wxga tft display resolution brands
A 10.1” TFT display module, featuring WUXGA (1920x1200px) resolution, has been introduced by KOE. The TX26D202VM0BAA has a pixel pitch of 0.11325x0.11325, which equates to a pixel density of 224ppi.
The 16:10 aspect ratio display features IPS technology and a 16.7m colour palette, which enables highly accurate representation of image detail such as colour gradients and authentic colour reproduction. Outstanding optical performance is maintained with a contrast ratio of 800:1 and a brightness specification of 800cd/m², enabling bright, sharp display images.
The compact 10.1” display has mechanical outline dimensions of 232.0x153.0x4.7mm and an active display area of 217.44x135.9mm. A 50-pin, 2-channel LVDS interface supports 8-bit RGB, which enables a colour palette of up to 16.7m colours. The LED backlight is specified at 40,000 hours to half brightness lifetime and features an integrated dimming function. The operating temperature range of the TX26D202VM0BAA module is -30 to +80°C.
Typical applications for the WUXGA display include diagnostic systems, compact broadcast and video monitors, medical imaging, and test and measurement instrumentation. The TX126D202VM0BAA TFT display module is available now.
Mark Stephenson, Technical Marketing Manager, KOE Europe, said "KOE are one of the first LCD manufacturers to introduce compact, high resolution display modules developed specifically for industrial and professional applications. This reflects the trend for higher pixel density and enhanced image clarity found in consumer devices such as monitors, tablets and smartphones. The use of higher resolution displays with greater pixel density enables accurate reproduction and representation of graphical information such as measurement and diagnostic images, and video reproduction."
There are many LCD screen manufacturers for the Laptop Industry. LCD screens have different resolutions, size and type and these screens are compatible as long as the resolution and connections are the same.
Getting hold of a suitable TFT panel presents no difficulties, as we said before: an old 15.1" flatscreen monitor makes the ideal basis for building a powerful projector. Most displays offer a physical resolution of 1024x768 (i.e. 786,432) pixels, for playing back high-quality DVD videos or displaying the Windows screen. Some models even offer resolution of 1280x1024 pixels, making them suitable for 3D games, too.
The table above lists the principal resolutions; note that resolutions higher than SXGA are seldom available in 15" format, with the exception of some notebook displays. This means the display no longer fits the overhead projector, as its dimensions exceed the light frame. The panel on our projector was taken from an older flatscreen from Iiyama, the 15.1" BX3814UT .
Aside from display size, simple disassembly was a major criterion in our search for a suitable flatscreen monitor. Several factors must be taken into account to avoid destroying any components.
We don"t really need to mention color accuracy, as almost all older displays support 24 bit color depth, and hence 16.7 million colors for perfect DVD screenings. Response time poses no problems, even on relatively small displays up to 15 inches: less than 30 ms average is completely adequate for perfect picture reproduction.
Pixel, also called Picture Element, A pixel is the smallest unit of a digital image or graphic that can be displayed and represented on a digital display device. A pixel is the basic logical unit in digital graphics. Pixels are combined to form a complete image, video, text, or any visible thing on a computer display
LCD display doesn’t operate the same way as CRT displays , which fires electrons at a glass screen, a LCD display has individual pixels arranged in a rectangular grid. Each pixel has RGB(Red, Green, Blue) sub-pixel that can be turned on or off. When all of a pixel’s sub-pixels are turned off, it appears black. When all the sub-pixels are turned on 100%, it appears white. By adjusting the individual levels of red, green, and blue light, millions of color combinations are possible
The pixels of the LCD screen were made by circuitry and electrodes of the backplane. Each sub-pixel contains a TFT (Thin Film Transistor) element. These structures are formed by depositing various materials (metals and silicon) on to the glass substrate that will become one part of the complete display “stack,” and then making them through photolithography. For more information about TFT LCDs, please refer to “
The etched pixels by photolith process are the Native Resolution. Actually, all the flat panel displays, LCD, OLED, Plasma etc.) have native resolution which are different from CRT monitors
HD TV has 1280×720 = 921,600 pixels; Full HD has 1920x 1080=2,073,600 pixels; 8K TV has 7,680×4,320=33,177,600 pixels. he “K” in 8K stands for Kilo (1000), meaning a TV that has achieved a horizonal resolution of about 8,000 pixels.
Although we can define a LCD display with resolution, a Full HD resolution on screen size of a 15” monitor or a 27” monitor will show different. The screen “fineness” is very important for some application, like medical, or even our cell phone. If the display “fineness” is not enough, the display will look “pixelized” which is unable to show details.
DPI stands for dots per inch and refers to the resolution of a printer. It describes the density of ink dots placed on a sheet of paper (or another photographic medium) by a printer to create a physical print.
PPI stands for number of pixels per inch. It is kind of pixel density. PPI describes the resolution of a digital image, not a print. PPI is used to resize images in preparation for printing
But you see other lower resolution available, that is because video cards are doing the trick. A video card can display a lower LCD screen resolution than the LCD’s built-in native resolution. The video cards can combine the pixels and turn a higher resolution into lower resolution, or just use part of the full screen. But video cards can’t do the magic to exceed the native resolution.
Special names by individual companies: Apple Macbook Pro Retina 6K display, Acer Nitro, ASUS Pro Art , ViewSonic Elite, ASUS TUF ,Samsung edge Infinity-O Display etc.
With brand-new ID design, the TPC-1840WP provides a high resolution 18.5" display and PCT multi-touch in 16:9 wide format. By embedding an AMD T56E 1.65GHz processor with independent GPU, the TPC-1840WP can support advanced graphical performance in more complex applications. Built-in function and home key button for greater user usability and operating safety. The TPC-1840WP also supports a mini-PCIe slot for communication function expansion. The opening side cover is designed for easy maintenance of Cfast/ HDD/Mini-PCIe components.
A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.
In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.
The liquid crystal displays used in calculators and other devices with similarly simple displays have direct-driven image elements, and therefore a voltage can be easily applied across just one segment of these types of displays without interfering with the other segments. This would be impractical for a large display, because it would have a large number of (color) picture elements (pixels), and thus it would require millions of connections, both top and bottom for each one of the three colors (red, green and blue) of every pixel. To avoid this issue, the pixels are addressed in rows and columns, reducing the connection count from millions down to thousands. The column and row wires attach to transistor switches, one for each pixel. The one-way current passing characteristic of the transistor prevents the charge that is being applied to each pixel from being drained between refreshes to a display"s image. Each pixel is a small capacitor with a layer of insulating liquid crystal sandwiched between transparent conductive ITO layers.
The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.
Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.
The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.
Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.
In 2004, Hydis Technologies Co., Ltd licensed its AFFS patent to Japan"s Hitachi Displays. Hitachi is using AFFS to manufacture high end panels in their product line. In 2006, Hydis also licensed its AFFS to Sanyo Epson Imaging Devices Corporation.
A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.
TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.
Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:
External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.
The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.
New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.
The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).
With analogue signals like VGA, the display controller also needs to perform a high speed analog to digital conversion. With digital input signals like DVI or HDMI some simple reordering of the bits is needed before feeding it to the rescaler if the input resolution doesn"t match the display panel resolution.
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.
Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho (15 August 2012). "Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa". Journal of Hazardous Materials. Seoul, Korea; Laos, Lao. 227–228: 327–333. doi:10.1016/j.jhazmat.2012.05.059. PMID 22677053.
14.1-inch 1CCFL WXGA TFT LCD Display/ Screen panel, Resolution: 1280*800, Video Connector: 30 pins, LCD Model: LTN141AT02-301 LTN141AT02-501 N141I3-L01 B141EW01 V0 B141EW01 V1 B141EW01 V2, for Laptop
The TPC-1551WP thin-client terminal is equipped with a 15.6" SXGA TFT LCD, low-power Intel® Atom™ E3827 1.75 GHz dual-core processor, and 4 GB DDR3L SDRAM to deliver sufficient computing performance in a compact, fanless system. For enhanced durability, TPC-1551WP features a true-flat touchscreen with IP66-rated front panel, die cast aluminum alloy front bezel, and projected capacitive touch control. Because of the system’s compact but robust design, it can be easily deployed into existing infrastructure. Moreover, Advantech’s iDoor technology can be integrated via the mini PCIe slot in order to provide additional I/O connectors, isolated digital I/O, fieldbus protocols, 3G/GPS/GPRS/Wi-Fi communication, and MRAM to support diverse industrial automation applications.
Adaptek Industrial Monitors provide a wide range of reliabledisplaysfrom 5.7" to 55" including LCDdisplays, touch screen panels, outdoordisplaysand digital signagedisplays, and a seriesof industrial monitorsincluding open framemonitorsand panel mountmonitors, which work perfectly with embedded boards
The Rackmount LCD monitors are rugged industrial Flat panel monitors engineered as a panel, wall or rack mountable display for use in harsh and space constraint environment.
touchscreen supports four or five-wire resistive, capacitive and surface acousticwave, the controller optional RS232 or USB communication; display supports VGA and DVI multiple signal inputs; products are widely used factory automation,machinery manufacturing, CNC equipment, human-computer interaction,power communications, informationterminals, environmental monitoring, test and measurement, automotive shipboard and other occasions.
You must match the resolution, backlight, and screen size to your current screen. Also Note: You will receive a 100% compatible screen. The exact brand and part number of the screen you will receive is determined by market availability.
Apollo specializes in TFT-LCD flat panel technologies and supply chain solutions. We offer a huge selection of TFT-LCD monitors and touchscreens, as well as corresponding components. We also offer hardware and software solutions for all of our products and digital signage applications.
As a worldwide supplier of state-of-the-art TFT technologies and system solutions, Apollo Displays supports you in all project phases – 1 from construction of the metal housing and procurement of specific parts to in-house development of controller boards and touchscreen integration.
This Magelis GTU universal touchscreen operator interface (HMI) is supplied with 12V to 24V DC, has a 12" color TFT LCD display with 1280 x 800 pixels and 262K colors. This universal touchscreen operator interface (HMI) is ideal for high-performance monitoring and communication. High-performance monitoring and communication thanks to a smartphone-like interface for use in the most demanding automation systems, including industrial control equipments, hazardous locations, and marine applications. The screen displays text messages, graphic objects and mimic diagrams, control and configuration of data. It also offers removable storage, dual LAN and dual communication interfaces. It resists permanent 60°C temperature, this makes it ideal for installation in areas where ventilation of the cabinet is not possible or risky.
TOKYO, October 3, 2019 - Mitsubishi Electric Corporation (TOKYO: 6503) announced today the launch of a 12.1-inch WXGA TFT-LCD module designed for use in harsh outdoor environments, such as on construction sites and in heavy-duty vehicles, as well as in industrial applications and in agricultural use.
The new modules will offer an unprecedented combination of advanced features, including high-resolution WXGA (1,280 × 800 pixels), super-wide 176-degree horizontal/vertical viewing angles and a high luminosity of 1,500 cd/m2. They will additionally feature a high contrast ratio of 1,000:1, a versatile operating-temperature range of -40 to +80 degrees Celsius and will have high resistance to vibration, attributes for which there is increasing market demand.