tft display library arduino quotation
Yes, Chinese Vendors tend to package hacked versions of old libraries. e.g. this seems to be based on UTFT v2.79 and UTouch has now been replaced by URTouch.
Readers will be happy to help with any adjustments required for up to date libraries. But only when you post accurate information. i.e. which ZIP example by name, which ZIP library by name.
1st Arduino project, beyond the very basic intros, and no coding experience before this endeavor, so I"m sure I"m just not searching the right things/way to figure this out.
The project - replacing gauges in my truck with Arduino+TFT display. As a starter, I"m working strictly on single fuel gauge functionality, and eventually including dual fuel gauges (2 separate fuel tanks in truck), voltage gauge, coolant temp gauge, and GPS driven speedometer. Yeah...I"m already realizing I"m in for a bit of a steep learning curve here, lol.
The setup - Genuine Arduino Mega 2560, Seeed Studio 2.8" touchscreen sheild V1.0, aftermarket universal style fuel sender. Sender is connected to Analog pin 9 through a voltage divider circuit running roughly 1.5VDC-4.95VDC, and I get appropriate numbers from the serial monitor when cycling the sender. I"m not currently utilizing the touch features of the screen, though I may in the future. RIght now it"s strictly a display device. I did find out how to modify the TFT.h file to get the display to function on the Mega board, and am writing static text to it currently.
The problem - how the heck do I get the value read from the Analog pin to display on the screen? I"ve spent the last couple of days searching the forums here and on Adafruit, as well as various other sites found on Google. I"ve spent hours looking at other"s code to try and figure this out, but not being a coder before this, I"m finding it difficult to determine which parts of the code are relevant to what I"m attempting to do, and I think I may be confusing myself/WAY overthinking it, lol. It seems like it should be a simple thing...
That part I"m good with, but I can"t figure out how to get a value read from the analog pins to display as numbers on the screen. I"m not looking to be spoon fed the answers, but if I could maybe get some guidance on what functions I"m missing, or what I should be searching for to figure this out?
I have a sketch that I worked out almost a year ago that worked on my Uno-and still does. I had bought a cheap 2.8" TFT display that I eventually got going with the Adafruit_GFX and Adafruit_TFTLCD libraries, before pin_magic.h and registers.h were part of the deal...
Now, I"ve finished my first "arduino compatable" board, using a Atmega2561 running Megacore. The pin assignments are quite different from the Uno, and I need to redefine them for the LCD-as the LCD is the only thing that will be plugged into the shield pinout on the board, eveything else is just brought out as seperate headers.
Now, in my old sketch, the control lines are defined-but the data lines aren"t defined, and I think in the TFTLCD library, they are not done using digitalWrite() methods but instead using direct AVR port calls. In effect...the libraries are hardwired for this LCD to be used on an Uno or Uno-compatable....which mine is not.
You have a regular Blue 2.8 inch "Mcufriend" display. I am guessing from your code that it has a HX8347D controller. It is wise to use tft.readID() to detect the correct controller.
Hi guys, over the past few tutorials, we have been discussing TFT displays, how to connect and use them in Arduino projects, especially the 1.8″ Colored TFT display. In a similar way, we will look at how to use the 1.44″ TFT Display (ILI9163C) with the Arduino.
The ILI9163C based 1.44″ colored TFT Display, is a SPI protocol based display with a resolution of 128 x 128 pixels. It’s capable of displaying up to 262,000 different colors. The module can be said to be a sibling to the 1.8″ TFT display, except for the fact that it is much faster and has a better, overall cost to performance ratio when compared with the 1.8″ TFT display. Some of the features of the display are listed below;
TheTFT Display, as earlier stated, communicates with the microcontroller over SPI, thus to use it, we need to connect it to the SPI pins of the Arduino as shown in the schematics below.
Please note that the version of the display used for this tutorial is not available on fritzing which is the software used for the schematics, so follow the pin connection list below to further understand how each pin of the TFT display should be connected to the Arduino.
When connecting the display, ensure that has a voltage regulator (shown in the image below) before connecting it directly to the 5v logic level of the Arduino. This is because the display could be destroyed if the version of the display you have does not have the regulator.
In order to allow the Arduino to work with the display, we need two Arduino libraries; the sumotoy TFT ILI9163C Arduino library which can be downloaded from this link and the popular Adafruit GFX Arduino library which we have used extensively in several tutorials. Download these libraries and install them in the Arduino IDE.
For today’s tutorial, we will be using the bigtest example which is one of the example codes that comes with the sumotoy ILI9163C Arduino library to show how to use the TFT display.
The example can be opened by going to File–>Examples–>TFT_ILI9163c–>bigtest as shown in the image below. It should be noted that this will only be available after the sumotoy library has been installed.
Next, we define some of the colors that will be used along with the corresponding hex values. If you’ve gone through any of our previous tutorials where we used the Adafruit GFX library, you would have noticed that this code contains a lot from the GFX library and it should be easier for you to follow.
Next, an object of the ILI9163c library named “display” was created with CS and DC parameter as inputs but due to the kind of display being used, we need to include the pin of the Arduino to which the A0 pin of the TFT display is connected which is D8.
With this done, we move to the void setup() function. Under this function, we issue the commands that initialize the display then create a time variable updated by millis, after which we issue a command to clear the screen and display some random text on it.
Some of the functions which perform actions ranging from displaying fastlines, drawing rectangles etc are then called with a delay after each function so the text or graphics stays long enough on the screen to be visible.
Up next is the void loop function. The void loop function also calls some of the same functions called under the void setup() function to display circles, rectangles etc including the testline function which is essentially used to test the screen.
With the libraries installed, open an instance of the Arduino IDE, open the examples as described initially, don’t forget to make the A0 pin (D8) correction to the code then upload to the Arduino board. You should see different kind of text and graphics being displayed on the screen. I captured the screen in action and its shown in the image below.
That’s it for this tutorial guys, what interesting thing are you going to build with this display? Let’s get the conversation started. Feel free to reach me via the comment section if you have any questions about the tutorial.
Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big 4"(3.97" diagonal) bright (6 white-LED backlight) and colorful (18-bit 262,000 different shades)! 480x800 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel with controller XPT2046 and capacitive touch panel with FT6336.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!
If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
This example demonstrates how to draw text on the Arduino GLCD screen when connected to an Arduino. The Arduino reads the value of an analog sensor attached to pin A0, and writes the value to the LCD screen, updating every quarter second.
Define the pins you"re going to use for controlling the screen, and create an instance of the TFT library named TFTscreen. You"ll reference that object whenever you"re working with the screen.
In case anyone is interested, I want to use some of these ILI9341/0 displays on both Teensy based stuff as well as Arduino (actually an Atmega644 based board) based system, and I still want the ability to read pixels. In particular where I am wanting this is for Debug text output where I can scroll the text...
So for the fun of it, I added the functions (readPixel, readRect, writeRect) which I added to the ILI9341_t3 library to the Adafruit_ILI9341 library. I think I now have them working, however they are a lot slower than they are in the ILI9341_t3 library, especially on an 16mhz 8 bit Atmega processor.
I adapted the read pixel test program mentioned earlier in this thread (could not use printf on stream, change library name...) and so far it appears to work on a Teensy 3.1 with PJRC ILI9341 display as well as on an Arbotix-M board (Atmega 644p) using Adafruit 2.2" TFT display (ILI9340). So should work fine on Atmega328p based systems as well. I have not tested it on an Arduino Due yet. I have one buried around here somewhere
I should do another pass through the code to cleanup some stuff, I added some commands like: writecommand_cont, writedata_cont that leave the CS line selected, which is needed in these cases. Like the _t3 library I also had to spilit up setAddrWindow and setAddr. Currently I just have the setAddrWindow calling off to setAddr, where in the T3, I believe that setAddr in inline. Always an interesting question of trade off for speed versus size... Also wondering about taking pass through such that most of the commands have the CS pin selected through the command, as compared to current version where in most cases CS line is selected/deselected on each byte (or two bytes in cases of things like X or Y position).
What is recursion? For a person writing Arduino turtle graphics functions, it"s a different way of thinking. For the turtle that does the drawing, it is a measure of independence: "Just get me started and watch me go!"
Note: the Arduino Uno has limited SRAM memory, but still sufficient to use recursion in our turtle graphics examples. If you try to use too many recursive steps, your functions may not work. However we have not reached that limit in our examples, so let"s go ahead and see how this works....