dual lcd panel quotation
Alibaba.com offers 3516 double lcd panel products. About 30% % of these are digital signage and displays, 1%% are lcd monitors, and 1%% are lcd modules.
A wide variety of double lcd panel options are available to you, You can also choose from original manufacturer, odm and agency double lcd panel,As well as from tft, ips, and va.
If one LCD is good, two is better, right? I"m not talking about two layer LCD. No, that"s still not quite right. LCDs have lots of layers. How about Double Stuf LCD? Nailed it.
Double Stuf LCDs have the potential to improve the contrast ratio of a display with minimal additional power draw and without needing additional LEDs, like
The problem, and what has always been LCD"s problem, is this method doesn"t block all the light. There"s no such thing as a "black" LCD pixel. Some light always leaks through, which is why LCDs have always had worse black levels and contrast compared to other technologies, like
In Hisense"s prototypes and the current version of this TV (currently only available in China), the second layer was 1080p on a 4K display. Hisense promises that when this tech reaches US shores, both layers will be 4K. This means that essentially it"s an LCD TV with a 8 million zone backlight, far more than even mini-LED has. With two 4K modules, each pixel gets a far greater ability to block the light from the backlight, greatly improving this longstanding LCD issue and improving the contrast ratio.
Price-wise, Hisense is aiming to be cheaper than OLED, though probably similar-to or more than higher-end LCDs. For reference the HZ65U9E, its 65-inch model for sale in China now, is 17,999 yuan, which converts to about $2,500, £2,000, or AU$3,700.
Manufacturers have a lot of money in LCD, and that"s not changing any time soon. They"re always looking out for the next big thing, which is how we got OLED and how we"ll be getting MicroLED. Before we get to the next gen, there"s still a lot of improvement to be made with the current gen. Mini-LED is one aspect of that, and potentially so is dual-LCD. No doubt we"ll hear more about both at CES in January.
Due to the large number of LCD monitor inventory we get every day, we keep our prices on these items low to pass on the great savings to our customers. These consist of major brands such as Dell, Samsung, HP, LG, Acer, Lenovo, ViewSonic, NEC and many more. They are all tested, working and come with a 90 Day Warranty. So if you just want a great monitor at a good price, look no further.
Due to the large number of LCD monitor inventory we get every day, we keep our prices on these items low to pass on the great savings to our customers. These consist of major brands such as Dell, Samsung, HP, LG, Acer, Lenovo, ViewSonic, NEC and many more. They are all tested, working and come with a 90 Day Warranty. So if you just want a great monitor at a good price, look no further.
SPECIAL OFFER on 27" DUAL LCD Monitor Screens with HDMI and STAND on various brands. The choice of the best Dual 27 inch monitor for working purposes is truly a significant one. If you are going to spend several hours or even all day long glued to the screen, you should opt for a qualitative model that will guarantee convenience, safety and ease of use.
Are there still possibilities to improve the contrast of an LCD panel? In addition to the use of local dimming and a solid anti-reflection layer, not much has changed in LCD panels for a long time. That could change with the introduction of Dual Layer LCD technology for televisions. A new term, which we explain in detail in this article.
By way of introduction, the technology appears under two different names: dual layer, or dual cell. We prefer to use dual layer, because that term is clearer.
Dual layer LCD is another way to achieve the same result. If one LCD panel can create a contrast value of 1,000: 1, you can create a theoretical contrast of 1,000: 000: 1 by placing two LCD panels one behind the other. That is an idea that has been around for a long time and has already been used in some medical imaging monitors.
This is how it works. In the structure of the LCD TV, a second LCD panel is slid between the backlight and the original LCD panel. That extra panel determines how much light passes through to the original panel, it only works in grayscale. That is why it is often referred to as a light modulator or dimming panel. You can consider it as a special kind of local dimming. Each pixel of the dimming panel counts as a dimming zone. For example, a dual layer LCD TV can have millions of dimming zones.
Theoretically, you would naturally opt for a 4K dimming panel. You actually have about 8 million dimming zones, one per pixel, and you are at the same level as OLED. But we also see that a Full HD dimming panel is chosen, which provides approximately two million dimming zones (one zone per four pixels). The reasons for this are of a different nature. It will undoubtedly be cheaper to use a 2K dimming panel instead of a 4K version. In addition, there are probably also technical reasons: for example, impact on energy consumption. And the extra benefit of a 4K panel may be too small.
We also notice that Hisense still communicated with one million dimming zones at IFA, which would indicate a dimming panel with only the half of Full HD resolution. At CES Hisense spoke of two million dimming zones.
Dual layer LCD TV should be a cheaper alternative to OLED, just like mini-LED. Currently there are professional grading monitors for the film studio of Sony (BVM-HX310) and Panasonic (Megacon). Towards consumers, only Hisense (HZ65U9E) comes out with this technology.
The contrast values currently being claimed vary widely, varying between 1,000,000: 1 and 150,000: 1. This variation is large but not unexpected, since a small difference in black value has a huge impact on contrast. In any case, those values are considerably better than for a traditional LCD TV that is somewhere between 1,000: 1 and 3,000: 1 (without local dimming).
LCD panel manufacturers have another reason to look at dual layer solutions. So many LCD factories have been set up in China that there is considerable overcapacity. Excess capacity reduces the price, which is good for the consumer, but manufacturers prefer to reduce their output a bit. But an LCD factory can be compared to many other factories: if it is not running at full capacity, there is a risk of financial loss. A solution where you can use that overcapacity to make a better product (in this case with two LCD panels) is of course attractive.
Unfortunately there are a few important hurdles for this technology, and the most important ones seems to us the energy consumption. An LCD panel has a considerable loss because the light has to go through different optical layers. We often see a figure of around 6% light efficiency. If we place two LCD panels behind each other, that problem will of course be much worse. That energy consumption will not be underestimated, we could already more or less estimate at the show of the Panasonic Megacon at IFA last year. Even when we were standing a meter from the screen you could still feel the heat coming from the screen. This is of course no problem for a studio monitor, but for a consumer product it is different.
Hisense claims that their panel has an efficiency of 4%. That may not seem dramatically less, but still, that means that you have to generate 50% more light in the background lighting to achieve the same brightness as a traditional LCD TV. Such a TV therefore uses at least 50% more power. That could be a problem given the strict energy consumption standards that will come in 2021.
The construction of such a panel is also a challenge. After all, the two LCD panels must be perfectly aligned, or there will be a shadow effect. If the pixel grid of the dimming panel is not perfectly hidden behind the grid of the second LCD panel, it casts a shadow on the second LCD panel. This requires clarity, but also creates other visible image errors. If too many faulty panels roll off the belt (in other words, if the “yield” is low), then that is reflected in a higher price. It remains to be seen whether the result is still economically meaningful.
Finally, we all want slim televisions, but two LCD panels are obviously thicker than one panel. The manufacturer can compensate for this by working with an edge-LED backlight, but in combination with a FALD backlight, such a TV would clearly be a bit thicker, although we do not expect the step to be very large.
Of course, the possible breakthrough of this technology also revolves around cost. At the moment, the price of dual layer LCD seems to be somewhere between a classic FALD LCD TV and an OLED TV, according to Trendforce analysts (attention, indicated prices are only for the panel, not for the finished TV). They also estimate the price to be slightly lower than that of a mini LED TV.
Dual Layer LCD technology for televisions offers interesting prospects. By sticking two LCD panels behind each other with LCD technology you can raise the contrast to OLED level and the fact that professional grading monitors use it is a clear indicator that the technology has potential. But the consumer market also imposes other requirements on a TV, in particular on energy consumption, and there remains a doubt as to whether dual layer LCD will not consume too much energy.
The technology might also find its way to monitors and laptop computers. displays. BOE (the Chinese panel manufacturer that makes the panels for Hisense) has already announced that it has also developed a 31.5-inch gaming monitor.
2U dual-LCDs rack console, dual 17.3 inch 1920 x 1080 300-nit full HD LCD monitor, center & right display, 104-key keyboard with touchpad, DP (Primary) & HDMI (Secondary) video input, and 100/240VAC power supply.
KD8173TDL:2U dual-LCDs rack console, dual 17.3 inch 1920 x 1080 300-nit full HD LCD monitor, center & left display, 104-key keyboard with touchpad, DP (Primary) & HDMI (Secondary) video input, and 100/240VAC power supply.
Typical LCDs are edge-lit by a strip of white LEDs. The 2D backlighting system in Pro Display XDR is unlike any other. It uses a superbright array of 576 blue LEDs that allows for unmatched light control compared with white LEDs. Twelve controllers rapidly modulate each LED so that areas of the screen can be incredibly bright while other areas are incredibly dark. All of this produces an extraordinary contrast that’s the foundation for XDR.
With a massive amount of processing power, the timing controller (TCON) chip utilizes an algorithm specifically created to analyze and reproduce images. It controls LEDs at over 10 times the refresh rate of the LCD itself, reducing latency and blooming. It’s capable of multiple refresh rates for amazingly smooth playback. Managing both the LED array and LCD pixels, the TCON precisely directs light and color to bring your work to life with stunning accuracy.