raspberry pi tft display projects brands
Touchscreen display has so many possibilities when used with Raspberry Pi boards. Here"s a list of top 10 must try raspberry pi touchscreen display projects:
The official Raspberry Pi touchscreen display is seven inches diagonal, making it an ideal size for a photo frame. For the best results, you’ll need a wireless connection (Ethernet cables look unsightly on a mantelpiece) as well as a Raspberry Pi-compatible battery pack.
Several options are available to create a Raspberry Pi photo frame, mostly using Python code. You might opt to script your own, pulling images from a pre-populated directory. Alternatively, take a look at our guide to making your own photo frame with beautiful images and inspiring quotes. It pulls content from two Reddit channels — images from /r/EarthPorn and quotes from /r/ShowerThoughts — and mixes them together.
The idea here is simple. With just a Raspberry Pi, a webcam, and a touchscreen display — plus a thermal printer — you can build a versatile photo booth!
Various projects of this kind have sprung up. While the versions displayed above uses a thermal printer outputting a low-res image, you might prefer to employ a standard color photo printer. The wait will be longer, but the results better!
How about a smart mirror for your Raspberry Pi touchscreen display project? This is basically a mirror that not only shows your reflection, but also useful information. For instance, latest news and weather updates.
Naturally, a larger display would deliver the best results, but if you’re looking to get started with a smart mirror project, or develop your own from scratch, a Raspberry Pi combined with a touchscreen display is an excellent place to start.
Want to pump some banging “toons” out of your Raspberry Pi? We’ve looked at some internet radio projects in the past, but adding in a touchscreen display changes things considerably. For a start, it’s a lot easier to find the station you want to listen to!
This example uses a much smaller Adafruit touchscreen display for the Raspberry Pi. You can get suitable results from any compatible touchscreen, however.
Requiring the ProtoCentral HealthyPi HAT (a HAT is an expansion board for the Raspberry Pi) and the Windows-only Atmel software, this project results in a portable device to measure yours (or a patient’s) health.
With probes and electrodes attached, you’ll be able to observe and record thanks to visualization software on the Pi. Whether this is a system that can be adopted by the medical profession remains to be seen. We suspect it could turn out to be very useful in developing nations, or in the heart of infectious outbreaks.
Another great build, and the one we’re finishing on, is a Raspberry Pi-powered tablet computer. The idea is simple: place the Pi, the touchscreen display, and a rechargeable battery pack into a suitable case (more than likely 3D printed). You might opt to change the operating system; Raspbian Jessie with PIXEL (nor the previous desktop) isn’t really suitable as a touch-friendly interface. Happily, there are versions of Android available for the Raspberry Pi.
The official Raspberry Pi 7” Touchscreen allows you to add touch inputs to your programs, creating a new way to interact with your projects. It also makes for a fantastic desktop screen for day-to-day use of your Raspberry Pi. Wrap it in one of our screen cases and take it anywhere – events, Raspberry Jams or even just your friends house for a coding evening!
For smaller projects, LCD and ePaper displays are a fun way to add a visual element to your projects. With simple code and wiring, they’re great for projects that require text, menus and navigation.
Inky wHAT is a 400x300 pixel electronic paper (ePaper / eInk / EPD) display for Raspberry Pi, a larger version of our popular Inky pHAT display, with more than 5x the number of pixels, and available in three colour schemes - red/black/white,...
Build a full-featured media center capable of playing nearly all of your digital media using any 40 pin Raspberry Pi and the Media Center HAT Raspberry Pi touchscreen display. Native support in...
Inky wHAT is a 400x300 pixel electronic paper (ePaper / eInk / EPD) display for Raspberry Pi, a larger version of our popular Inky pHAT display, with more than 5x the number of pixels - red/black/white version.
If you"re looking for the most compact li"l color display for a Raspberry Pi B+, Pi 2, & Pi 3 (most likely a Pi Zero) project, this might be just the thing you need!
In honour of Raspberry Pi"s 10th birthday, we"ve fused a RP2040 microcontroller with an EPD display to make a stylishly monochrome, maker friendly, e-paper badge(r)...
Pico Inky Pack features the speedy 2.9" e-paper display that you can find on Badger 2040, coupled with three handy buttons for interfacing. Equip it to the back of your...
Waveshare 21435 - 2.8″ Touch Screen Expansion For Raspberry Pi Compute Module 4, Fully Laminated Display, Gigabit Ethernet, USB2.0, Optional Interface Expander
In honour of Raspberry Pi"s 10th birthday, we"ve fused a RP2040 microcontroller with an EPD display to make a stylishly monochrome, maker friendly,...
Crisp, high-res, with great viewing angles (IPS), this 1.3" square, 240x240 pixel, colour LCD will add some pizzazz to your Raspberry Pi or Arduino projects.
Raspberry Pi OS provides touchscreen drivers with support for ten-finger touch and an on-screen keyboard, giving you full functionality without the need to connect a keyboard or mouse.
The 800 x 480 display connects to Raspberry Pi via an adapter board that handles power and signal conversion. Only two connections to your Raspberry Pi are required: power from the GPIO port, and a ribbon cable that connects to the DSI port on all Raspberry Pi computers except for the Raspberry Pi Zero line.
Raspberry Pi, now in its fourth generation, opens up new worlds for makers through card-sized kits. The Raspberry Pi"s display is indispensable, it turns the Raspberry Pi into a computer that is easy to use anywhere. Here are some pertinent guides and views for choosing a Raspberry Pi display screen.
Screen brightness refers to the luminous intensity of the surface of the screen, usually with a 200cd/sq.m display, which is sufficient for normal use.
Screen resolution refers to the total number of pixels that can be displayed on the screen. The resolution is closely related to the details of the picture. If the selected resolution is not compatible, the display will stretch and shrink to fit the specified resolution, causing a huge loss of signal and quality.
Also consider whether the screen is compatible with the Raspberry Pi model. The Raspberry Pi display screen uses connectors for effective communication between peripheral devices. The most common connectors are HDMI, VGA and AV input. In addition, whether it is a back-mounted bracket, a stand-alone type or an integrated shell screen design that accommodates the Raspberry Pi, everything has to be designed to match the Pi perfectly.
Below is a list of all the best Raspberry Pi compatible screens available online. We provide many types of Raspberry Pi screens at very low prices to help you find a screen that suits your needs and projects:
It is the cutest display for the Raspberry Pi. It features a 3.5" display with 480x320 16-bit color pixels and a resistive touch overlay. It"s designed to fit nicely not only to the Pi Model A or B but also works perfectly fine with the Model B+/2B/3B/4B.
*When working with Raspberry Pi 4, for the system image of Raspberry Pi after 2021-10-30, for example on Bullseye, please modify "dtoverlay = vc4-kms-v3d" to "dtoverlay = vc4-fkms-v3d" in the config file, otherwise it may fail to start. But on Buster, please comment out "dtoverlay = vc4-fkms-V3D" by adding #.
When you want to have an easier time of connecting to different media and selecting it, a single-board computer is an efficient option. The Raspberry Pi single-board computers work with a variety of peripheral devices, including LCD display modules with touchscreens. On eBay, you can find a variety of sizes and features of affordable Raspberry Pi touch screen units to pair with the single-board computer for enjoying your favorite media.What are some features of Raspberry Pi Touch Screen modules?
Signal support: It accepts EGA, SVGA, WXGA, VGA, SXGA, and UXGA video signals from the computer.What are the sizes of Raspberry Pi touch screen modules?
The Raspberry Pi touch screen modules are available in sizes of three to seven inches when measured on the diagonal. Their frames can be set up in a vertical or horizontal orientation for viewing in a portrait or landscape setup. The stands for the touchscreens can also be angled for easier use and viewing. See the manufacturer site for details.What is the compatibility of a Raspberry Pi display module?
The following are compatibility options for a Raspberry Pi touch screen display module:USB: They can display the information that is stored on a removable USB drive plugged into the Raspberry Pi computer.
Consider the following features when you are shopping on eBay for a new or used Raspberry Pi touch screen:With computer case: Some have a case for holding both the computer and the display in one unit.
Thanks for bringing this to my attention. It appears that the upgrade package overwrites the FBTFT drivers, in particular, the Raspberry Pi bootloader. This seems to solve the problem:
I just tested this, and it looks like the difference is how SPI is enabled. In the RPi 2 it’s enabled in raspi-config, not commented out in the blacklist file. I just updated the post so it should work now!
Looks like the only difference is in how SPI is enabled. In the new release of Raspbian, SPI is enabled in the raspi-config menu under advanced settings. In older versions of Raspbian, it is enabled by commenting out the line in the blacklist file
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p6 rootfstype=ext4 elevator=deadline rootwait fbtft_device.custom fbtft_device.name=waveshare32b fbtft_device.gpios=dc:22,reset:27 fbtft_device.bgr=1 fbtft_device.speed=48000000 fbcon=map:10 fbcon=font:ProFont6x11 logo.nologo dma.dmachans=0x7f35 console=tty1 consoleblank=0 fbtft_device.fps=50 fbtft_device.rotate=0
Unfortunately, their “driver” is an SD card image containing a complete installation of Raspbian which has been preconfigured to use their display. Which is fine if you’re setting up a brand new system that doesn’t need to be a specific distro, but if you’re trying to add the display to an existing Raspberry Pi, already configured the way you want it, with software installed and data present, or if you want to use a specific distro such as Octopi, then it’s not terribly helpful.
Hello..I tired to interface this lcd “https://www.crazypi.com/raspberry-pi-products/Raspberry-Pi-Accessories/32-TOUCH-DISPLAY-RASPBERRY-PI” to my Raspberry pi model B+.I got a DVD containing image for LCD in the package.I burned it to the SD card and plugged in the display.But my lcd is completly blank.But green inidcation led (ACT LED) in board is blinking.Why my LCD is Blank ?
Thank you for this great tutorial. I looked everywhere for this information. I have an eleduino 3.5 version A. I was able to get it working on my Pi 2 by following your tutorial and using flexfb as the screen type. I got the other settings from the image that came with the product. I did find that the ts_calibrate didn’t recognize the screen so I installed xinput-calibrator and it worked fine.
Just got my Pi2 running Wheezy, working with the Eleduino 3.5 LCD without running the OEMs image… kinda. I didn’t want to rebuild the application environment again, so was avoiding flashing the SD.
Unzipped it and looked around. From a shell script inside i kinda figured out what it was doing. I didn’t like what I saw, so I manually made changes omitting the parts I didn’t like (it rm -r my /lib/modules directory… omitted that part) and copied 2 files and 1 directory from the OEMs archive to the file system of my Pi2.
[ 0.000000] Kernel command line: dma.dmachans=0x7f35 bcm2708_fb.fbwidth=656 bcm2708_fb.fbheight=416 bcm2709.boardrev=0xa21041 bcm2709.serial=0x631a4eae smsc95xx.macaddr=B8:27:EB:1A:4E:AE bcm2708_fb.fbswap=1 bcm2709.disk_led_gpio=47 bcm2709.disk_led_active_low=0 sdhci-bcm2708.emmc_clock_freq=250000000 vc_mem.mem_base=0x3dc00000 vc_mem.mem_size=0x3f000000 dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait fbtft_device.custom fbtft_device.name=flexfb fbtft_device.gpios=dc:22,reset:27 fbtft_device.bgr=1 fbtft_device.speed=48000000 fbcon=map:10 fbcon=font:ProFont6x11 logo.nologo dma.dmachans=0x7f35 console=tty1 consoleblank=0 fbtft_device.fps=50 fbtft_device.rotate=0
i have a watterott display (https://github.com/watterott/RPi-Display) and changed the device-name to “rpi-display”. i use a rsapberrypi 2 and hae the latest raspian image installed.
Did you check to see if your device is supported yet? The device name should be specific for your screen, as listed in the fbtft file linked to in the beginning of the post
I too have a raspberry pi 2, and a waveshare spotpear 3.2 RPi lcd (v3) and I just can’t get it to work! I suspect I have a faulty LCD, but thought I’ll try this forum for help before I sent it back.
Soon as the pi is powered, the LCD lights up all white, with a few vertical pixels coloured at one of the edges, and nothing else. I don’t think that should happen – not at least before the BOIS has started up.
Anyway, point 1, says to change to dev/fb1 – I don’t have fb1. Only fb0 appears to be there. is that a clue what could be wrong? I have enabled SPI (is there a command to tell if its enabled?) I have also ran spidev to troubleshot (though I haven’t a clue what I means)
Any ideas what going wrong? I am using the latest “2015-02-16-raspbian-wheezy_zip”. Enabled SPI. done all the steps. Even changed mmcblk0p2 to mmcblk0p6 as suggested by Dabomber60 (but that freezes for me)
[ 0.000000] Linux version 3.18.5-v7+ (pi@raspi2) (gcc version 4.8.3 20140106 (prerelease) (crosstool-NG linaro-1.13.1-4.8-2014.01 – Linaro GCC 2013.11) ) #1 SMP PREEMPT Fri Feb 6 23:06:57 CET 2015
It seems all appears to be working – just the LCD is still all white with a single line of coloured pixels on edge) and nothing else. Is there a way to output, like jeff G script, of touch points?
I had the same one, I finally found a driver for it here: http://www.waveshare.net/wiki/3.2inch_RPi_LCD_(B) you will need to translate the page, but unpack the driver then run sudo ./LCD-show/LCD32-show. It should reboot and all will be good with the screen :)
Can anyone let me know if the default OS image sent with the screen works with pi2 or just Pi B/B+ as i think my screen maybe broken but can’t confirm it yet as i have not had it working at all
My system: Raspberry Pi 2 Model B with Raspian Wheezy from Febuary 2015. LCD display of Sainsmart 3.2 http://www.conrad.de/ce/de/product/1283498/Raspberry-Pi-Display-Modul-Touch-Display-81-cm-32/?ref=home&rt=home&rb=1
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 cgroup_enable=memory elevator=deadline rootwait fbtft_device.custom fbtft_device.name=sainsmart32_spi fbtft_device.gpios=dc:24,reset:25 fbtft_device.bgr=1 fbtft_device.speed=48000000 fbcon=map:10 fbcon=font:ProFont6x11 logo.nologo dma.dmachans=0x7f35 console=tty1 consoleblank=0 fbtft_device.fps=50 fbtft_device.rotate=90
sainsmart32_spi width=320 height=240 buswidth=8 init=-1,0xCB,0x39,0x2C,0x00,0x34,0x02,-1,0xCF,0x00,0XC1,0X30,-1,0xE8,0x85,0x00,0x78,-1,0xEA,0x00,0x00,-1,0xED,0x64,0x03,0X12,0X81,-1,0xF7,0x20,-1,0xC0,0x23,-1,0xC1,0x10,-1,0xC5,0x3e,0x28,-1,0xC7,0x86,-1,0×36,0x28,-1,0x3A,0x55,-1,0xB1,0x00,0x18,-1,0xB6,0x08,0x82,0x27,-1,0xF2,0x00,-1,0×26,0x01,-1,0xE0,0x0F,0x31,0x2B,0x0C,0x0E,0x08,0x4E,0xF1,0x37,0x07,0x10,0x03,0x0E,0x09,0x00,-1,0XE1,0x00,0x0E,0x14,0x03,0x11,0x07,0x31,0xC1,0x48,0x08,0x0F,0x0C,0x31,0x36,0x0F,-1,0×11,-2,120,-1,0×29,-1,0x2c,-3
ads7846_device model=7846 cs=1 gpio_pendown=23 speed=2000000 keep_vref_on=1 swap_xy=1 pressure_max=255 x_plate_ohms=60 x_min=300 x_max=3800 y_min=700 y_max=3400
The LCD display shows the raspberry correctly. However, the touch screen input does not work. The mouse pointer can I move correctly with your finger, but I can not select things (function of the left mouse button).
Thank you so much for this great tutorial. I have my WaveShare SpotPear 3.2″ V4 working fine on my Raspberry Pi 2. If you are having problems with this specific hardware, skip step 5.
Can someone upload SD card image that works with RBP2 ? My idea is to use Eleduino TFT as additional screen and play movies via HDMI.. is it possible?
Do not follow this article when you don’t know what kind of LCD module. In my case, I follow all of this and my raspberry pi cannot boot anymore. I will try to recover, but I think I should format my SD card and reinstall OS.
Also can you someone explain what exactly happen when do rpi-update? Want to understand what this step actualy doing and help me to debug any such situation and able to help others.
Does anyone tried splash boot screen with waveshare v4 LCD and Rpi2? I tried to follow some example from https://github.com/notro/fbtft/wiki/Bootsplash but no success.
in the video you say to change the existing line to “snd-bcm2836” for the rasppi2 which isn’t listed in the written part of the instructions (part 4).. this should be added (I believe it caused me to have to re-image the OS again, the Pi wouldn’t boot to anything just using the written steps)
fbtft_device name=waveshare32b gpios=dc:22,reset:27 speed=48000000 width=320 height=240 buswidth=8 init=-1,0xCB,0x39,0x2C,0x00,0x34,0x02,-1,0xCF,0x00,0XC1,0X30,-1,0xE8,0x85,0x00,0x78,-1,0xEA,0x00,0x00,-1,0xED,0x64,0x03,0X12,0X81,-1,0xF7,0x20,-1,0xC0,0x23,-1,0xC1,0x10,-1,0xC5,0x3e,0x28,-1,0xC7,0x86,-1,0×36,0x28,-1,0x3A,0x55,-1,0xB1,0x00,0x18,-1,0xB6,0x08,0x82,0x27,-1,0xF2,0x00,-1,0×26,0x01,-1,0xE0,0x0F,0x31,0x2B,0x0C,0x0E,0x08,0x4E,0xF1,0x37,0x07,0x10,0x03,0x0E,0x09,0x00,-1,0XE1,0x00,0x0E,0x14,0x03,0x11,0x07,0x31,0xC1,0x48,0x08,0x0F,0x0C,0x31,0x36,0x0F,-1,0×11,-2,120,-1,0×29,-1,0x2c,-3
ads7846_device model=7846 cs=1 gpio_pendown=17 speed=1000000 keep_vref_on=1 swap_xy=0 pressure_max=255 x_plate_ohms=60 x_min=200 x_max=3900 y_min=200 y_max=3900
After following this tut to the letter on a brand new image of Raspian, I find that the touch driver does not function. Anyone experience the same? Basically all I did was image a current copy of rasping, did a apt-get upgrade, and then did this tutorial. Then the touch driver does not work, meaning the pointer does not respond.
The reason I did this was because on a production version of my system I added the 3.2 screen and it worked great except for the x-axis. So I wanted to see if there was something in my system that was interfering or if this is another error. Now with a raw rasping the driver does not work at all. I wonder if the touch pin has changed since the kernel is using BCM pins instead of GPIO pin numbers?
I remember that I plugged in the screen wrongly one time, before configuring any of the GPIO pins. Can this have damaged the screen? Still it’s weird that the display part works well and the touch part not at all.
I do not think that has anything to do with it. Other than power pins, the rest are communication. If it still works then you are good. No, there is something else. I do suspect it us related to the BCM pin numbering. The real question is… Why isnt the eeveloper responding? I have since abandoned this TFT because of his lack of response.
Touch actually goes through one of the SPI pins I think. Either the driver is toast with the required kernel update or the driver is using the wrong pin. It is very likely the this works well with previous raspian versions, but not with the new B+ and with the new kernel.
I am trying to use the sainsmart 2.8″ lcd sold through microcenter, using the sainsmart32_spi … seems to have the same pinouts, should I be able to get this to work? I am stuck at the white out screen on the lcd, doesn’t seem to recognize the module either.
Unfortunately I’ve tried that ( a few times actually) but the file still doesn’t exist. Thanks very much for the assistance anyway. I must be doing something wrong. My Raspian came from a Noobs installation, I’m wondering if I should try installing the OS from somewhere else. My LCD screen didn’t come with a CD or any docs so I’m completely in the dark here.
I have just found a way to get this file on my system! Apparently its part of the fbturbo installation. I found it here http://www.raspberrypi.org/forums/viewtopic.php?f=63&t=45746&start=75 (under experimental enhanced x driver (rpifb).. Sorry if this is obvious to everyone but I am SUCH a noob at this!!
Ok, what am I doing wrong. I am using a fresh install of the newest raspbian, on a Pi 2. After doing the first two steps and rebooting I get the rainbow screen, then the boot up process, and then my screen just goes black with a flashing cursor in the top left. I am not able to enter any commands or anything…like the pi is halting just after boot up. Any thoughts/suggestions would be greatly appreciated. Thanks.
Well figured out that step 1 was causing my problems. I’m guessing it is shutting off my hdmi feed and trying to switch it over to the SPI, am I guessing right? If so, not sure how I’m suppose to complete the rest of the steps if my hdmi output gets turned off before the LCD is actually set up to work…that sounds kind of smartass-like, which is not my intention, just looking for some clarification on what is going on in that first step as I am fairly new to this stuff. Thanks.
Here is a link to an updated image from waveshare. Upon install it got the display up and running, but I still do not have touch functionality. I’ve been playing around with it, but it has been to no avail…hopefully someone better at this stuff from me can get the touch working.
I am having an issue with getting the GUI back. Every time I use startx my pi just sits there for about two minutes saying “No protocol specified”, and then it just gives up. I went through this tutorial about four times now and am not certain why it is doing this. I have the exact same LCD as is in the tutotial (WaveShare 3.2b). any help would be great.
Hi I am making a project for school,using the raspberry pi b+ and waveshare spotpare 3.2b. Everything works except the touch input doesn’t work. Any help would be appreciated very much.
I am trying to get this same screen to work with the image of RetroPie 2.6 and it won’t work. I have followed all the steps and nothing, please help I an kinda a noob.
I have a Tontec 7 inch touchscreen with a Raspberry Pi 2 B. After following the instructions the touch screen is functioning but not properly… The only are that works is the upper left (and only a small area of that). I tried changing the width and height in the modules but it didnt change anything. Also the xy seems to be reversed, I changed the swap_xy to 1 but again no change on the screen.
hi i have the same screen with a raspberry pi 2 im trying to run retro pie but it wont show ..however it shows all the commands …but i cant get it to show the gui …if u guys can make an image or something please i have been in this pain for two weeks already thank you
well ,,i follow all instructions and still kernel panic ,,,,may i request from mr. Circuitbasics@Gmail.Com that have a contact with manufacture and just ask for 2-3 links for image files for different versions of pi till all this f discussions are finished,,i cant understand 10 guys said we run it and 40 guys said kernel panic ,,as an expert i did 50 times imaging and follow all changes fro this forum and other forums and still cant run it ,,,so sth is wrong …..just asking the manufacture for simple f image ,,that`s it ,,,,simpleeeeeeeeeeeeeeeee
well i did it at last on pi 2,,after reading 100 pages and reimaging 50 times ,,i finally find the solution ,,,,there is a simple line forgotten to be attached in setup instruction,,,well i give u clue for prodigies ,,there is a step left between step 3 and 4,,,,and a simple change in step 5 according to your pi version ,,,that`s it ,,nothing else,,,,
Damn.. I thought I was kickin ass haha. I am using the SainSmart 3.2″.. the backlight is lit up and the pi was booting and everything just fine but on the final reboot it gets hung and says “nonblocking pool is initialized” ?? No idea what that means. But it’s def just frozen at this point.. on my main screen, and just the backlight is on the SainSmart.
This was an excellent tutorial. I have gotten an output to the screen, but no touchscreen usage . I have the Waveshare SpotPear 3.2 Inch LCD V4 screen, but using Raspberry PI 2 with wheezy. Any ideas?
Thanks a lot for this article. Very clear and easy . I am new in pi’s world and my 3.2″ screen is working fine. I rotate 90 º and works. I can use mouse and so on.Not problems.
I filed the steps to calibrate the screen but it did not work.I think because it did not find the TFT pin, because I think the touch problem is the assigned pin to control it changed.
I actually used the driver from here http://www.waveshare.com/wiki/3.2inch_RPi_LCD_(B) , from a new wheezy build, did nothing except enable SPI in config, install driver, and change mmcblk0p2 to mmcblk0p6 in cmdline.txt and it all worked, no drama.
Hi I managed to set up my touch screen ok but I now have the issue that everything desktop fits fine but the windows I open are all huge and I can’t remember how to change the size and cannot see the option in desktop preferences any idea what I have to do and is it at all possible to install kodi to run through the raspbian is as this would be a lot my useful than having to keep swapping os on every boot up many thanks in advanced hope you can help me
Advice to all who have the drivers from the (touch)screen manufacturer and cannot obtain those otherwise: you can skip everything and go to the update steps skipping the kernel and kernel modules update (as mentioned by the author) so that you don’t override the preinstalled drivers. I have a Waveshare 3.5″ RPi v3 (not the 3.2″ supported by notro’s drivers) and actually managed without any problems to get notro’s drivers make it work. However I am still reading about the xinput and xinput-calibrator to figure out how to include it as a kernel module so that I can compile my own kernel and add it there.
i have raspberry pi 2 with 3.2 inch rpi lcd v4 waveshare spotpear.i have done as per your instructions.the display is working but touch screen not working.error shows waveshare32b module not found as well as touch screen module not found messages.
Hey! i did this and rotated it… It loads console perfectly, but when it goes into startx, i get a black background with only the wastebin/trashcan… how do i get the taskbar(or whatever that bar is called)? and the raspberry background?
Unfortunately I have lost the Touch facility on my Waveshare 3.5″ LCD Touchscreen? Can you offer any reasons as to why? I copied the Raspbian image to my Raspberry Pi from the Waveshare website first of all. The Touchscreen displays but is not reactive with any touch
I have purchased a raspberry pi B+ total kit and waveshare 3.2 TFT display online. In the package i have been given a pre-loaded NOOBS installed SD card. I did not even start anything yet. What should i do what r the things needed and how to connect the display i really want to know. I need help as i don’t know anything. Does the above solution help or will u suggest something………………..
Hi great article thanks. I am trying to get a waveshare 7 inch LCD with capacitive touch running it works with the suppled image but if you upgrade it breaks the capacitive touch. I have a sense-hat and GPS which require the latest kernel and RASPIAN image and the install program for the screen replaces the /lib/modules directory and the kernel with older ones. I need to be able to install the touch drivers into a new clean OS can anyone give me some pointers? Thanks
For anyone who have those unbranded cheap TFT touch modules and cannot get it to work with this guide, I had success on my 3.5″ with the following steps: http://pastebin.com/89qmFbPB
I have the WaveShare 3.5 (A) and cannot get it to work with the Kali Linux with TFT for Raspberry Pi. Have anybody gotten the A to work? (Not the B, theres instructions for the B already and dont work with A)
So I have the original image that came with my screen and it works fine with the LCD but my problem is that I want to use my LCD screen with other distros (at this time I am trying to use it with Kali Linux with TFT support by default https://www.offensive-security.com/kali-linux-vmware-arm-image-download/) What do I have to do to transfer the needed files from the original image that WORKS with the screen and use them with another image?
I originally bought this bundle http://www.amazon.com/gp/product/B013E0IJUK?psc=1&redirect=true&ref_=oh_aui_detailpage_o02_s00 with an RPi LCD V3 and no extra documentation on the specifics on the chipset. I tried with the bftft drivers but since I have no idea what to call this screen I just suppose it isn’t supported.
I’m not sure if the Jessie kernel is compatible – can anyone please confirm or not ?? Adafruit states that their setup for TFT screens are Wheezy only ; is this a different setup ??
Oct 16 17:38:48 spare kernel: [ 12.544859] graphics fb1: fb_ili9340 frame buffer, 320×240, 150 KiB video memory, 4 KiB DMA buffer memory, fps=50, spi0.0 at 48 MHz
After I rebooted in step 3, my raspberry pi won’t boot up again. It goes thru the process of booting and the text scrolls down and every thing says “ok”. Then instead of going to GUI it just guys to a black screen on my monitor with a blinking underscore in the top left corner. Anyway to get around this? or should I start over with a fresh disk image??
That is what happens to mine also.. So long story short —> THIS SITE NEEDS TO BE UPDATED OR SHUT DOWN <— There are a hundred people on here that have all lost everything on the pi drive, and spent all day (or more) working thru this tutorial 4 or 5 (dozen) times and nothing. Just have to reinstall the os over again and again.
Please check out my answer, it may help you if it works. I’m not in that case but I’m assuming that the desktop environment simply doesn’t automatically start running anymore… This can be changed in the raspi-setup
Try typing ‘startx’ if you problem isn’t solved (assuming you’re using Raspbian and LXDE), it should start the desktop environment you’re used to see. What you’re seeing is the Command Line Input interface (CLI), the most basic way to interact with a computer. Hope I helped you a little
I have tried to set up waveshare 32b on my Pi B using the latest Raspian download. I learned a lot in the process using Windows Putty, Nano etc. I have repeated the setup process several times from scratch and included the corrections for possible overwriting. My Waveshare SpotPear 3.2 inch RPi LCD V4 just shows a white screen. Any suggestions?
There was no disk included. I asked for drivers and was given a download link to the image file. After down loading this I tried it and still got just a white screen. The HDMI monitor locks partway though the boot. I can still log in to pi using putty from my PC.
Hi, I am using raspberry pi 2 with raspbian jessie installed. I the waveshare spotpear 3.2 v4. The above instructions are not working. and after completing the steps there was no display from hdmi or lcd. One things to notify is.: the etc/modules files only had i2c-dev and not snd-bcm2835.
I am trying to get this to work with Retro Pie 3.3.1 and the Waveshare3.2″ v4 but I only get the terminal on the lcd and emulation station starts on hdmi. to get it working with retro pie i just replaced startx with emulationstation. how do i get this to work?
Sir, Your post has very useful to me. i am using Tinylcd. but i cant get display. i am performing all the steps in your post. i cant get touch controller information from the product website and also i am using RASPberryPi B+ model. could u please give me best solution to my work. Than you.
what if OS is not Raspbian, any other distro like Yocto project, etc.? Could you please specify process without “rpi-update” that makes driver installation process more generic, not dedicated to Raspbian.
I completed all steps except for the last one (I want it to boot to console). However, when I reboot, it never completes the boot process. I start in recovery mode and check the cmdline.txt file and it is exactly how it appears on this page. I copied the kernel info as well, but I am not sure if it correct as I cannot get to it to check. Any suggestions? I might just reinstall the OS and start over…
i installed android OS in raspberry pi 2. can i use same LCD touch screen set up for android installed raspberry pi 2 which you are used for raspbian.
I have KeDei 3.5 inch TFT version 4.0 by Osoyoo. (released after January 1 2016) how do i get it working with vanilla Raspbian Jessie (do not want to install the image sent by the seller)
I’m trying to use an original Raspberry Pi model B with a cheap 3.5 inch 320×480 LCD which allegedly was manufactured to work with the Pi and has the correct fittings to fit over the GPIO pins. The operating system is the latest, downloaded yesterday and installed with NOOBS. I can’t get past step 2 of this guidance. When I reboot after using raspi-config I can see text generated as the Pi boots, then the HDMI fed screen goes blank apart from a flashing cursor in the top left hand corner. The LCD just remains white with nothing else on it. I have missed out step 1 and rebooted after step 2 and the screen functions as I would expect. Does anyone have any ideas please?
Thanks for the great tutorial. I do have a question. Once you install the drivers for the lcd are you effectively disabiling the hdmi port or is it still available to use and will the pi function with both displays. I have a pi 3
Thanks for the guide, have been doing this with my son but once we leave raspi config and reboot all we get is a black screen with a flashing white horizontal line (dash). Can you help? I have looked in the comments at the end of the article but no one else appears to have this issue.
I have a raspberry pi 2 with waveshare screenn 3.5 inches. Isn’t it the same instructions. But it isnt working, all i get is a white screen, and the red led on the pi is on. The green LED isnot working.
i am sorry, but i am a naive , and i have this question, can we upload any file into it for the display? like have a software in which if i tap it gives back a feedback to the code?
My Rpi3 gets “ERROR: could not insert ‘spi_bcm2708’: No such device” after I enable SPI in the raspi-config.My Rpi3 is freezing on the rainbow screen after I reboot at the end of step 3. I’ve tried adding boot_delay=1 to config.txt.
if any interested, now i have a raspian image working on raspberry 3 with Waveshare 3.5, also with sdr support for dongles and FreqShow working perfectly on touch
ads7846_device model=7846 cs=1 gpio_pendown=17 speed=1000000 keep_vref_on=1 swap_xy=0 pressure_max=255 x_plate_ohms=60 x_min=200 x_max=3900 y_min=200 y_max=3900
No matter what I do, I can’t get this to work. It works perfectly fine on my Pi2, but when I follow and use the guide on my Zero, I always end up with the activity LED blinking 8 times (corrupt SD/filesystem error).
I’d like to find the driver software for my 7″ LCD with touch (official Pi unit) so that I can use it in buildroot. I wanted to make sure this kernel is the one before I started digging further.
I started through your tutorial and completed step 3 and rebooted. After the Raspberry screen and some of the boot text on my HDMI monitor, I now have a black HDMI monitor and a white screen on my LCD. Does this mean that the bootloader was overwritten or something else is wrong? How am I supposed to enter in the proposed fixes to the bootloader, when I can’t get the RPi to boot? Do I have to interrupt the boot process at some point to reinstall the bootloader or what?
Its a script. Download and instead of running sudo ./LCD4-show run cat ./LCD4-show to simply display what it does without actually running it. The commands are fairly simple modifying a few files. I actually saved the LCD-show.tar.gz on my own server for faster future download but also for backup as it saved me tons of hours (if that’s a measuring unit for time :) )
I’m using RasPi Zero with latest (as of last week) Jessie Raspbian. Did you run the script? If it didn’t work and you have modified other files in the process of making it work, I would recommend installing a fresh installed image on a new card and running the script. Can you suspect the screen being faulty or got “burned” in the process?
i bought a 3.5 inch tft lcd screen from banggood. and i have installed raspian jessie, the latest version, in my sd card. but when i power on my Pi, only a white backlit screen comes. there are no images or graphics whatsoever.
The owner of this article should including a WARNING in the header that if someone follows the steps, they will install a deprecated driver (which is only visible as tiny text on its gethub page here https://github.com/notro/rpi-firmware). This driver after install will break Raspberry Pi and the SD card will need to be reimaged, for some less experienced users, this could also mean lost work if they failed to backup their code or resources. On windows, it requires installing Linux reader software and it takes a long time to fix this f**kup which could easily have been avoided if the author had and sense of responsibility.
PLEASE DELETE this article. You have great power with this article showing up for so many people in their search results, and you display ZERO responsibility. This is terrible!
I have done every thing right but the only major problem is that the screen is still white and my raspberrypi freezes after a line of code when booting up and I cant get in with SSH
Will your system work with my SainSmart 2.8″ 2.8 inch TFT LCD 240×320 Arduino DUE MEGA2560 R3 Raspberry Pi ? I would like to know before not be able to back out. Thanks, Lee
I know I will end up regretting this, but how do I change fb0 to fb1? I’m on the screen that has all the info, but no way to change it. Am I looking for a file? I have had my screen for MONTHS and I can’t do anything with my pi or the screen. I am >< close to smashing both. COMPLETE WASTE OF MONEY so far!!
hello. I really appreciate your blog post. I have a raspberry pi 3 B. I have been unable to get my waveshare 3.2 screen to work.I am at a complete loss for what to do. I do step 2 I change fb0 to fb1 and then follow your directions I don’t get the prompt to reboot; however, I do it manually with sudo reboot. that works fine then I complete step three and that works just fine; however once I reboot from getting those drivers and when I attempt to reboot it is unsuccessful and then my whole raspberry pi will not restart. then when I power it back on it will just shut back off. I then have to redo noobs onto a new SD card I would GREATLY appreciate anyones help
I ‘m actually using a LCD Waveshare3.2” , I followed your steps to setup the lcd touchscreen for my rpi and it work but I have a problem with the resolution because if I open a repertory I do not see the whole contents on the screen .
hi! thank you for this post…. I was wondering if all the raspberry pi’s gpio are being held by this screen or do we have any of those availables for use??
it worked. but the resolution is for bigger screens. i got the menubar small, but the rest appears too big , and out of screen. the wastebasket icon is 1/6 of my 3.2″ screen. wich HAS the resolution capability too display the whole desktop. But i’m a PI newby and dunno how to adjust the screen resolution on this display. anybody?
I did a 5inch LCD for my raspberry pi. I dont use the touchscreen so i didnt have to install any drivers. It works out of the box but doesnt cover the whole screen unless you open the terminal and do:
HI I have my RPI running Pi Presents on a view sonic TD2230 Touchscreen. It all works fine, touching the click areas can navigate you thru my presentation, The problem arises when you use multitouch gestures like you would on a iPhone. Pinch or expand etc… and then all touch ability goes away. I can still control the presentation via a mouse, but I don’t get touch control back until I either relaunch Pi Presents, or if I unplug and plug the usb cable going to the touchscreen.
Much of this is outdated on Raspbian Stretch where device tree overlays (see https://www.raspberrypi.org/documentation/configuration/device-tree.md) provide for most of the configuration automatically.
After I did the step that “INSTALL THE FBTFT DRIVERS” and then reboot, my raspberry pi couldn’t boot successfully and the green light is always on, could you help me solve this problem? Thank you.
LCD, DPI, SPI, HDMI, NTSC/PAL, TFT, OLED, ePaper, etc. this is part of the jargon you will need some appreciation of in order to be able to choose the right display for your project.The first part covered HDMI, DSI and Composite Video. This second part will focus on displays that utilise GPIO and USB as a mean to connect the screen to you Raspberry Pi. Hopefully as we look at the various options some of the jargon will be clearer. We will also venture into some additional considerations and alternative approaches to complete the “picture” (pun intended).
GPIO is the acronym for General Purpose Input Output and the main bonus that comes with it is that you can reconfigure each pin as either an Input and Output but also deem them to provide a different type of interface for the various types of displays and boards in general.
You can find displays that use DPI, SPI, I2C and even UART or an ad-hoc interface. Some Interfaces like DPI are particularly fast but will require lots of GPIO to interface with the screen, others like SPI and I2C need very few pins but won’t be as fast as DPI. Ultimately choosing between them will be down to your projects requirements. Let’s look at examples for each.
As a reference for the pins we can use the invaluable pinout.xyz website with alink to the DPI interface. As you can see the interface can use up to 28 pins and therefore should only if can allocate the GPIO pretty much just for the display. A lotmore informationcan be found at the Raspberry Pi website.
Pimoroni’s HyperPixelis a 4.0″ high speed display with a resolution of 800×480 and 18 bit per pixel. It also features aversion with the a capacitive touchand has a breakout port for the I2C interface. There is also aGithub repositorywhere you can find its drivers.
TheGert VGA 666 brainchild of Gert Van Looproducedby Pi Supplyand distributed by many is a very nice and cheap way of reusing an old VGA monitor. It doesn’t use all of the DPI pins because, as it says on the tin, it only use the 6 bits per colour mode or RGB666 and unlike the HyperPixel leave some pins free to be reused. As it becomes more and more rare to find VGA monitors in lofts I suppose this board will become eventually obsolete but it is still worth considering especially when working on legacy projects.
TheAdafruit DPI Kippahoffers in a similar way to the HyperPixel an 18 bit per pixel with 800×480 resolution but this time the screen is an LVDS display with choice between 5″ and 7″. This board also comes with or without the capacitive touch. Additional resources can be found ontheir Github repository. An earlier breakout board that Adafruit offered led to aninteresting detailed project documented on this blogworth having a look if you want to know more about venturing the DPI way.
As the author of the blog also stresses out this approach is not straightforward and simply might not work in many cases. Fun to explore I’d imagine but wouldn’t think it would take on any time soon also because, as I said int my previous article, these LVDS displays are not any laptop display, one shouldn’t get the wrong idea that all of a sudden your long gone laptop getting dust in the loft can with these have a second life; it probably won’t. That’s why Adafruit offers asmall selection of compatible displays.
SPI and I2C are amongst the favourite by vendors as they offer pretty much what’s needed for most use cases, utilise few pins and can be used by other hardware platforms quite easily. So no surprise to see the likes of Waveshare having quite a selection covering pretty much all the various interfaces.
WithSPIthe amount of pins required is much less, it only requires 4-5 pins and that’s why vendors are often adding additional hardware to their displays. SPI allows to control more than one device on its bus but it’s generally not used for more than one.
As for SPI evenI2Crequires few pins, in fact it only needs 2 which makes this interface very light in terms of GPIO usage. One additional advantage is that it’s very easy to use other peripherals in parallel to the same I2C bus making this option quite versatile.
One of the main downsides of these technologies is that you will end up with fairly small displays which provide good graphic support but very low resolutions and with modern OSs unless you come up with your own custom made GUI it will make using the display very difficult indeed.
A good bonus in getting an SPI or I2C display is that in general they come with additional hardware like buttons, LEDs and others due to the availability of many spare pins.
This is anSPI display I found on Conrad, it is a 4.57 cm (1.8″) TFT display and can provide 262, 000 colours with a resolution of 128×160 pixels. This is not a HAT and can easily be used for other platforms.
In the middle theRPi Display from Watterottavailable fromtheir own shopis a 2.8″ TFT with touchscreen with a resolution of 240×320, dimmable backlight, 3 buttons and full HAT compliance.
Thelast one is from Adafruitand similarly to the Watterott comes with additional buttons, 4 in this case. The TFT screen resolution is 320×240, features a resistive touchscreen and the backlight is dimmable via PWM.Adafruit offers a number of these screenssome with higher resolution and screen size.
The first from the left is a monochromaticAdafruit OLED0.96″ display with a resolution of 128×64. It comes with a breakout connector and can therefore be used with Arduino and other platforms. Even in this caseAdafruit has more to offerin terms of this type of screens with colour ones and bonnets designs (a type of pHAT essentially. That goes to show that in the absence of a standard chaos reigns, thanks God we now have theuHAT). This particular display can also be driven via SPI.
The middlesdisplay is from Pimoroni, it is also an OLED, it measures 1.12″, has a resolution of 128×128 and offers a breakout connector specifically designed to easily interface to a Raspberry Pi. As they also recommend there is anice libraryyou can use with your Pi.
Thelast one is again from Adafruitand it is one of my favourites. It shows how tiny and useful these OLED screen can be. The form factor is a SHIM which is a small pHAT.In Yorkshire accent” “Shove Hardware In’t Middle”— pimoroni (@pimoroni)February 20, 2019
As pHAT the SHIM is not a standard either and in fact it’s only used by Pimoroni but it’s a nice way to identify this size of PCBs and I vote for IEEE to adopt the term officially! The display is monochrome and has a resolution of 128×23 and it’s just a great addition to your headless Pi. Adafruit offer many good quality tutorials and there isone also for this display.
LCD displays like theHD44780 16×2are very common and widely used, they are cheap, well known and there are plenty of resources available. When all you need is just a bit of feedback and text is sufficient then these are the go-to technology also due to their low power requirements. There is a reallynice article from the RaspberryPi Spywhich shows how to use the I2C backpack that allows to indeed use the HD44780 via I2C thereby saving many pins and allow for a more modular approach for your project. The backpack also controls the dimmable backlight.
There are several versions of these displays with coloured backlight or more lines of text, evenOLEDnaturally but in general the principle and purpose are the same.
ePaper displays get featured here as the ones I found all use SPI. ePapers are truly nice when you are tight with power i.e. running off batteries and when you don’t need the picture refreshed often, you’ll still need to refresh it periodically but you will not risk getting ghosting effects due to always displaying the same image for days or months. You will in fact be able to display something then power-off your Raspberry Pi for a week and still keep the image on the display. It’s nothing new as the Amazon Kindle got us used to but it’s great to get this technology in our project. The screens come in very many different sizes to fit anybody’s need. A word of caution though, be careful with these screens as they are very, very delicate to the touch and brake easily.
Repaper, Pi Supply, Pimoroni, Waveshare, Adafruit are the biggest players getting a slice of the ePaper market. They all offer different screen sizes and features. This type of display offers such a variety that it would require a series of articles in itself. The ePaper screens are coming from one or two manufactures but each vendor tries to create a different product by leveraging on the features that the controller board offers as well as the software resources that come with it.
Waveshare has probably the largest selection of screens ranging from 1.54″ to 9.7″, monochromatic and colour, and resolutions between 200×200 to 1200×825, they even havea new generation of flexiblescreens. They all appear to use the sameSPI driver boardwhich can either be connected to the Raspberry Pi’s GPIO or to other hardware platforms via a breakout connector. TheirWiki pagesoffer additional information and resources like demos and videos.
PaPiRus from Pi Supply was the first ePaper for the Raspberry Pi to get on the market after a very successfulkickstarter campaignwhich produced the HAT version of PaPiRus featuring 4 buttons, a breakout connector but most importantly an RTC circuit notoriously missing on the Raspberry Pi. ThePaPiRus HATsupports 1.44″, 1.9″, 2.0″, 2.6″ and 2.7″ ePaper screens whereas thePaPiRus Zerosupports 1.44″ and 2.0″. Pi Supply, now called Nebra Ltd, joined forces withRePapera couple of year ago and I’m sure we will soon see more from them in terms of offer. There is a buzzing community of people working onPaPiRus Github repositorywhich over the years added a lot of features to these boards.
A couple of years ago Pimoroni came out with their own ePaper boards. TheInky pHATfollowed by theInky wHATcalled this way as it exceeds the dimension of a HAT and lacks some of the features the HATs requires. (they have a tendency to coin new standards anyway :). The Inky pHAT is a 212×104 pixel e-paper display whereas the Inky wHAT has a resolution on 400×300. They are available in red/black/white, yellow/black/white or black/white for the pHAT only. More information on resources on theirGithub repository.
Adafruit has also got some ePaper displays. TheAdafruit SHARP Memory LCDdoesn’t seem to be supported for the Raspberry Pi nor I could find any resources that would indicate that but it is an interesting display for which at some point a library could be made available. It has an SPI interface, has a resolution of 168×144, it is ultra low power but most importantly has a fast-refresh rate comparable to an LCD. Although this is technically not an e-Ink display it is still worth considering for a specific set of use cases where it is important to be able to read the display in broad daylight and also refresh the images particularly fast.
Thelast display from Adafruitis in fact three SPI, Tri-Color (Red, Black, White) eInk / ePaper Displays with SRAM with screen sizes of 1.54″, 2.13″ and 2.7″ and resolutions of 152×152, 212×104 and 264×176. They come with a small SRAM chip in order to be able to store the buffer whilst a microcontroller fills it up essentially. This is particularly useful with small Arduino like boards. Once again there is no support for the Raspberry Pi but worth looking at if anything to see how much investment there is on the market for this type of technology.
This is somewhat a limited case and doesn’t really provide a “display” as you would expect it to be. I thought though that it would be worth covering this product as it will be useful under some use cases. UART allows for example for the display to be quite far from the Raspberry Pi distance wise and it is such a ubiquitous standard that it will find support in many if not all programming languages and it will certainly be something you can use on other hardware platforms too.
I came across theNextion displaysduring a Meetup in London and within half an hour someone had already created a nice interface to presumably order more beer by selecting the right amount with a slider. The bottom line was though that the time it took to have something “useful” of these displays was really short. Productivity come in mind!
These aren’t displays in a traditional sense, you have to think of them as displays with their own graphics which you can sort of drive and customise to your needs via UART.NEXTION is a Human Machine Interface (HMI) solution combining a TFT touch display with an onboard processor and memory, developing by a free and downloadable NEXTION Editor software. Using the NEXTION Editor software, you can quickly develop the HMI GUI by drag-and-drop components (graphics, text, button, slider etc.) and ASCII text based instructions for coding how components interact at display side. With just 2 wires (RX, TX), NEXTION display quickly connects to MCU via 5V TTL Serial to provide event notifications that MCU can act on, and utilizes simple ASCII text based instructions so the MCU can easily provide progress and status updates back to your HMI user.
The TFT screens with integrated 4-wire resistive Touch Panel feature RGB 65K true to life colours, 4M flash memory and an on board micro-SD card for firmware upgrade. A lot more information can be found viatheir Wiki.
Thisarticle from Random Nerd Tutorialsexplains a bit more what to do and how using an Arduino but it shouldn’t be too far off using a Raspberry Pi instead.
In searching material for these articles I came across some exotic approaches and some other less uncommon ones like driving a HD44780 directly from the GPIO. There are several articles describing the connections and the programming here a small selection:
This way of using the HD44780 display won’t be as straight forward as using it with the I2C interface showed above and won’t use as few pins either but it is nevertheless an easy option to add a display in a headless configuration or in any case where graphics is not required and characters are possibly used to navigate through a menu and show some limited output for your program.
USB can offer good performances and similarly to what HDMI or Video Composite could offer a fairly long leash for the the screen to be located away from the Raspberry Pi. There aren’t many displays that offer support for the Raspberry Pi although there could be more to come.
This2.8″ USB TFT Touch DisplayfromRoboPeakhas a resolution of 320×240 with 16bpp and supports USB2.0 Full-Speed. It can work with several other hardware platforms boards and has a niceWiki pageand aGithub repositoryalthough neither have been recently updated. It feels as though this product might have been abandoned.
Some of the technologies deal with how the display is connected to the Raspberry Pi, some are to do with how the images are actually displayed. In both cases you will have differences in performances and that will be one of the parameters to factor in your requirements i.e. Do you display static pictures or videos? Do you need colours? How many? Is power consumption an important factor?
Ultimately choosing a display is finding something that satisfies your requirements and you will have to look at the display’s specifications against your project’s requirements. There are though other factors you should be looking at:
These things are IMO more important than the cost of the display itself and you should check the quality of the resources available no matter how pretty was the Ad for the product you intend to buy or how much cheaper it was compared to a better resourced alternative.
After you’ve chosen the right display for your project you might also need a case for your Raspberry Pi, your display and whatever else you need for your idea to work in a nice enclosure.
There are several vendors which offer general purpose cases some of which I showed in the previous article. Of particular note isModMyPi which has a huge selection of casesmany of which designed by them.
Some displays don’t come with aFrame Bufferoption which allows your OS to output to the screen for example during boot time. Seeing what happens during boot or more generally be able to use the display as a standard output for you OS is very useful. Many projects will then integrate this functionality in their drivers and request the OS maintainers to natively include it for ease of installation.
One example of these is provided byNotro whose Github repositoryoffers drivers for small TFT displays. These things aren’t at all straight forward but it is still interesting to always dig a bit deeper and get an appreciation of how many skilled people are sharing their knowledge for free often improving commercial products beyond their original purpose.
SPI and I2C are interfaces on which vendors are rather productive and the choice here is much wider than with DPI. The answer I believe is that hopefully DSI but certainly already the HDMI interfaces render using the DPI less of a need and more of a luxury, SPI and I2C are enough when it comes to provide some feedback to the end user and in some cases even pretty good graphical contents.
AtThe Things Network in Amsterdam Pi Supply now Nebra Ltdhas officially presented a new Pocket Projector which comes either standalone or as HAT for the Raspberry Pi.
I guess pico projectors as maybe OLED, flexible and foldable, bigger ePaper displays, screen cast or mirroring are what we could see in the near future for the Raspberry Pi. Some of these are already there if using the right OS but whatever it’s going to be hopefully now you have a better understanding of how to choose the best display for your Raspberry Pi.
Rather than plug your Raspberry Pi into a TV, or connect via SSH (or remote desktop connections via VNC or RDP), you might have opted to purchase a Raspberry Pi touchscreen display.
Straightforward to set up, the touchscreen display has so many possibilities. But if you"ve left yours gathering dust in a drawer, there"s no way you"re going to experience the full benefits of such a useful piece of kit.
The alternative is to get it out of the drawer, hook your touchscreen display to your Raspberry Pi, and reformat the microSD card. It"s time to work on a new project -- one of these ideas should pique your interest.
Let"s start with perhaps the most obvious option. The official Raspberry Pi touchscreen display is seven inches diagonal, making it an ideal size for a photo frame. For the best results, you"ll need a wireless connection (Ethernet cables look unsightly on a mantelpiece) as well as a Raspberry Pi-compatible battery pack.
Several options are available to create a Raspberry Pi photo frame, mostly using Python code. You might opt to script your own, pulling images from a pre-populated directory. Alternatively, take a look at our guide to making your own photo frame with beautiful images and inspiring quotes. It pulls content from two Reddit channels -- images from /r/EarthPorn and quotes from /r/ShowerThoughts -- and mixes them together.
Rather than wait for the 24th century, why not bring the slick user interface found in Star Trek: The Next Generation to your Raspberry Pi today? While you won"t be able to drive a dilithium crystal powered warp drive with it, you can certainly control your smart home.
In the example above, Belkin WeMo switches and a Nest thermostat are manipulated via the Raspberry Pi, touchscreen display, and the InControlHA system with Wemo and Nest plugins. ST:TNG magic comes from an implementation of the Library Computer Access and Retrieval System (LCARS) seen in 1980s/1990s Star Trek. Coder Toby Kurien has developed an LCARS user interface for the Pi that has uses beyond home automation.
Building a carputer has long been the holy grail of technology DIYers, and the Raspberry Pi makes it far more achievable than ever before. But for the carputer to really take shape, it needs a display -- and what better than a touchscreen interface?
Setting up a Raspberry Pi carputer also requires a user interface, suitable power supply, as well as working connections to any additional hardware you employ. (This might include a mobile dongle and GPS for satnav, for instance.)
Now here is a unique use for the Pi and its touchscreen display. A compact, bench-based tool for controlling hardware on your bench (or kitchen or desk), this is a build with several purposes. It"s designed to help you get your home automation projects off the ground, but also includes support for a webcam to help