types of mobile display screens factory

In recent years, smartphone displays have developed far more acronyms than ever before with each different one featuring a different kind of technology. AMOLED, LCD, LED, IPS, TFT, PLS, LTPS, LTPO...the list continues to grow.

As if the different available technologies weren"t enough, component and smartphone manufacturers adopt more and more glorified names like "Super Retina XDR" and "Dynamic AMOLED", which end up increasing the potential for confusion among consumers. So let"s take a look at some of these terms used in smartphone specification sheets and decipher them.

There are many display types used in smartphones: LCD, OLED, AMOLED, Super AMOLED, TFT, IPS and a few others that are less frequently found on smartphones nowadays, like TFT-LCD. One of the most frequently found on mid-to-high range phones now is IPS-LCD. But what do these all mean?

LCD means Liquid Crystal Display, and its name refers to the array of liquid crystals illuminated by a backlight, and their ubiquity and relatively low cost make them a popular choice for smartphones and many other devices.

LCDs also tend to perform quite well in direct sunlight, as the entire display is illuminated from behind, but does suffer from potentially less accurate colour representation than displays that don"t require a backlight.

Within smartphones, you have both TFT and IPS displays. TFT stands for Thin Film Transistor, an advanced version of LCD that uses an active matrix (like the AM in AMOLED). Active matrix means that each pixel is attached to a transistor and capacitor individually.

The main advantage of TFT is its relatively low production cost and increased contrast when compared to traditional LCDs. The disadvantage of TFT LCDs is higher energy demands than some other LCDs, less impressive viewing angles and colour reproduction. It"s for these reasons, and falling costs of alternative options, that TFTs are not commonly used in smartphones anymore.Affiliate offer

IPS technology (In-Plane Switching) solves the problem that the first generation of LCD displays experience, which adopts the TN (Twisted Nematic) technique: where colour distortion occurs when you view the display from the side - an effect that continues to crop up on cheaper smartphones and tablets.

The PLS (Plane to Line Switching) standard uses an acronym that is very similar to that of IPS, and is it any wonder that its basic operation is also similar in nature? The technology, developed by Samsung Display, has the same characteristics as IPS displays - good colour reproduction and viewing angles, but a lower contrast level compared to OLED and LCD/VA displays.

According to Samsung Display, PLS panels have a lower production cost, higher brightness rates, and even superior viewing angles when compared to their rival, LG Display"s IPS panels. Ultimately, whether a PLS or IPS panel is used, it boils down to the choice of the component supplier.

This is a very common question after "LED" TVs were launched, with the short answer simply being LCD. The technology used in a LED display is liquid crystal, the difference being LEDs generating the backlight.

One of the highlights from TV makers at the CES 2021 tradeshow, mini-LED technology seemed far removed from mobile devices until Apple announced the 2021 iPad Pro. As the name implies, the technique is based on the miniaturization of the LEDs that form the backlight of the screen — which still uses an LCD panel.

Despite the improvement in terms of contrast (and potentially brightness) over traditional LCD/LED displays, LCD/mini-LEDs still divide the screen into brightness zones — over 2,500 in the case of the iPad and 2021 "QNED" TVs from LG — compared to dozens or hundreds of zones in previous-generation FALD (full-array local dimming) displays, on which the LEDs are behind the LCD panel instead of the edges.

However, for even greater contrast control, done individually at each point on the screen, it is necessary to go to panels equipped with microLED technologies – still cost-prohibitive in 2021 – or OLED, which until recently were manufactured on a large scale only in sizes for smartphones or televisions.Affiliate offer

AMOLED stands for Active Matrix Organic Light-Emitting Diode. While this may sound complicated it actually isn"t. We already encountered the active matrix in TFT LCD technology, and OLED is simply a term for another thin-film display technology.

OLED is an organic material that, as the name implies, emits light when a current is passed through it. As opposed to LCD panels, which are back-lit, OLED displays are "always off" unless the individual pixels are electrified.

This means that OLED displays have much purer blacks and consume less energy when black or darker colours are displayed on-screen. However, lighter-coloured themes on AMOLED screens use considerably more power than an LCD using the same theme. OLED screens are also more expensive to produce than LCDs.

Because the black pixels are "off" in an OLED display, the contrast ratios are also higher compared to LCD screens. AMOLED displays have a very fast refresh rate too, but on the downside are not quite as visible in direct sunlight as backlit LCDs. Screen burn-in and diode degradation (because they are organic) are other factors to consider.Affiliate offer

OLED stands for Organic Light Emitting Diode. An OLED display is comprised of thin sheets of electroluminescent material, the main benefit of which is they produce their own light, and so don"t require a backlight, cutting down on energy requirements. OLED displays are more commonly referred to as AMOLED displays when used on smartphones or TVs.

As we"ve already covered, the AM part of AMOLED stands for Active Matrix, which is different from a Passive Matrix OLED (P-OLED), though these are less common in smartphones.

Super AMOLED is the name given by Samsung to its displays that used to only be found in high-end models but have now trickled down to more modestly specced devices. Like IPS LCDs, Super AMOLED improves upon the basic AMOLED premise by integrating the touch response layer into the display itself, rather than as an extra layer on top.

As a result, Super AMOLED displays handle sunlight better than AMOLED displays and also require less power. As the name implies, Super AMOLED is simply a better version of AMOLED. It"s not all just marketing bluster either: Samsung"s displays are regularly reviewed as some of the best around.

The latest evolution of the technology has been christened "Dynamic AMOLED". Samsung didn"t go into detail about what the term means, but highlighted that panels with such identification include HDR10+ certification that supports a wider range of contrast and colours, as well as blue light reduction for improved visual comfort.

In the same vein, the term "Fluid AMOLED" used by OnePlus on its most advanced devices basically highlights the high refresh rates employed, which results in more fluid animations on the screen.Affiliate offer

The technology debuted with the obscure Royole FlexPai, equipped with an OLED panel supplied by China"s BOE, and was then used in the Huawei Mate X (pictured above) and the Motorola Razr (2019), where both also sport BOE"s panel - and the Galaxy Flip and Fold lines, using the component supplied by Samsung Display.Affiliate offer

Resolution describes the number of individual pixels (or points) displayed on the screen and is usually presented for phones by the number of horizontal pixels — vertical when referring to TVs and monitors. More pixels on the same display allow for more detailed images and clearer text.

To make it easier to compare different models, brands usually adopt the same naming scheme made popular by the TV market with terms like HD, FullHD and UltraHD. But with phones adopting a wide range of different screen proportions, just knowing that is not enough to know the total pixels displayed on the screen.Common phone resolutions

But resolution in itself is not a good measure for image clarity, for that we need to consider the display size, resulting in the pixel density by area measured by DPI/PPI (dots/points per inch).Affiliate offer

Speaking of pixel density, this was one of Apple"s highlights back in 2010 during the launch of the iPhone 4. The company christened the LCD screen (LED, TFT, and IPS) used in the smartphone as "Retina Display", thanks to the high resolution of the panel used (960 by 640 pixels back then) in its 3.5-inch display.

The name coined by Apple"s marketing department is applied to screens which, according to the company, the human eye is unable to discern the individual pixels from a normal viewing distance. In the case of iPhones, the term was applied to displays with a pixel density that is greater than 300 ppi (dots per inch).

Since then, other manufacturers have followed suit, adopting panels with increasingly higher resolutions. While the iPhone 12 mini offers 476 dpi, models like Sony Xperia 1 boast a whopping 643 dpi.

With the iPhone 11 Pro, another term was introduced to the equation: "Super Retina XDR". Still using an OLED panel (that is supplied by Samsung Display or LG Display), the smartphone brings even higher specs in terms of contrast - with a 2,000,000:1 ratio and brightness level of 1,200 nits, which have been specially optimized for displaying content in HDR format.

As a kind of consolation prize for iPhone XR and iPhone 11 buyers, who continued relying on LCD panels, Apple classified the display used in the smartphones with a new term, "Liquid Retina". This was later applied also to the iPad Pro and iPad Air models, with the name defining screens that boast a high range and colour accuracy, at least based on the company"s standards.

Nit, or candela per square meter in the international system (cd/m²), is a unit of measurement of luminance, i.e. the intensity of light emitted. In the case of smartphone screens and monitors in general, such a value defines just how bright the display is - the higher the value, the more intense the light emitted by the screen.

The result is smoother animations on the phone, both during regular use and in games, compared to screens that have a 60 Hz refresh rate which remains the standard rate in the market when it comes to displays.

Originally touted to be a "gimmick" in 2017, with the launch of the Razer Phone, the feature gained more and more momentum in due time, even with a corresponding decrease in battery life. In order to make the most of this feature, manufacturers began to adopt screens with variable refresh rates, which can be adjusted according to the content displayed - which is 24 fps in most movies, 30 or 60 fps in home video recordings, and so forth.

The same unit of measurement is used for the sampling rate. Although similar, the value here represents the number of times per second the screen is able to register touches. The higher the sample rate, the faster the smartphone registers such touches, which results in a faster response time.

To further muddy the alphabet soup that we"ve come across, you will also run into other less common terms that are often highlighted in promotional materials for smartphones.

TFT(Thin Film Transistor) - a type of LCD display that adopts a thin semiconductor layer deposited on the panel, which allows for active control of the colour intensity in each pixel, featuring a similar concept as that of active-matrix (AM) used in AMOLED displays. It is used in TN, IPS/PLS, VA/PVA/MVA panels, etc.

LTPS(Low Temperature PolySilicon) - a variation of the TFT that offers higher resolutions and lower power consumption compared to traditional TFT screens, based on a-Si (amorphous silicon) technology.

IGZO(Indium Gallium Zinc Oxide) - a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays

LTPO(Low Temperature Polycrystaline Oxide) - a technology developed by Apple that can be used in both OLED and LCD displays, as it combines LTPS and IGZO techniques. The result? Lower power consumption. It has been used in the Apple Watch 4 and the Galaxy S21 Ultra.

LTPO allows the display to adjust its refresh rate, adapting dynamically to the content shown. Scrolling pages can trigger the fastest mode for a fluid viewing, while displaying a static image allows the phone to use a lower refresh rate, saving the battery.

In 2022, flagship phones started using the so-called LTPO 2.0 tech, whose main advantage is being able to go down to a 1 Hz refresh rate, instead of the 10 Hz available in first-generation LTPO panels. Found in phones like the OnePlus 10 Pro and the Galaxy S22 Ultra, LTPO 2.0 promises even further energy savings.

Among televisions, the long-standing featured technology has always been miniLED - which consists of increasing the number of lighting zones in the backlight while still using an LCD panel. There are whispers going around that smartphones and smartwatches will be looking at incorporating microLED technology in their devices soon, with it being radically different from LCD/LED displays as it sports similar image characteristics to that of OLEDs.

A microLED display has one light-emitting diode for each subpixel of the screen - usually a set of red, green, and blue diodes for each dot. Chances are it will use a kind of inorganic material such as gallium nitride (GaN).

By adopting a self-emitting light technology, microLED displays do not require the use of a backlight, with each pixel being "turned off" individually. The result is impressive: your eyes see the same level of contrast as OLED displays, without suffering from the risk of image retention or burn-in of organic diodes.

On the other hand, the use of multiple diodes for each pixel poses a challenge in terms of component miniaturization. For example, a Full HD resolution has just over two million pixels (1,920 x 1,080 dots), which requires 6 million microscopic LEDs using a traditional RGB (red, green, and blue) structure.

This is one of the reasons that explain the adoption of such technology to date remains rather limited in scope. You will see them mainly in large screens of 75 to 150 inches only, which enable 4K resolution (3,840 x 2,160 resolution, which is close to 8.3 million pixels or 24.8 million RGB subpixels). This is a huge number of pixels to look at!

Another thing to be wary of is the price - at 170 million Korean won (about US$150,330 after conversion), that is certainly a lot of money to cough up for a 110-inch display.

Each technology has its own advantages and disadvantages but in recent years, OLED screens have gained prominence, especially with the adoption of the component in high-end flagship smartphones. It gained an even greater degree of popularity after the launch of the iPhone X, which cemented the position of OLED panels in the premium segment.

As previously stated, OLED/AMOLED screens have the advantage of a varied contrast level, resulting from individual brightness control for the pixels. Another result of this is the more realistic reproduction of black, as well as low power consumption when the screen shows off dark images - which has also helped to popularize dark modes on smartphones.

In addition, the organic diodes that give OLED screens their name can lose their ability to change their properties over time, and this happens when the same image is displayed for a long period of time. This problem is known as "burn-in", tends to manifest itself when higher brightness settings are applied for long periods of time.

While that is a very real possibility, it is not something that affects most users, who often confuse burn-in with a similar problem - image retention, which is temporary and usually resolves itself after a few minutes.

In the case of LCD displays, the main advantage lies in the low manufacturing cost, with dozens of players in the market offering competitive pricing and a high production volume. Some brands have taken advantage of this feature to prioritize certain features - such as a higher refresh rate - instead of adopting an OLED panel, such as the Xiaomi Mi 10T.

types of mobile display screens factory

The screen, when combined with the touch element, is "the" major element of the user interface and as such we go to great lengths when testing screens during our review process to measure a displays quality by measuring Contrast Ratio, Color Calibration, Brightness and Sunlight Legibility.

LCD (Liquid Crystal Display) displays consist of a matrix of Liquid Crystals. Liquid Crystals do not emit light themselves and are reliant on some form of back-light to illuminate the whole display. As a result LCD displays can be very visible in direct sunlight.

IPS-LCDs provide a superior viewing angle and better color reproduction than non IPS-LCDs due to the layout of the LCD"s themselves. This has become a common display type for mid-range to high-end phones.

OLED & AMOLED utilizes "organic" LEDs which emits light and in the majority of cases does away with the need for the back-light of an LCD display resulting in a potentially thinner panel.

They consume less power as opposed to LCDs which always have the back-light on. When a pixel is "black" on a OLED/AMOLED display the pixel is truly off.

types of mobile display screens factory

LCD, TFT, IPS, AMOLED, P-OLED, QLED are technologies used to manufacture smartphones’ matrixes, and their list is constantly expanding. Even geeks get confused in these abbreviations, to say nothing of ordinary users. Today we will explain the main points of dissention between some technologies and describe their strong sides and weak sides in everyday words.

There are only two main technologies which are now widely used to produce our smartphones’ displays: LCD and OLED. All other types and names of technologies are simply derived from them. First of all, we need to know about two basic technologies.

The LCD (Liquid Crystal Display) technology is applied everywhere: in TV-sets, monitors, smartphones, etc. Liquid crystals that underlie the technology have two important qualities: fluidity and anisotropy.

This feature is applied to take control of the light conductivity. With the help of transistors, current flows to the LCD-matrix and changes the cristal’s orientation. Then the light overcomes several filters. Finally, we see the pixel of the desired color. It is notable that all LCD-screens require a backlight source. Such sources are divided into external (for example, sunbeams) and built-in (for instance, LEDs) ones.

TFT (thin-film transistor) is equipped with the matrix of an active type. The main purpose of it is to control liquid crystals. All modern gadgets with LCD and AMOLED-displays have an active matrix. The passive one is practically not used.

TN + film (Twisted Nematic + film) was the first technology successfully used to make smartphones’ matrixes. It was created in order to make entry-level panels. This technology is also thought to be extremely cheap and simple. Its name is connected with the typical arrangement of crystals, when they are all formed in a spiral. Such traditional matrixes are called TN.

IPS (in-plane switching) is the screen in which crystals do not twist into a spiral when they receive an electric pulse. Instead of it, they rotate perpendicular to their initial positions towards each other. This feature increases the angle to the maximum possible indicator — 178 degrees. Thus, new IPS-displays have almost crowded out old TN. In spite of this, these displays also have some big disadvantages mentioned below.

PLS can be described as an improved version of IPS. Samsung created it especially for the mass market. For a number of reasons it is still unsuitable for professional electronic devices.

Horizontal IPSH-IPS2007Better contrast with a visually homogenous surface is achieved. The principle of Advanced True Wide Polarizer on the base of NEC polarization foil appears. It gives wider angles of view. It is used in professional graphics.

Enhanced IPSe-IPS2009Has wider aperture to increase transparency when pixels are open. It makes it possible to use cheaper lamps during the production of backlight, with lower power consumption. The diagonal angle is improved. Response time is reduced to 5 ms.

OLED (Organic light-emitting diode) are used instead of liquid crystals in OLED-matrixes. They do not require backlighting and begin to glow as soon as electric pulses are applied. It is one of their advantages.

OLED-matrixes are divided into PMOLED (Passive) and AMOLED (Active). The first type of matrixes is almost never used in modern smartphones because of its unconvenience such as low speed.

SUPER AMOLED (the marketing “chip” of some companies) is an unusual variety of AMOLED with no air layer between a screen and a matrix. This “airless” principle is called OGS (One Glass Solution) in IPS-matrixes. We must note that it is only a constructive feature. That is why it should not be distinguished as a separate kind of SUPER AMOLED matrixes.

P-OLED-matrix is another subtype of AMOLED. Such matrixes have plastic screen substrates (or the glass ones in case of AMOLED). Thanks to it, manufacturers of smartphones have the opportunity to create modern curved screens.

The flexible nature of the P-OLED panels comes from the use of a plastic rather than glass substrate. One of the benefits being that plastic is thinner and more flexible than glass, allowing for a wider range of form factors.

The “unique” Retina and Super Retina displays in iPhones can not even compare with the technology of matrixes’ manufacturing. It is just a marketing step of the brand. In fact, only simple IPS and OLED-matrixes are used in iPhones and iPads.

Nowadays the difference (in color representation, contrast, angles of views, energy efficiency, speed of work, etc.) between LCD and OLED-screens is swiftly declining. There is only one new notable tendency: LCD-screens are becoming obsolete and inferior to OLED-displays. In turn, OLED-displays are evolving into compact Micro-LED and useful QLED-displays. These technologies are expensive in production. That is why they are still in their infancy. It is quite possible that in the nearest future all our electronic devices will be equipped with only these displays.

types of mobile display screens factory

While buying a mobile phone we might have heard these words – IPS LCD display, TFT LCD display, OLED display, Super AMOLED display, etc. We often get confused as to which is the best. So, let us explain each of the displays.

LCD means Liquid crystal display. In the LCD display, there is a light in the background of pixels which is called a backlight that provides light to the pixels for projecting the content. If there is no light in the background we could not able to see the content which is displaying on the screen. There are a few types of LCD panels. In the LCD panel, we have CCFL backlighting which means Cold Cathode Fluorescent Lamp. These are explained as following below.Twisted Nematic (TN) –

Twisted Nematic displays are widely used in computer monitors in some industries. These displays are commonly used by gamers for a better experience. Because they are inexpensive and faster response.

The vertical alignment panel falls under the middle of the TN panel and IPS panel. This display has better viewing angles and better color reproduction as compared to the TN display.

This type of display used for commercial purposes in cockpits. AFFS display is extremely quality of LCD display as of now because they have good color reproduction, best viewing angles than the IPS panel and TN panel. It also minimizes color distortion.

Thin Film Transistor display is the cheapest display in LCD. In this display, every pixel is attached to a capacitor and transistor. The main advantage of this display is the high contrast ratio and very cheap to build by the way we see this type of displays in budget mobiles below 10K price.

In-Plane Switching is the most popular display between the 10k to 20k price range in mobiles. By the way, this is the best display on LCD. They are very much the best than the TFT display. This display can produce better viewing angles, best color reproduction, and direct sunlight visibility.

Super LCD is the marketing term of HTC. Generally, it is also a type of IPS LCD but there is a slight change. In the IPS LCD display, there is some gap between the outer glass and the touch sensor. In the SLCD display, there is no gap between the outer glass and touch sensor.

There are so many types of LED displays. Generally, we may see these two displays in the flagship category mobiles. they are, OLED and AMOLED displays. Technology is almost the same, but OLED is developed by a company named LG, and AMOLED is developed by a company called Samsung.AMOLED (Active-Matrix Organic Light Emitting Diode) –

This technology completely belongs to Samsung. They took patients also. The main function of the AMOLED display is the individual pixel act as an LED bulb. Which means they do not require backlighting. This technology helps in power saving and projecting true black colors. The pixels stop projecting light when the video has black color.

This technology belongs to LG. LG took patents on the OLED panel. It is like the LGs trademark. This display is also like an AMOLED display. OLED has a series of organic thin-film between two conductors. When the current is applied, light is emitted. These are more efficient than LCD displays.

Retina display is the trademark of the company named APPLE. Actually, the retina display is an IPS LCD display only. APPLE modified the IPS LCD display and renamed it. In retina display, we can more PPI (Pixel per inch) than IPS LCD displays. It is not a separate technology. It is a modification of the IPS LCD display. We can see retina displays in apple mobiles.

types of mobile display screens factory

Touch screens are found everywhere from our smartphones to self-serve kiosks at the airport. Given their many uses, it should come as no surprise that there are several touch monitor types. Each has its advantages and disadvantages and is suited to specific tasks.

It’s quite possible that you’re not clear on exactly what a touch panel is, what the touch panel types are, or how they’re applied in your daily life, beyond that of your smartphone. For that and more, we’re here to help.

Quite simply, touch panels, which are also known as touchscreens or touch monitors, are tools that allow people to operate computers through direct touch. More specifically, via the use of internal sensors, a user’s touch is detected, then translated, into an instructional command that parlays into visible function.

Delving deeper into the technical side of things, touch panels are not as cut-and-dry as they may seem. In fact, the way they sense and react to touch can widely differ based on their inherent designs. As such, there are 4 touch panel types in regular use – Resistive, Optical Imaging, Projected Capacitive, and Infrared. Below, we’ll dig into their specifics, which include their advantages, disadvantages, and real-life product applications.

Resistive touch panels are cost-effective variants that detect commands by way of pressure placed on the screen. This pressure sensitivity is generally limited to single-point touch, with a 20-inch maximum screen, which is fine for many usage cases. These range from styluses to fingertips. As a result, if used correctly, resistive touch panels will remain functional even if a water drop has landed on the screen.

As a result of this versatility, however, many will find that resistive touch panels are less durable than their competitors. Moreover, with its reliance on single-point touch, this touch panel type is not actually capable of multi-touch functionality. Regardless, resistive touch panels are often found in grocery stores, where stylus-based signatures are typically required after credit card purchases.

Some like it hot and some don’t. Infrared touch panels definitely fall into the latter category. By setting up a grid of infrared beams across the panel, which may be up to 150-inches, touch is detected by way of this panel’s disruption.

Light, and the disruption thereof, is not just a great way to produce a shadow, but also to design a touch panel type. To take advantage of this principle, optical imaging touch panels are designed to sense touch through infrared cameras and the disruption of light strips. This can be achieved through any input you want, across its 100-inch maximum size, from gloves to bare hands, and beyond.

All in all, optical imaging touch panels are just about the most versatile option the touch-based world can offer. From durability to multi-touch, and universal input prospects, the possibilities may truly be endless. Although its only disadvantage may be its non-compact design, common applications of optical imaging touch panels include certain varieties of interactive whiteboards.

By way of their electrical-based touch detection, Projected Capacitive touch panels are known for their high precision and high-speed response times. What’s more is that they possess multi-touch functionality and can be used within small, compact, yet expensive, devices. Due to their underlying technology, it has proven challenging to scale up to larger sizes. Figured it out yet?

Assuming you haven’t, or would like to enjoy the gratified feeling associated with being right, allow us to reveal where you interact with projected capacitive touch panels on a daily basis – Smart Phones! What’s more is that they’re not alone, with tablet computers and GPS devices also utilizing projected capacitive touch screens.

It would be a mistake to assume that the applications of all these touch panel types are limited to that of consumer-level devices, or even those that have been previously mentioned. Really, these touch panel types can be found throughout everyday life and in a variety of industries.

What’s more is that in many of these industries, these touch panel types are used less to market products to consumers, and more to sell solutions to businesses. Whether it be in regards to finance, manufacturing, retail, medicine, or education, there is always a need for touch-based solutions. In conjunction with the so-called ‘Internet-of-things’, these touch-based solutions play a key role in practices related to industry 4.0.

In practice, these solutions largely offer a form of personnel management. In hospitals, stores, or banks, for instance, these touch panel types can be used to answer basic questions, provide product information, or offer directions, based on the user’s needs. When it comes to manufacturing, on the other hand, these solutions enable employee management in the possible form of workplace allocation or attendance tracking.

At the end of the day, touch panels are here to stay. In the four decades since their inception, the level of adoption this technology has experienced is remarkable. They transform how we teach in classrooms and collaborate with colleagues.

Although you may not have been clear on the specific details of each touch panel type, we hope that you are now. This knowledge will absolutely serve you well, particularly if you’re interested in ViewSonic’s selection of touch-based solutions.

types of mobile display screens factory

The first reason why the resistive touch screen is different from the capacitive touch screen is that the physical stack up of the resistive touch screen is more complicated than the cap touch screens.  Resistive touch screens are typically cheaper than their counterparts and can work with nonconductive stylus pens and gloves.

Resistive touch screens only rely on the force – conductive or not – the force will be enough for the touchscreen to work.  One drawback of resistive touch sensors is that they require more strength and won’t be as sensitive to touch.

Since cap touch sensors rely on conductivity to act, they are more touch-sensitive.  Projective capacitive touch screens work by emitting an electric field above the screen.  Once a finger gets close to the screen, the chip connected to the tail reads that a conductive force has interrupted the electric field.  From there, the chip lets the device know what section of the display was touched.  Another cool feature for PCAP touch screens is that they are more visible in high-lighting environments.  This makes them a great interface solution for operating equipment outside.  Usually, the major drawback is that they are more expensive than resistive touch screens. Read more about the basics of capacitive touch here.

types of mobile display screens factory

What constitutes a great phone display? Is it the high resolution and pixel density? Well, that, and great screen quality test numbers, that"s why the Sony Xperia 1 IV specs with the 1644p 4K panel top our list. What about the high brightness and contrast that offer good outdoor visibility in the sun outdoors? That"s certainly important, but most of today"s flagships have HDR-certified panels that breach the 1000-nit barrier upwards to fit the standard, and their OLED tech ensures practically infinite contrast ratio, so it"s hard to pick on that merit alone.

Ditto for credible color gamut presentation, as per-unit display calibration is no longer a prerogative of Apple"s iPhones, while said HDR display flagships now cover both the standard RGB, and the wide P3 color gamut. Is it the actual white balance and DeltaE numbers then? It"s getting warmer, but throw in dynamically-adjusted refresh rate based on the content displayed, and you"ve narrowed it down to only a few choices when it comes to the best phone displays that we round up below.

Not only does Sony make the only phones with 4K display resolution, but it also calibrates them to a near perfect level. The flagship Sony Xperia 1 IV carries a 6.5" 4K display with the whopping 643 PPI pixel density, and our display benchmarks returned class-beating brightness, white balance and wide gamut color representation credibility levels, some of the best we"ve measured. Add the high dynamic refresh rate, and the Sony Xperia 1 IV has probably the best panel on a phone so far.

The CIE 1931 xy color gamut chart represents the set (area) of colors that a display can reproduce, with the sRGB colorspace (the highlighted triangle) serving as reference. The chart also provides a visual representation of a display"s color accuracy. The small squares across the boundaries of the triangle are the reference points for the various colors, while the small dots are the actual measurements. Ideally, each dot should be positioned on top of its respective square. The "x: CIE31" and "y: CIE31" values in the table below the chart indicate the position of each measurement on the chart. "Y" shows the luminance (in nits) of each measured color, while "Target Y" is the desired luminance level for that color. Finally, "ΔE 2000" is the Delta E value of the measured color. Delta E values of below 2 are ideal.

The Color accuracy chart gives an idea of how close a display"s measured colors are to their referential values. The first line holds the measured (actual) colors, while the second line holds the reference (target) colors. The closer the actual colors are to the target ones, the better.

The Grayscale accuracy chart shows whether a display has a correct white balance (balance between red, green and blue) across different levels of grey (from dark to bright). The closer the Actual colors are to the Target ones, the better.

Pay attention to that "brightest" part and the 1Hz-120Hz specs at the full 1440p resolution. Yes, that means that the S22 Ultra is equipped with the newest LTPO OLED display technology that allowed for both the record 1750nits of peak brightness, 15% less battery consumption than what"s on the S21/S21+, and the dynamically-allocated refresh rate that can go down to 1Hz when you are looking at static images, or rev up all the way to 120Hz when you scroll.

This brightness is what makes the S22 Ultra display, in particular, stand out, as the granularly adaptive refresh rate has been on Oppo and OnePlus phones before it.

As usual with Oppo, ever since its partnership with Pixelworks, there is a per-unit factory Delta E calibration, color-blindness presets, and camera-to-display wide color management system. The LTPO panel is factory-calibrated and delivers one of the best color credibility Delta measurements we"ve ever taken, with only Google"s Pixels being better here.

Moreover, the Find X5 Pro has the best white balance score, nearest to the 6500K reference point that means the screens colors are spot on in terms of warmth, neither too yellowish, nor cold and blueish. Adding the high typical or peak brightness levels, the company has managed to beat its own best phone displays record.

The CIE 1931 xy color gamut chart represents the set (area) of colors that a display can reproduce, with the sRGB colorspace (the highlighted triangle) serving as reference. The chart also provides a visual representation of a display"s color accuracy. The small squares across the boundaries of the triangle are the reference points for the various colors, while the small dots are the actual measurements. Ideally, each dot should be positioned on top of its respective square. The "x: CIE31" and "y: CIE31" values in the table below the chart indicate the position of each measurement on the chart. "Y" shows the luminance (in nits) of each measured color, while "Target Y" is the desired luminance level for that color. Finally, "ΔE 2000" is the Delta E value of the measured color. Delta E values of below 2 are ideal.

The Color accuracy chart gives an idea of how close a display"s measured colors are to their referential values. The first line holds the measured (actual) colors, while the second line holds the reference (target) colors. The closer the actual colors are to the target ones, the better.

The Grayscale accuracy chart shows whether a display has a correct white balance (balance between red, green and blue) across different levels of grey (from dark to bright). The closer the Actual colors are to the Target ones, the better.

To take full advantage of its excellent display panel"s abilities, the Find X5 Pro employs a "multi-brightness color calibration," meaning that the screen is as color-credible in all lighting conditions, be it on the beach or in the dark.

Google managed to catch up with factory calibration and its Pixel 6 Pro display now delivers not only one of the most feature-rich panels in the Android universe - 1440p resolution, dynamic 120Hz refresh rate, and high brightness, but it is also in the top three in terms of color representation in our display benchmark database.

Birds of a feather, the OnePlus 10 Pro and Oppo Find X5 Pro, as they sport the same 6.7" 1440p LTPO OLED panel with dynamic refresh rate and individual display calibration at the factory level courtesy of the imaging specialists from Pixelworks. Thus, you get a near-perfect color accuracy, wide gamut coverage, and high average brightness, all for less than $900 barring any running OnePlus 10 Pro deals.

The CIE 1931 xy color gamut chart represents the set (area) of colors that a display can reproduce, with the sRGB colorspace (the highlighted triangle) serving as reference. The chart also provides a visual representation of a display"s color accuracy. The small squares across the boundaries of the triangle are the reference points for the various colors, while the small dots are the actual measurements. Ideally, each dot should be positioned on top of its respective square. The "x: CIE31" and "y: CIE31" values in the table below the chart indicate the position of each measurement on the chart. "Y" shows the luminance (in nits) of each measured color, while "Target Y" is the desired luminance level for that color. Finally, "ΔE 2000" is the Delta E value of the measured color. Delta E values of below 2 are ideal.

The Color accuracy chart gives an idea of how close a display"s measured colors are to their referential values. The first line holds the measured (actual) colors, while the second line holds the reference (target) colors. The closer the actual colors are to the target ones, the better.

The Grayscale accuracy chart shows whether a display has a correct white balance (balance between red, green and blue) across different levels of grey (from dark to bright). The closer the Actual colors are to the Target ones, the better.

These measurements are made using Portrait Displays" CalMAN calibration software.The high dynamic refresh rate is the best thing that happened to mobile displays since the introduction of the OLED technology, and there is no looking back once you"ve tried it while browsing and scrolling. Here"s the answers on our question how does it all work exactly:

OnePlus: It’s up to the app that you are using. For example, social media apps, browsers, system interface and other local apps like photo/video album support 120Hz, whereas most of the video and gaming apps support 60Hz. For the video playback, the refresh rate will depend on the video frame rate to be either 60Hz or 120Hz.

The display is also basically able to do what MEMC TVs do, automatically increasing frames in video to up the rate, and take better advantage of the high refresh rate even with content that is usually shot with 24fps or 30fps. Detailing the panel"s virtues in a blog post, the OnePlus CEO also mentioned that:

In order to reach industry-leading color accuracy standards, we have added an additional automatic color calibration machine to the production line. By adding an extra 30 seconds to the production time, each display panel is automatically calibrated for color accuracy before it’s released.

Apple"s finest finally found the 120Hz refresh feature (say that 3 times quickly) and if you are already invested in the iOS ecosystem, there is nothing better than the brightest, toughest displays on an iPhone so far, the one on the iPhone 14 Pro Max and iPhone 14 Pro.

Apple advertises it as having a record for a phone peak brightness level of 2000 nits, or more typical brightness of 1600 nits when consuming HDR content and 1000 nits otherwise. This is exactly what we measured and these displays are so advanced that only Samsung can make them at the moment with its 12th-gen OLED technology.

As usual, Apple offers great individual color calibration and the Super Retina XDR panel is HDR certified to show 4K Dolby Vision HDR video recorded by the phone"s own cameras. The only ho-hum part is the just average greyscale representation, so while the iPhone 14 Pro Max may have the brightest phone screen it"s not the most accurate in terms of color credibility.

The CIE 1931 xy color gamut chart represents the set (area) of colors that a display can reproduce, with the sRGB colorspace (the highlighted triangle) serving as reference. The chart also provides a visual representation of a display"s color accuracy. The small squares across the boundaries of the triangle are the reference points for the various colors, while the small dots are the actual measurements. Ideally, each dot should be positioned on top of its respective square. The "x: CIE31" and "y: CIE31" values in the table below the chart indicate the position of each measurement on the chart. "Y" shows the luminance (in nits) of each measured color, while "Target Y" is the desired luminance level for that color. Finally, "ΔE 2000" is the Delta E value of the measured color. Delta E values of below 2 are ideal.

The Color accuracy chart gives an idea of how close a display"s measured colors are to their referential values. The first line holds the measured (actual) colors, while the second line holds the reference (target) colors. The closer the actual colors are to the target ones, the better.

The Grayscale accuracy chart shows whether a display has a correct white balance (balance between red, green and blue) across different levels of grey (from dark to bright). The closer the Actual colors are to the Target ones, the better.

Say what you will about Google entering the fray here but the Pixels have very well calibrated displays and the new Pixel 6a is no exception. First off, its color credibility is better than the more established calibration champs here (just look at those DeltaE numbers below). It is also sufficiently bright, so if you are looking for a compact 5G Android phone with a great camera and display that won"t break the bank, the Pixel 6a would fit your narrative.

The CIE 1931 xy color gamut chart represents the set (area) of colors that a display can reproduce, with the sRGB colorspace (the highlighted triangle) serving as reference. The chart also provides a visual representation of a display"s color accuracy. The small squares across the boundaries of the triangle are the reference points for the various colors, while the small dots are the actual measurements. Ideally, each dot should be positioned on top of its respective square. The "x: CIE31" and "y: CIE31" values in the table below the chart indicate the position of each measurement on the chart. "Y" shows the luminance (in nits) of each measured color, while "Target Y" is the desired luminance level for that color. Finally, "ΔE 2000" is the Delta E value of the measured color. Delta E values of below 2 are ideal.

The Color accuracy chart gives an idea of how close a display"s measured colors are to their referential values. The first line holds the measured (actual) colors, while the second line holds the reference (target) colors. The closer the actual colors are to the target ones, the better.

The Grayscale accuracy chart shows whether a display has a correct white balance (balance between red, green and blue) across different levels of grey (from dark to bright). The closer the Actual colors are to the Target ones, the better.

types of mobile display screens factory

Sony MobileDisplay Corporation was a subsidiary of Sony Corporation and produced Low-temperature polysilicon, amorphous silicon TFT LCD panels, organic EL displays and touch screens for use in mobile products such as camcorders, digital cameras, mobile phones, automobiles, etc. Its manufacturing plants were located in Higashiura, Aichi and Tottori, Tottori, Japan. The business of the company was transferred to Japan Display Inc. on April 1, 2012.

On October 22, 1997, ST Liquid Crystal Display Corporation (STLCD), a 50:50 joint venture between Sony Corporation and Toyota Industries Corporation, was established in Higashiura, Aichi, Japan. On March 31, 2005, Sony and Toyota Industries acquired International Display Technology Corporation (IDTech) and renamed it to ST Mobile Display Corporation (STMD).

On December 1, 2007, STLCD and STMD were merged to form Sony Mobile Display Corporation. On June 30, 2009, Epson and Sony agreed to transfer certain business assets relating to small-and medium-sized TFT LCD operations. On June 1, 2010, Sony Mobile Display sold the Yasu plant to Kyocera Corporation.

On August 31, 2011, Innovation Network Corporation of Japan (INCJ), Hitachi, Sony and Toshiba announced that Hitachi Displays, Sony Mobile Display and Toshiba Mobile Display will be merged to form a new company called Japan Display Inc. (INCJ 70%, Hitachi 10%, Sony 10%, Toshiba 10%).

On April 1, 2013, Japan Display West (formerly Sony Mobile Display), Japan Display Central (formerly Toshiba Mobile Display), and Japan Display East (formerly Hitachi Displays) were merged into Japan Display.

types of mobile display screens factory

Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.

Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.

The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.

LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:

The origins and the complex history of liquid-crystal displays from the perspective of an insider during the early days were described by Joseph A. Castellano in Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry.IEEE History Center.Peter J. Wild, can be found at the Engineering and Technology History Wiki.

In 1888,Friedrich Reinitzer (1858–1927) discovered the liquid crystalline nature of cholesterol extracted from carrots (that is, two melting points and generation of colors) and published his findings at a meeting of the Vienna Chemical Society on May 3, 1888 (F. Reinitzer: Beiträge zur Kenntniss des Cholesterins, Monatshefte für Chemie (Wien) 9, 421–441 (1888)).Otto Lehmann published his work "Flüssige Kristalle" (Liquid Crystals). In 1911, Charles Mauguin first experimented with liquid crystals confined between plates in thin layers.

In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.

In 1964, George H. Heilmeier, then working at the RCA laboratories on the effect discovered by Williams achieved the switching of colors by field-induced realignment of dichroic dyes in a homeotropically oriented liquid crystal. Practical problems with this new electro-optical effect made Heilmeier continue to work on scattering effects in liquid crystals and finally the achievement of the first operational liquid-crystal display based on what he called the George H. Heilmeier was inducted in the National Inventors Hall of FameIEEE Milestone.

In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.

On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.

In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.

In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,

In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.

Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,

In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.

In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.

Since LCDs produce no light of their own, they require external light to pro