR on the LCD2USB device. The programming cable is only required once, since the firmware is permanently stored in the AVRs internal flash memory.

Connector JP3 provides the serial interface of the AVR. This connector is meant for debugging purposes only and must not be directly connected to a PCs RS232 interface. Instead a level shifter (e.g. MAX232) must be inserted.

The latest PCB version includes the two zener diodes to increase USB compatibility. Furthermore the power supply inductor has turned out not to be neccessary and has thus been removed to make space for the new zener diodes.

Resistor R4 is the current limiting resistor for backlighting. The 47 ohm in the part list is a useful and secure value for some LCDs with low power LED backlighting. Some displays already include the current limiting resistor and/or require a higher current. The symptom usually is a very dark or even barely visible backlighting with R4 at 47 ohms. You can lower the value of R4 in order to increase the backlight current and thus the brightness. Please consult the datasheet of your display for its backlight power requirements and in order to select the correct current limiting resistors. The BC547 transistor T1 may not be sufficient for displays requiring backlight currents > 100mA. A user has reported success by replacing T1 with a BS170 MOSFET and driving the backlight with 240mA.

If you are familiar with Atmel programming you probably know what you are doing. The Makefile in lcd2usb/firmware/Makefile assumes, that you are using a simple stk200 compatible printer port adapter. This is e.g. the same one as sold by emedia for the BlueMP3 device.

Connect the assembled device (no display required yet) via USB to the PC. It will not be detected yet, since it doesn"t contain the firmware. Connect it via the download cable and the programming adapter to the linux pc with installed uisp tool and type "make fuse; make flash-nodep" to upload the firmware.

If the Makefile doesn"t work for you you can also flash the device manually using avrdude and the aforementioned stk200 compatible printer port adapter with the following parameters:

As of LCD2USB version 1.4, download via usb with the USBasp tool using avrdude is supported as well. Type "make avrdude-nodep" to upload the firmware this way.

For simplicity reasons, the LCD2USB interface only uses USB control messages. More efficient and faster bulk transfers are only available to high speed devices. A USB control message for a low speed device consists of exactly 8 Bytes. The first byte indicates the control type and has to be set to a fixed value for vendor specific commands like the LCD2USB is using for its own purposes (non vendor specific commands are e.g. used to request the device name and id etc). The remaining seven bytes are the request type (1 byte), a value (2 bytes), an index (2 bytes) and a length field (2 bytes) for data being transmitted with the control transfer. The LCD2USB protocol does not send extra data, thus the last two bytes should be 0 for compatibility reasons. The remaining four bytes (two bytes value and two bytes index) are left for the data transfer. These are used to transmit up to four data bytes per transfer. Four HD44780 command bytes or four HD44780 data bytes can thus be transferred during one USB transaction.

The target id has different meaning for the different requests. For command and data transfers it is a two bit bitmap indicating which of the two possible controllers supported by the LCD2USB interface is addressed. Both controllers may be addressed at the same time (e.g. to setup user defined characters).

The LCD2USB interface was originally developed for use with lcd4linux. In the meantime LCD Smartie and LCDProc have been extended to support the LCD2USB as well. The LCD2USB software archives contain a little demo application that can be used as a basis for further LCD2USB ports. Currently Linux, MacOS X and Windows are supported by this application.

Harald Körfgen wrote a LCD Smartie plugin for LCD2USB finally allowing the LCD2USB to be used under Windows as well. Here"s what he writes about his plugin:

LCD2USB-smartie.zip contains all the necessary source files requried to compile the driver with Microsoft ® Windows Server® 2003 R2 Platform SDK, Microsoft Visual C++ 2005 Express Edition and LibUsb-Win32. LCD2USB.dll is the resulting file.

In order to use the driver libusb-win32 has also to be installed and the LCD2USB.dll has to be placed in the "displays" directory of LCD Smartie and it will be auto-detected and automatically be used. He has only tested his driver with a 20x4 display yet, so feedback is welcome.

Solution: Make sure that you run the test application as the root user since the standard user may lack the rights to access all aspects of the lcd2usb hardware.

Problem: The device is not properly detected. Linux reports an error like "device not accepting address" in the system log but the LCD displays the init message (LCD2USB VXX.XX).

Solution: The USB interface is not working at all. Your AVR is very likely running at the wrong speed. Please make sure that the fuses are set correctly. If this doesn"t help, the zener diodes may be too slow (see next problem).

Solution: The device is working partly and the USB transfers are unreliable. This was often caused by "slow" high current zener diodes which i had on the Reichelt part list some time ago. These slow diodes are easily recognized as they have thicker wires than the other parts. You can just try to remove the zener diodes and the device will work if your host PC copes with 5V on the USB data lines (most PCs do, especially older ones). Also using a USB hub between a device without zener diodes and the PC may lead to a working setup even if the PC does not accept 5V on the USB data lines. Otherwise you need faster diodes as a replacement like the one available from reichelt under part no "ZF 3,6". These are also part of the current part list and are known to work.

usb port 1602 lcd module for pi lcd2usb pricelist

Adding a display to Raspberry PI Pico allows getting real time information from connected devices without using a computer from USB port. I2C LCD displays (with PCF8574 backpack) are one of best solution to keep wiring simple

I2C LCD displays are common LCD displays, usually composed of 16 columns x 2 rows blocks, but also different configurations can be found. Differently from simple LCD displays, they include a small panel soldered in its backside, including chips able to reduce their connection wires. The I2C LCD display usually has a PCF8574 chip, which is a device able to convert I2C serial communication into parallel connections.

To connect an I2C LCD Display with your Raspberry PI Pico, you just need to wire the Vcc and GND PINs from display to VSYS and a GND PINs of RPI Pico, then SDA and SCL PINs from the I2C Display to a couple of SDA and SCL PINs from Raspberry PI Pico, belonging to the same I2C bus, as shown in the picture on the following wiring diagram chapter.

A working solution uses the dhylands-python_lcd module including a generic API to interface to LCD displays. But this class implements commands to be sent to the LCD without caring about how to send them. The reason is that there are many different backpacks and every solution can be implemented in many different ways. The ones created with a PCF8574 use I2C as communication protocol, in this case, you need a sort of driver able to send commands via I2C. This function is implemented with a second module from T-622 user, also available from T-622 GitHub page.

As usual, I suggest adding from now to your favourite e-commerce shopping cart all the needed hardware, so that at the end you will be able to evaluate overall costs and decide if continue with the project or remove them from the shopping cart. So, hardware will be only:

Prepare cabling according to the previous paragraph. Connect RPI Pico to Thonny (you can refer to my tutorial about First steps with Raspberry PI Pico).

Before going into the usage explanation, you have to be sure that your LCD’s I2C address is correct. This is a unique address shared between I2C devices to make them able to talk on the same shared wire. This is usually a hexadecimal value and all devices connected to your RPI Pico can be scanned by copy-paste of the following code in your Thonny shell (you can copy all lines together):

As I2C LCD with PCF8574 backpack use PCF8574 chip for I2C communication, you will probably get its default address (0x27). But if your project includes more PCF8574-based chips, then you will need to identify the LCD one between those that will be shown. In case of missing devices, please check your cabling.

Starting to use your LCD device, you can run a generic test with the T-622 test script, which I have pre-configured for 16×2 LCDs using I2C0 channel (ports GP0 and GP1 according to my wiring diagram). This modified script can be get from my download area (use the following link: i2c_lcd_test). Save this file in your Raspberry PI Pico root folder or in your computer and open it with Thonny IDE.

If you will see nothing, please check your cabling. Another common issue with I2C LCD display is getting a clean screen which is only powering on and off. This means that your connection is correct and everything is working, you have only to adjust your LCD contrast by rotating the screw positioned in your LCD backside, which controls a potentiometer managing contrast:

The LCD API used has a flexible feature allowing users to display also complex icons inside a single cell. Some special characters are already available and depend on your LCD ROM (Read Only Memory, space not visible to the user). You can use these chars with “lcd.putchar(chr())” function.

The first 8 characters (from 0 to 7) character-generator RAM. This means that you can define and design any icon you want to display by identifying pixels to be put on/off for each char block, made of 8 rows and 5 columns of pixels. Each row A good description of how to define a generic icon is explained in https://github.com/dhylands/python_lcd.

You can use the generated code with “lcd.custom_char()” command. An example usage is built in my pico_i2c_lcd script. Download and open it in your Thonny IDE.