what

If you spend long durations in front of a screen, it"s essential to make the best choice when buying one. Getting a high-quality screen will go a long way in enhancing your gaming, working, and watching experience. Additionally, it will help relieve eye strain even with prolonged use of the screen.

There are tons of screens available in the market today. However, LED screens and LCD screens are by far the most popular. But what is the difference between LCD vs. LED screens?

LED screens feature light-emitting diodes lights installed in the screens. The screens can be volatile or static, with some of them only responding to touch. Other LED screens will display pictures even when turned off.

Some of the benefits of LED monitors nclude enhanced picture quality and local dimming. Local dimming helps to dim down certain areas of your TV"s backlight. This helps to make the screen appear darker and better in displaying blacks.

Local dimming helps a lot in enhancing your screen"s contrast ratios. The higher the levels of the contrast ratios, the more enhanced difference between blacks and whites.

LED backlighting is an essential feature in offering realistic pictures. The features enhance the popularity of the LED screens (check out the Viewsonic TD2230 Review).

The main difference between LCD and LED displays is that the LCD screens come with a layer of liquid crystals. The liquid crystal layer is put between two plates. Images are made when light passes through parts of the liquid crystal.

The liquid crystal part either block or enhance an area which helps to create the image. Most LCD panel types have LED lights that help bring out the image.

Older LCD screens and use Cold Cathode Fluorescent Lamps (CCFLs) to light the screen. The CCFLs use electron discharge and fluorescence to light the screen.

LEDs like the one from our "Dell Computer Ultrasharp 24.0-Inch Screen LED Monitor Review" are taking over the market while LCD screens with CCFLs are fading away. LCD screens are used in watches, some notebook computers, and calculators.

OLED stands for organic light-emitting diodes, and it uses an organic compound to create outstanding high-contrast images - OLED screens are more environmentally friendly. They are also thinner than a standard LED screen as they don"t require a thick LED backlighting behind the screen to illuminate it.

On the other hand, you have QLED screens that are created and patented by Samsung. The QLED screens offer more crisp images as they create light with a shorter wavelength.

The Q in QLED stands for Quantum Dot (see Quantum Dot and IPS). The screens have an additional layer between the LCD screen and the backlight of the monitor. The layer allows light to pass through easily and produce better colors than an ordinary LED screen.

Slimmer design:LED screens to come in a slimmer design than their LCD counterparts. This gives them a sleek and elegant look, and it also takes less space.

Cheaper to run:If you are trying to cut down on energy cost, an LED screen will be a better option between the two as it is more energy-efficient. However, LED screens are more expensive than their LCD counterparts. As such, you can expect to pay more initially.

Better color:If you want to enjoy more realistic images, LED will be the better option. The screen offers you better color than other screens in the market. Additionally, it offers a better contrast, which is the range between the darkest blacks and brightest whites on the screen. The enhanced contrast ensures you end up with the most realistic images.

However, if you are working on a tight budget, you may consider an LCD screen. Besides the cost, LED performs better than the LCD screen in all the other aspects.

If you want to find out the type of screen you already have, you can check out the screen"s model number. The model number can tell you if the screen is an LED or LCD.

When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.

You"ll be happy with the picture regardless of what kind of display you buy. Still, LED TV have a few practical advantages that make them a better purchase than the older LCD TVs.

With an LED light, the pixels are either edge-lit or backlit. As such, the lights behind the screen are designed to light up all the pixels in your monitor at once.

An edge-lit monitor may not be the best for picture quality as the lights are only at the edges of the screen. However, screens with edge lighting have become very popular nowadays as the best budget choice. The edge lights allow for the creation of thin monitors at a low price which enhances their affordability.

If you are working in an office, you may have to spend eight or more hours in front of your monitor. If you keep looking away from the screen due to eye fatigue and strain, it will affect your productivity. The eye strain can also cause headaches to some people.

LED monitors feature better dimming options without sacrificing picture clarity. They also come with features that reduce eye strain, making them the ideal option if you are spending long hours in front of the screen.

Alternatively, you can go for LCD screens that offer arefresh rate of 120Hz or more. The LCD screens also offer a wider variety of viewing angles, which can offer better comfort.

Apart from watching movies and working, you can also get a monitor for gaming. Whether you are a gaming enthusiast or gaming for fun, you want a monitor to offer you the best picture clarity.

A perfect monitor for gaming should offer you a high refresh rate, low lag, and low response times. A screen response time refers to how fast the pixels change from one image to the next. Lag refers to the delay you experience between pressing a button and seeing the corresponding action on your screen.

You can trust an LED monitor to offer you the best resolution for the most precise and crisp images. This enables you to enjoy clear and lifelike images.

When choosing between LED and LCD monitors, there are several factors to consider. Besides the backlighting technology, you should also consider the panel type - see also what types of monitors are there. Various panels have their benefits compared to others.

LED monitors tend to be more expensive than LCD screens, thanks to LED technology being newer and featuring pricier components. Additionally, there is a newer form of LED called the OLED, which stands for Organic Light-Emitting Diodes. These OLED displays are extremely expensive, especially at high resolutions. LED technology, on the other hand, is extremely cheap and readily available.

Are you lost on the best choice between LCD and LED monitors? If you spend a lot of time in front of your monitor, you should ensure you end up with the best quality screen. This will ensure that you get high-quality images and also minimize eye strain.

In the battle between LCD and LED displays, LED comes out as the better option. It offers more crisp and clear images, and it also comes with a sleek and elegant design. However, it can be a little expensive. If you are working on a budget, LCD monitors can make a perfect choice.

LED technology has improved drastically in recent years improving picture quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours. LCD is cheaper and generally more familiar. A LCD screen typically has a lifespan of about 50,000 hours.

Sort of. Older technologies like LCD technology and Plasma displays are becoming obsolete due to the intrinsic properties of LEDs like brightness, efficiency, maintainability, and sustainability.

LCD screens emit blue light and thus negatively affects not only vision but also overall health. Continual extended screen time mainly can impact your eyes in two major ways. When we look at a screen, our blink rate drops significantly, thus causing digital eye strain.

what

If you use your laptop for basic tasks, you’ll get along just fine with the default screen, but if you’re a gamer or like to stream movies from your home computer, then investing in a monitor will help elevate your experience.

LCD monitors have been around longer, so they’re more affordable. However, LED monitors are more energy-efficient, lighter and support 4K resolutions.

LCDs feature a layer of liquid crystal embedded between two panels. Images are created when fluorescent lamps behind the screen shine through the crystals and illuminate them.

There are various types of backlights used in LCD monitors, but the most common is cold cathode fluorescent lamps. Essentially, the lights used for CCFL displays are akin to those you see in offices, classrooms and stores, except much smaller.

The first few generations of LCD monitors and televisions used this type of backlight and while you can still find LCD monitors with this backlight, it"s becoming less and less common.

Since it’s an older technology, LCD monitors are generally much cheaper than LED monitors. However, despite being less advanced, they still provide a high-quality image. They’re also better suited for brighter environments like living rooms and kitchens since they provide an overall brighter image.

LCD monitors are also less prone to suffer from burn-in image issues. Burn-in refers to an image becoming “stuck” on the screen. This can happen if a static image is left displaying on the screen for too long. Image retention is more likely to happen if you’re a gamer since some video games feature heads-up display elements that rarely move out of place.

Because of the backlight, LCD monitors are bulkier and thicker than LED monitors. They’re also much less energy-efficient due to the energy required to power the fluorescent lamp backlight.

Finally, you’ll get a crisp 1080p high-definition resolution using an LCD monitor, but if you plan to stream 4K content, it’s best to steer clear from them as most LCDs don’t support 4K.

Asus is known for making products with gamers in mind. On that note, this monitor delivers with a super-fast response time and a 165-hertz refresh rate. Also, it supports 16.7 million colors for vibrant images.

This monitor has an ergonomic and elegant design which makes it great for everyday use. It looks excellent and features BlueLightShield Technology to reduce blue light exposure.

An LED monitor is also an LCD monitor since it also uses a liquid-crystal screen. However, this specific type of display where the backlight is composed of light-emitting diodes instead of fluorescent lamps. You can imagine light-emitting diodes as a series of tiny light bulbs.

Most LED displays feature edge lighting, which means that the LEDs are positioned around the edge of the screen. Some LED displays have a wide-array setup where the LEDs are placed all over the screen.

The overall image quality of an LED monitor is superior as well. Producing true black contrasts is an issue with LCDs due to the type of backlight, but LED screens reduce this problem significantly.

LED displays also have a fast refresh rate and low lag, which makes them ideal for gamers. Also, unlike with older LCD monitors, you’ll be able to stream 4K content.

Since LED monitors are the newer technology, they’re considerably more expensive than LCD monitors. There’s also a higher risk of image retention with LED displays.

This screen is relatively basic but it’s the best LED monitor you’ll get at its price point. It’s sleek, provides a crisp image and comes with both HDMI and VGA ports.

ViewSonic offers an excellent 24-inch gaming monitor featuring a blazing fast refresh rate, top-notch image quality and an array of pre-set visual modes.

Although the initial price point of an LED monitor is higher, they’re more energy-efficient and have a longer lifespan. You’ll end up saving money in the long run, which makes it a much better investment than an LCD screen.

Kevin Luna is a writer for BestReviews. BestReviews is a product review company with a singular mission: to help simplify your purchasing decisions and save you time and money.

BestReviews spends thousands of hours researching, analyzing and testing products to recommend the best picks for most consumers. BestReviews and its newspaper partners may earn a commission if you purchase a product through one of our links.

what

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

what

From panel technology to refresh rates, there are a lot of things to consider when looking for a new gaming monitor. To aid you on your journey for the perfect setup, we"re breaking down two of the most common display technology terms: LED and LCD. Here"s what you need to know about LED and LCD screens, what the terms stand for, and how they factor into modern gaming monitors.

LCD stands for liquid-crystal display, which refers to how the monitor works. Behind the screen, liquid crystals are sandwiched between two layers of glass and used to change the colors of pixels to create the images that you see. The whole process is a lot more complicated, but that"s the gist of how LCDs function.

In the past, some LCDs were backlit by CCFLs (cold-cathode fluorescent lamps). LCDs with fluorescent backlighting have been around longer, so if you can find one, they will be cheaper than LED monitors. However, if you"re a gamer looking for decent refresh rates and response times, it"s going to be hard to find a monitor with fluorescent backlighting. They"ve almost completely been replaced by LCD monitors with LED backlights.

LEDs work in a similar way; in fact, you can consider LEDs a subcategory of LCDs. The only difference between some LCDs and LEDs is the type of backlighting: LEDs use LED (light-emitting diodes) backlighting.

In contrast to fluorescent backlighting, LED backlighting generally provides brighter colors and sharper contrast. The monitors are also thinner in size and, in the long run, more energy efficient than LCDs with fluorescent backlights. LED backlighting is the newer technology and the current standard for monitors with high refresh rates and fast response times. When you see LCD in product descriptions, they"re almost always LCD monitors that use LED (as opposed to fluorescent) backlighting. For example, BenQ"s EL2870U monitor is listed as an LCD, but it"s an LCD with LED backlighting.

There are different types of LED backlighting: edge-lit and array-lit. In edge-lit monitors, the lights are placed around the edges of the monitor. Light guides are then used to diffuse the light evenly across the screen. In array-lit monitors, lights are placed behind the screen in a pattern.

The tricky thing, however, is that it"s pretty much impossible to tell what type of backlight and how many backlights a monitor has based on a typical product description. Some manufacturers will share that info, but generally they won"t unless the backlight setup is a premium feature you"re paying for.

For example, some edge-lit and array-lit LEDs have local dimming capabilities, a feature that can selectively dim certain zones of LED lights. Local dimming improves contrast ratio and provides deeper blacks in dimly lit scenes. These monitors, however, tend to be pricey. Some well-reviewed options include the Samsung Odyssey G7 and Philips Momentum 436M6VBPAB, both of which are edge-lit monitors with partial local dimming capabilities. The Acer Predator X35 is an (expensive) full-array monitor with full local dimming (FALD) capabilities.

You won"t have much of a choice between LED or LCD. Most monitors, regardless of whether they"re marked as LED or LCD, will use LED backlights. LED backlights became the new standard because they allow manufacturers to make thinner, more energy-efficient monitors with better graphics. It"s not worth going out of your way to find an LCD with fluorescent backlighting, unless you really, really hate LED lights.

Which backlights a monitor has isn"t as important as other factors such as panel technology, refresh rates and response time, G-Sync vs. FreeSync, and HDR --those are the characteristics you should pay more attention to when choosing a monitor. If you"re not looking to break the bank, a couple of great LED monitors at excellent price points we can recommend are the Asus VP249QGR, a nice budget 1080p monitor, and Acer XF250Q Cbmiiprx 24.5, a well-reviewed budget 240Hz monitor.

Check out our guide to the best cheap gaming monitors for more budget options; plus, see our picks for the best monitors for PS5 and Xbox Series X, best 144Hz monitors, and the best 4K gaming monitors for more LED displays worth picking up.

what

Please try again in a few minutes. If the issue persist, please contact the site owner for further assistance. Reference ID IP Address Date and Time c17927ead67795b862f0f908b963d9b3 63.210.148.230 12/13/2022 05:21 PM UTC

what

Lately, choosing a TV has become like walking into a candy store. There are so many TV technology options to choose from, and each of them seems just as good.

Then there are the technical terms to deal with, such as LED TV, LCD TV, QLED TV, UHD TV, OLED TV, and more. You might feel like you need to be a tech pro just to watch your favourite TV show in the evening or enjoy a game with your friend.

First, an important thing to understand is that the LED (Light Emitting Diode) monitor is an improvised version of the LCD (Liquid Crystal Display). This is why all LED monitor is LCD in nature, but not all LCDs are LED monitors.

LCD technology revolutionized monitors by using cold cathode fluorescent lamps for backlighting to create the picture displayed on the screen. A cold cathode fluorescent lamp (CCFL) is a tiny fluorescent bulb. In the context of this article, LCDs refer to this traditional type of CCFL LCD TVs.

LED monitors took the old technology a step further by replacing the fluorescent bulbs with LED backlight technology. And OLED (organic light-emitting diode) technology improves it even further by eliminating the need for backlighting.

This turns a single monitor into a modular assortment of countless light-emitting diodes. Additionally, this expands how big the monitor can be without blowing up the cost exponentially.

The quality of direct-view LED screens is measured by pixel pitch. The pixel pitch is the distance between two adjacent LEDs on the display. The smaller the pixel pitch, the better the quality of the image.

Since LEDs replace fluorescent bulbs with light-emitting diodes, LED TVs are more energy-efficient than LCDs. A 32-inch LED TV screen consumes 10 watts less power than the same size LCD screen. The difference in power consumption increases as the size of the display increases.

Light-emitting diodes are considerably smaller than fluorescent lamps used in LCD monitors. Fluorescent lamps have a considerable thickness, but the thickness of diodes is next to none. Moreover, countless diodes are assembled in the same plane, so the thickness of the array isn’t increased no matter how many diodes are present.

Edge-lit LEDs have a slight drawback in viewing angle compared to LCDs, because of the position of the light source. However, direct-view LEDs offer a better angle for viewing than LCDs as the light source is evenly spread on the screen.

This is the time it takes to shift from one colour to another. Response times are generally measured in milliseconds (ms). The shorter the time to respond, the better the quality of the images produced.

Since LED displays use full-array LED backlighting rather than one big backlight, LED TVs offer significantly better contrast than LCDs. LCD backlighting technology only shows white and black, but LED backlighting can emit the entire RGB spectrum, thereby providing a deeper RGB contrast.

If you wonder which display will last longer, this debate is also won by LED displays. LED televisions have a longer lifespan of 100,000 hours on average, compared to 50,000 hours provided by LCD televisions.

An LED display provides the option to dim the backlight, along with other eye comfort features. Not only that, it provides a wider viewing angle without harming image quality. Therefore, an LED display is far better for your eyes than an LCD.

In an LED display, a lot of smaller diodes are used and if a diode is damaged, it can be replaced. In an LCD, you will need to replace the entire bulb in case of damage. Therefore, an LED display is easier and cheaper to maintain than an LCD.

Since LEDs are a better and newer technology, the price of an LED display is higher than an LCD. However, this is only when we are considering the purchase cost.

The picture quality of an LED display is far better than an LCD. Due to modular light-emitting diodes, an LED screen produces better control over the contrast, rendering a clear picture. Also, LED provides RGB contrast, which can show truer blacks and truer whites.

Not to forget, they provide a shorter response time as well. Both of these factors result inLED displays having a better picture quality compared to LCD displays.

Since LED displays are considerably thinner than LCDs, they weigh considerably less. On average, an LED screen weighs about half of an LCD screen of the same size.

As you might have noticed by now, LED wins the battle with LCD without any doubt. This is because LED displays have an advantage in all the factors that matter when considering a purchase, except price.

Even when you consider the price, you will find that while LED technology is costlier, it provides better value for money in the long run. This is because of the longer lifespan and easier maintenance of LED screens.

They are more attractive too. With the increasing shortage of space in new residential complexes, what better solution than an ultra-thin LED display giving a cinematic experience in the comfort of your home.

LED screens are the first choice among the public today, across generations. All are opting to switch to LED from LCD to make their lives more enjoyable and better.

what

Modern technology is incredible---a marvel of ingenuity, creativity, and talent. The technological revolution of the past century continues to change the world, mostly for the better. Alongside technological innovation, a new vocabulary exists to describe technological advances.

Nowhere is this clearer than in the television market. Understanding terminology is critical to getting the best quality at a reasonable price when upgrading your TV.

A Liquid Crystal Display (LCD) is one of the most enduring and fundamental technologies found in monitors, televisions, tablets, and smartphones. TVs and monitors once used cathode ray tubes (CRTs) to provide the image on your screen. But CRTs were bulky and contained dangerous chemicals. Once LCDs became affordable, they replaced CRTs.

An LCD features a panel of liquid crystal molecules. The molecules can be induced using an electrical current to take certain patterns which either block or allow light to pass through. An LCD TV or monitor has a light source at the rear of the display, which lights up the crystals. LCDs commonly use Cold Cathode Fluorescent Lamps (CCFL) to provide the TV or monitor backlight.

To provide a color image on your screen, the LCD has red, green, and blue sub-pixels in each screen pixel. Transistors within the display control the direction of light each pixel emits, which then passes through either a red, green, or blue filter.

Light Emitting Diodes (LEDs) are small semiconductors that emit visible light when an electrical current passes through them. LEDs are typically more efficient and longer-lasting than traditional lighting.

While manufacturers often use "LED" in place of "LCD," an LED TV is also a type of LCD. Instead of CCFL tubes to provide the LCDs backlight, rows of LEDs provide the backlight. The LEDs give better control of the light, as well as greater efficiency as it is possible to control individual LEDs.

For accuracy, a TV or monitor description should read "LED-Backlit LCD Monitor." But that is a) a mouthful and b) doesn"t allow for the creation of a separate marketable product. That"s not to say there aren"t differences between the two.

However, both LED and LCD monitors have different technologies that make certain panels more appealing to gamers, film buffs, designers, and so on. You should also note that on older screens, the difference between an LCD and LED TV or monitor is more pronounced, due to the relative age of the two lighting options.

There are several different types of LED and LCD monitors. When you"re trying to buy a new TV or monitor, understanding the differences and the terminology will help you bag a better deal. Here are some of the most common variations of the LED and LCD panels.

An Edge-Lit LED TV or monitor has its LEDs arranged around the rim of the display, behind the LCD panels facing the screen. The Edge-Lit option allows for slimmer designs, uses fewer LEDs, and can bring the cost of a new screen down. Light reflects across the screen uniformly to create the image.

One downside to an Edge-Lit screen is the dark contrast. Because the Edge-Lit LED display is brightest closer to the edges, color uniformity and black levels can become an issue, with some areas appearing darker than others.

A Full-Array LED display uses a grid of LED lights behind the LCD. The LEDs shine outwards directly towards the LCD, creating a bright and uniform picture. Full-Array LED panels enjoy the efficiency benefits of LEDs.

For the best image reproduction, a Full-Array LED display may include local dimming. Local dimming means that groups of LEDs can switch on and off as required to provide better overall control of the brightness level.

LEDs are often referred to as emitting white light. Actually, LEDs produce light closer to yellow than a pure white. That difference can create a color shift in the image you see on your screen. To improve on this issue, some manufacturers replace white LEDs with groupings of red, green, and blue (RGB) LEDs.

The display uses advanced electronics and programming to control the RGB LEDs accurately, along with more LEDs. The combination increases the cost of an RGB LED screen significantly for what most viewers would consider a marginal improvement. RGB LED displays never became mainstream because of their higher cost.

Organic Light-Emitting Diodes (OLED) are an advanced form of LED lighting found in some LED monitors. Each pixel of an OLED TV can glow or dim independently, resulting in much better black levels, extremely sharp colors, and better contrast ratios. The majority of OLED TVs and monitors have excellent viewing angles and color quality.

Without a doubt, OLED TVs and monitors (and even smartphone screens) have incredible color depth. But that does come at a cost. The latest generation of flagship smartphones all feature OLED screens, and it is a contributing factor to their massive cost. Another consideration is power. An OLED screen consumes more power than other LED-backlit screens and standard LCD screens.

The acronyms continue with QLED, which stands for Quantum Dot LED. Samsung"s QLED improves color accuracy as much as 90-percent from a regular LED TV or monitor and can hit the high levels of brightness and color depth that HDR requires.

So, what is a quantum dot monitor? In short, quantum dots are semiconductor nanocrystals that absorb light at one wavelength and output it at a different wavelength. The LEDs in a QLED emit all of the blue shades the picture requires. But a blue picture isn"t what consumers want. The quantum dots refract the blue LED light into the green and red shades needed to complete the picture.

A single quantum dot monitor or TV contains billions of semiconductor nanocrystals. Those nanocrystals give QLED screens outstanding black range and color depth, as well as excellent color saturation and contrast.

If you"re wondering where the "quantum" aspect comes into it, I"m sorry. There isn"t anything quantum taking place. It is just Samsung"s exciting marketing name.

Just as there are types of LED monitor technology, so is there LCD monitor and TV technology, too. The type of LCD tech powering your screen makes a difference to the final picture. Here"s what you need to look out for.

Twisted nematic (TN) was one of the first LCD panel types, dating back to the 1980s. TN panels have fast response time. Most of the fastest gaming monitors use a TN LCD panel to offer exceptionally fast refresh rates, up to 240Hz. That level of refresh isn"t necessary for most people, but it can make a difference for top-level gamers (for instance, in reducing motion blur and image transition smoothness).

Vertical alignment (VA) panels originated in the 1990s. The liquid crystals in a VA panel are aligned vertically, as the name suggests. The vertical alignment structure allows VA panels to produce much deeper blacks and more vibrant array of other colors in comparison to a TN panel. A VA panel usually has better contrast, too.

While a VA LCD panel has a better color range than a TN panel, they also have a slower refresh rate. They also usually cost more and, as such, are rarely marketed toward gamers. Between TN panels and IPS panels (read below), VA is the least popular LCD panel technology.

In-Plane Switching (IPS) panels are considered the best LCD panel technology for a variety of reasons. An IPS panel offers very wide viewing angles with very fast refresh rates. They"re not as fast as a TN panel, but IPS panels are widely available at 144Hz. At the time of writing, the first few 240Hz IPS LCD panels are hitting the market, although they are extremely expensive for a marginal gain.

Color-wise, IPS panels are excellent. High-quality IPS LCD panel prices continue to fall. However, there are several reasons why you shouldn"t buy a ridiculously cheap IPS gaming monitor.

The type of LCD panel you need depends on its use. Gamers want fast response times and rich depth of color, which is why IPS panels are a great option. If you"re more concerned about picture quality for your favorite films, an OLED panel will perform extremely well.

Still, now you know the terminology behind LCD panels and the pros and cons to each type, you can make an informed decision for your TV or monitor upgrade. But wait, the type of LCD or LED panel isn"t the only thing to consider. Take a moment to learn about the differences between 4K, Ultra HD, and 8K screens.

what

Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.

Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.

Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.

Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.

Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.

CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.

Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.

Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.

To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.

Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.

Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.

TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.

“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.

Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.

Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.

As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.

An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.

Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.

QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.

And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.

For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.

There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in

In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.

what

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

what

LED stands for Light Emitting Diode. SMD refers to Surface Mounted Diode, a technology that utilizes a process of mounting each LED chip (pixel) directly to a printed circuit board (PCB). Mounting the diodes in this fashion allows displays to be thinner and sleeker than older LED technology. SMD also allows for finer pixel pitch. Simply put, pixel pitch refers to the distance between the diodes and is responsible for resolution. Fine pixel pitch translates into high resolution. Fine pixel pitch is what makes HD and UHD LED possible.

LCD panels are made of a layer of liquid crystal between two pieces of polarized glass. Liquid crystal can not emit light. Backlights are therefore used to illuminate the display. LCD panels are sleek in design, but typically limited to specific sets of dimensions.

LEDs are their own light source. This means that LED video walls are glare free and not subject to many of the problems ambient lighting creates for other video display types.

LED technology is modular in nature. This means that LED panels fit together seamlessly and can be used to make displays to fit any space. Custom cabinets can even be built to accommodate unusual shapes or dimensions.

LCD video walls on the other hand take on a tiled approach. This means that screens are jutted against one another. This approach creates bezels or seams and the final dimensions of the wall is directly dependent on the dimensions of the individual screens.

LED is a versatile display option. Thanks to various IP options, LED video walls can be displayed indoors or outdoors. LED video walls can be built with a variety of internal mechanisms as well. Quick refresh rates and dual power backup can ensure that LED video walls look great on camera. Various pixel pitches can ensure the proper resolution for the right context.

LCD is a more straightforward product and consumers are generally more familiar with LCD. LCD is used for cell phones, computer screens, and most TVs, but is it the best choice for video walls? Ultimately that choice is up to the consumer. LCD is cheaper, but generally less customizable. LCD does not work well for outdoor uses and is generally very limited in terms of size and shape.

LED technology has improved drastically in recent years improving quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours.

Just like anything else, the best video wall product is largely dependant on context. If you like LED technology but are unsure of the process associated in obtaining a LED video wall read: How to Purchase a LED Video Wall Display.

what

When you are looking to purchase a monitor for your computer, you will come across two categories of monitors broadly. They are LCD and LED monitors, and it is going to be quite confusing for you to decide which one to buy unless you have proper knowledge about them.

Both types of monitors have their equal share of pros and cons, and they have several variants to choose from. In this article, we will discuss all the different aspects of LCD and LED monitors so that you can decide which one is best for you.

An LCD monitor has thousands of pixels that can display light. LCD stands for liquid crystal display and the pixel has different layers which make the monitor work.

In the first layer, a polarizing film sheet uses the light waves from behind. It filters out the vertical light waves and only the horizontal waves are left.

In the second layer, there are more than three layers. In two of them, you will find protective glass with liquid crystal on the inside. The crystals keep them in place and prevent them from getting damaged.

Finally, there is a fourth layer that is responsible for color changes. It has three light filters on each pixel that provide blue, green, and red colors.

Now let’s see how LCD monitors work. During the absence of electricity, liquid crystals can rotate and twist to up to 90 degrees. This further lets the light flow through the crystals. During this process, the light will pass through the second filter and it will go through the green, red, or blue light filter. When there is electricity, liquid crystals block the light from behind which can turn the pixel off. When you look at the LCD screen, there are individual pixels of different colors.

There is no burn-in issue with LCD monitors and hence, they are best for gamers. Burn-in issue refers to an image getting stuck on the screen when it is shown for too long.

TN Panels:One of the first LCD monitors was of TN panel. Twisted Nematic has improved response time and is being used in some of the fastest gaming monitors. It also supports an extremely fast refresh rate of 240 Hz. With this refresh rate, there will be reduced motion blur as well as image transition smoothness.

VA Panels:Also called the vertical alignment panel, this came into existence in the 1990s. The VA panel is aligned vertically and has liquid crystals. It can produce deep blacks with a vibrant array of colors. One of the best things about the VA panel is that it can also provide better contrast. However, compared to the TN panel, it has a slower refresh rate. Another disadvantage is that it can cost more and is not a popular LCD panel technology.

IPS Panels:The best LCD panel technology is the IPS or in-plane switching panels. It can provide wide viewing angles and supports faster refresh rates. Even though it is not as fast as TN panels, the IPS panel comes with a refresh rate of 144 Hz. The IPS panel also provides excellent color reproduction.

Both LCD and LED monitors work in the same way. However, LED or light-emitting diodes come with LED backlighting. With LED backlighting, there will be sharp contrast and bright colors. Additionally, LED monitors are also slim in size and make sure there will be maximum energy efficiency.

LED backlighting comes with a higher refresh rate so that there will be a fast response time. There are many types of LED backlighting like array-lit and edge-lit that help to provide the perfect image. Array-lit monitors are behind the screen and edge-lit monitors are around the edges. You can even find the one that can come with local dimming capabilities for deeper blacks.

Edge-Lit LED:One of the best things about Edge-Lit LED is that it comes in a slim design. It uses fewer LEDs that help to lower the new screen cost. An Edge-Lit LED monitor has a rim of LED on the display while facing the screen. This makes sure there will be uniformity of screen that helps to create the image. However, it does come with a disadvantage. It has dark contrast and features the brightest closer on the edges. This can lead to black levels and color uniformity. It can provide some areas looking darker than others.

Full-Array LED:In the Full-Array LED display, there is a grid of LED lights right behind the LCD. It can create a uniform and bright picture as the LEDs shine outwards. Even full array LED panels offer efficiency benefits of LED. An advantage of having this type of monitor is that it can come with local dimming. It helps the group of LEDs to switch on and off when you need it. This helps to provide optimum brightness level as well as control.

RGB LED:LEDs don’t produce pure white light. However, it is closer to yellow. When there is a difference, it can lead to a color shift in the image. Owing to this, some manufacturers have come up with white LEDs with groupings of RGB (red, green, and blue) LEDs. When there is a combination of RGB LED colors, it helps to provide pure white so that there will be true and clear colors. RGB LED uses advanced programming and electronics for vivid colors. This can lead to an increase in the cost of the RGB LED screen.

OLED:An advanced form of LED lighting is OLED. Organic Light-Emitting Diodes can dim or glow independently so that there will be better black levels. It also helps to improve the contrast ratio and make sure there will be sharp colors. Additionally, OLED monitors and TVs come with excellent color quality and viewing angles. In this type of monitor, you will find a high dynamic range programming for better color accuracy. It has a better color depth making it perfect for a smartphone screen. However, it consumes a lot of power and is expensive.

QLED:Quantum Dot LED or QLED improves color accuracy by 90% compared to a regular LED monitor. With it, there will be high levels of color depth and brightness. Quantum dots are in the form of semiconductor nanocrystals that provide different wavelengths. It reflects the blue LED light into red and green shades for a complete picture. In a single Quantum dot monitor, there are billions of nanocrystals that give outstanding color depth and black range.

For gaming, you need a monitor that has a low response time and a high refresh rate. Response time is the time a monitor takes to change pixels when it moves from one image to another. High refresh rate is needed to avoid any lag issue. On all these parameters, LED monitors score higher than LCD monitors, and on top of that, the picture and video quality and clarity are better in LED monitors.

The primary difference between LED and LCD monitors is the picture quality. LED monitors have far better picture quality than LCD monitors. You will understand it only when you play high-quality videos or play high-end games. Starting from sharper and clearer picture to faster rendering and refresh rate, LED monitors score over LCD monitors in terms of picture quality.

LED monitors are more energy-efficient than LCD monitors. The light-emitting diodes consume less power. In fact, if you compare the energy consumption, an LED monitor of size 32-inch will consume 10W less power than an LCD monitor of the same size. The bigger the size, the bigger will be the difference in power consumption.

The LED monitor has a lifespan of 50,000 hours, while the lifespan of an LCD monitor is around 30,000 hours. Naturally, the longevity of LED monitors is longer, and hence, it is compensated for in its price. Additionally, LED monitors are thinner and lighter than LCD monitors of the same size.

Except for burn-in issues and cost, LED monitors beat LCD monitors on all parameters. Therefore, if budget is not an issue for you, an LED monitor should be your first priority. As a matter of fact, if you are buying a monitor for gaming and video streaming, there is no alternative to an LED monitor. However, if you are buying a monitor for regular work and there is a budget constraint, you can do it with an LCD monitor pretty well.

what

If you’re in the market to rent a video wall, you’ve probably run into all sorts of confusing info. Here’s the lowdown on LCD vs. LED video walls so you can make the right choice for your next conference, trade show, or other event.

We’re about to throw a whole lot of info at you. So let’s first take a second to remember why both LED and LCD video walls are a good investment in the first place.

The old adage, “the bigger the better,” is definitely true when it comes to AV. A video wall immediately symbolizes your company is established, and sends a subconscious message that people should take your business seriously. Video walls help you stand out, and compete with all the other businesses who are investing in splashy, eye-catching displays.

Distance – The further your video wall is from viewers, the bigger it needs to be. If you’d like a video wall on the back of your trade show booth, you’re going to need a different option than if you’d like a video wall as an entire backdrop of a general session stage. As one of your first steps, decide on distance.

Content – Do have the resources to produce custom content for your video wall? After you finalize the size of your video wall, your AV provider can tell you the exact dimensions and resolution your content needs to be. From there, a designer or video editor can create custom video wall content — which is the most important part of any great video wall.

Venue Type – An outdoor venue presents a different challenge than an indoor trade show without windows. There’s a great video wall solution for lots of different venues, but be sure your venue and the basic event details are confirmed first.

Price – A video wall system is always going to cost more than monitors, projectors, or other digital signage. Make sure you have enough room in your budget for a video wall — which can start in the ballpark of $10,000 and go upwards from there.

Once reserved for stadiums and shopping malls, LED walls have become much more accessible for corporate events in recent years. An LED wall is made of many smaller LED panels. Each panel has hundreds of tiny light sources called “light emitting diodes” that can change color to create a large, seamless image.

Technicians can add panels until the LED wall is as massive as you need it to be. Random fact: The Suzhou Sky Screen in China is the largest LED video wall in the world, measuring 1,640 feet long — about 4.5 football fields.

Meanwhile, an LCD video wall is a large surface for video or images built from many LCD screens. You’ve interacted with an LCD screen before — they’re on your laptop, TV monitor, and more. However, the LCD video wall screens are designed to run longer and have thinner edges, called bezels.

Technicians use special hardware and tools to stack the LCD screens on top of one another, and calibrate the wall so that an image shows up across every screen. Temporary LCD walls can usually only be about five screens across and five screens high.

Temporary LCD walls can be configured to be in many different sizes and shapes, both large and small, but typically don’t go larger than five screens across and five screens high.

Our most popular LCD walls are about 16’ wide by 10’ tall. Also, when measuring your ceiling height, keep in mind that most walls don’t go all the way down to the floor. So you’ll need to add that into your total height need.

People need to view LED walls from a distance to get the full picture. Think of them like a Lite Brite, or an impressionist painting — you get the full picture when you’re further away. Though made of LED panels, there are no seams.

The image on an LCD wall will be sharper than on LED walls, especially while standing nearby, since it’s made from HD panels. Will have very thin seams between each LCD screen, called bezels.

Since an LCD Wall are basically fancy computer monitors, it’s typically easier to create content. If your content looks great on a standard computer monitor with a 16:9 aspect ratio, it will look good on an LCD wall. Your AV provider will give you dimensions and resolution requirements once you decide on the size you need, and can also help you determine where the seams (or “bezels”) will be so none of your image gets cut off.

Much lower than LCD — but you’ll still need to make sure your venue has enough power capabilities. Your video wall provider can tell you how much power you’ll need.

Imagine an LCD video wall is like a tray of lasagna. Reliable, beautiful, and sturdy — but you can only increase the size of a tray of lasagna so much. Affordable, but it has a limit in size.

Meanwhile, imagine an LED wall like a limitless, footlong sub. It might not be quite as satisfying and vibrant as a steaming tray of lasagna, but you can keep adding to it until it’s as massive as you’d like.

Video walls are a great way to increase the professionalism and engagement of your event. As national video wall experts, we’d love to learn more about what you’re looking for, and how we can help make your vision come to life.

what

LCD (Liquid Crystal Display) and LED (Light Emitting Diode) Displays are two major display technologies being widely used today. LED Displays are technological advancement of LCD displays. LED displays are the LCD displays with an LED backlight to power up the LCD panel. It means that LEDs are placed behind or around the LCD panel to enhance the luminosity and video definition of the monitor screen. Cold cathode lights are used as backlight in LCD displays. In LED displays all the concepts are same except this backlight feature, which is replaced by LEDs.

Although the major difference between LCD and LED displays is just the backlight but it also confers a number of improvements in the LED displays which are covered in the subsequent section:

Contrast:Contrast and Black level of the LED screen is better than the LCD screens because the liquid crystals cannot stop 100% of the backlight from cold cathode backlight and hence when the black screen is to be shown on the monitor, it is not completely black (as shown in the below image). But LED screens perfectly show the black screen as there is no backlight at all.

Color accuracy:Color accuracyfor direct and edge LED displays and LCD displays are almost same but the RGB LEDs display has quite better color accuracy. There are three different types of LED monitors available based on the manner how the diodes are arranges in the monitor. These are – Direct LEDs, Edge LEDs and RGB LEDs. Both Edge and Direct LED display monitors use white diodes that are used to illuminate the LCD panel to produce the improved picture quality. The arrangement of LEDs in the monitor is shown in the below image:

Power:More power is consumed by the local dimming LED display than LCD. Hence it will be wise and economic to either compromise with energy bill or good quality picture. However, if LED is edge light then it will consume less power as compared to LCD with the same dimensions. Both LCD and LED displays do not have screen burn-in issue so they are considered suitable for long time screen use.

Price:Price becomes a major factor when comparing LCD and LED TVs. LED displays yield a higher price tag, which reflects their efficiency and the better picture quality. LED displays also allow for thinner, lighter televisions. This advantage further beats the retail price up of a television with an LCD display.

what

Even though some say the picture quality of an LED TV is better, there is no straight answer for which has better picture quality since both TVs use the same kind of screen. For instance, a higher-end LCD TV can have a better quality than a low-end LED TV, but if you look at high-end models of either TV, the picture quality will be comparable.

RGB Dynamic LEDs show truer blacks and whites and thus get higher dynamic contrast ratio (which is desirable in a TV), at the cost of less detail in small bright objects on a dark background (such as star fields)

LED TVs use energy-efficient light emitting diodes (LED) for backlighting. These consume less power than cold cathode fluorescent lamps (CCFL) used in traditional LCD televisions. Power savings are typically 20-30%.

Edge-LEDs (the most common) are positioned around the rim of the screen and use a special diffusion panel to spread the light evenly behind the screen.

Flat Screen LCDs, about an inch or two thick are more expensive, but also more popular because of their sleek look and the flexible options of standing on a surface or mounting on a wall.

Front projection LCDs or projectors, which project an image onto the front of the screen. The TV itself is just a box installed anywhere in a room, which projects the image onto a flat screen hung on the wall as large as 300 inches.

Rear projection LCDs, where the image is sent from the rear of the TV to the screen in front. Rear projection LCDs are wide, heavy and only available in large sizes (60" and up).

what

If LED screens are simply defined, they are screen systems similar to TV monitor. LCD screens can be considered as the ancestor of LED screens In this text, we will mention the differences between LCD and LED screens. The most basic and significant distinction is that fluorescent lamps are used for illumination goal in LCD screens. However, LED’s, a more up-to-date technology, are used for backlighting in LED monitors. We can list the other distinctions between the two screens as follows;

The picture grade is much clearer than other televisions. The cause for this is that it reflects less than classical televisions even when exposed to highlight. The fact that LED screens are not affected by sunlight is a unique opportunity for effective advertisement.

LED screens and small LED screen panels are extensively used today. Therefore, its usage fields are also very large. LED screens are used in football fields, malls, hospitals, openings, hotels, competitions and many more. As can be seen, the wide usage areas of LED screens provide convenience to people in many aspects. It is preferred because of the nominal cost of some LED screens. And for this reason, its usage area is also wide. LED panels are preferred in the fields of art and culture, visual presentations, classroom boards and logos.

The point of view limitation of LCD screens panels is greater than that of LED screens panels. That is to get a quali