low power lcd display quotation
Do you need a display that draws the lowest current possible? Want long lasting battery-powered LCD project? Well, you have come to the right place. We compiled this list of digital displays that consume the least amount of power. These displays are perfect for when you are trying to extend the battery life of your product by pulling the least amount of current possible.
Other than a pen and paper, ePaper provides the lowest power consumption available for electronic displays. It does this via an electrochemical process that requires zero power once the pixels are in their desired location. These displays are ideal for when the content is not updated very often. Low-power ePapers only use power during updates, so the longer time between updates, the lower the power consumed.
The beauty of OLED displays and power consumption is that OLEDs only draw current for pixels that are on. For instance, when displaying a black and white checkerboard pattern, an OLED display consumes 50% less current than when displaying a completely white screen. Keeping that in mind, user interfaces can be designed to conserve as much power as possible by limiting how many pixels are lit.
This is a thin, extremely low-power 128x64 graphic LCD display module. It has no backlight, so consumes no power illuminating the display. However, if you wanted to backlight the module, the rear polarizer is transflective, so you could add your own lighting solution there. This display is perfectly suited for hand-held or any application requiring low power consumption or a very thin display. A row of icons is shown automatically top of the display without having to be rendered. This display has an integrated controller and the tail is designed to mate with standard 18-conductor 0.5mm pitch ZIF connectors (typical would be Omron XF2L18351A/ DigiKey P/N OR754CT-ND).
Ultra-low-power displays consume very little energy, and the two primary technologies used for these types of displays are bistable and low refresh rate displays. They are used when there is a need for a battery-powered device, want maximum life between charges, and the content being displayed does not change very frequently.
The common uses for ultra-low-power displays are e-readers and electronic price tags. Some of the other applications we have seen are secondary displays for handheld devices and battery-powered products like locks, remote-mounted homes, and industrial products.
Probably the most well know bi-stable low-power display is e-paper technology historically used on e-readers. This technology is available in both monochrome and color.
In a monochrome e-paper display, millions of tiny liquid-filled capsules contain black and white charged ink particles. These capsules are sandwiched between a grid of electrodes. Applying a charge to the electrodes causes the ink particles to migrate to the top of the capsule, and depending on the polarity of the charge, it changes the color of the surface of the display.
E-paper is a reflective technology and, with good ambient light, has an excellent contrast ratio. One of the characteristics of e-paper is that the background is white, whereas many reflective display technologies like LCD have a gray or greenish background. One disadvantage is that E-paper requires front lighting if used in low-light conditions.
Displaying static images on an e-paper display uses very little energy (uW). However, it can require more power (mW) to update the screen than other technologies like LCD in the same size and resolution.
The backlight uses most of the power in a standard TFT display. For example, on a 7” TFT panel, the backlight uses almost 80% of the energy consumed for an average brightness display. The digital circuitry utilizes the remaining power to sustain the picture.
The first step of building a low-power TFT is to move to a reflective or transflective display and eliminate the power consumption of the backlight when the display can use ambient light.
Choosing a Transflective display is a good trade-off since it comes with a backlight that, when turned, the display becomes reflective. However, there is some trade-off in that the reflectance of a transflective display is lower than a pure reflective display. We use an advanced LCD driver chip to reduce the power further to drive the display at different refresh rates.
We use an advanced LCD driver chip to reduce the power further, which allows the display to be driven at different refresh rates. The drivers have two modes; a standard TFT mode that enables the display to operate like a standard TFT being able to do video rate, 60Hz, updates, and a low-power mode where the display refreshes at a rate of 1Hz. This mode is excellent for holding static images and using very little energy. Figure 2.0 depicts the driving methodology. Using these drivers, you can reduce the power of the digital portion of the display by 60%.
Table 2.0 shows a comparison study that we did for a thermostat application to compare different low-power technologies. In this study, the display is active for 15 minutes, and then it shows static images for the remainder of the day.
Conclusion: Depending on your application, either low-power TFT or e-paper may be suitable. If power is critical for your application and requires maintaining an image on display for long periods, consider these great technologies.
US Micro Products has designed displays with both technologies for special low-power applications and can do the same for your product. So let us help you with your display requirements; we have expertise that spans multiple markets and technologies.
If you have a project that is considering taking advantage of any display technology, US Micro Products can provide a solution designed for your application. Send us an email at sales@usmicroproducts.com.
If you"re looking for ~500-1000 display panels with the intent to buy, I would strongly suggest speaking with an account manager, sales rep, and/or applications engineer at a distributor. Such an order will likely generate enough revenue for them to give you a whole lot more than the time of day. I know the local account managers and FAE"s for a few large component distributors in my area (Future Electronics and Allied Electronics), and they are usually helpful, though not always prompt.
Looking at Future, they do seem to have a few LCDs quoted on their site, however it is certainly not a comprehensive list. If you contact a sales rep (there or anywhere) and provide them your requirements, they may come back with additional parts that their manufacturers produce that better fit your need.
Unless your volumes are going to be in the millions, let me dispel any thoughts you have of "Why not just talk to (LCD mfc) directly?". Said manufacturers will not care about you, and the premium they will charge to deal with you (if they bother at all) will be higher than what a typical distributor would, because, frankly, they do not want your direct business. Use the middlemen. They will make specifying, finding, and sourcing LCD panels vastly easier and cheaper.
Products»All Products»Power & UPS»Batteries & Ultracapacitors»Standard DC-DC Power»Smart DC-DC Power»Smart Battery Chargers»Galvanically Isolated Power Supplies»24V Output Supplies»Ultracapacitor Chargers»Adjustable Output Power Supplies»Universal Chargers»Uninterruptible Power Supplies»Embedded Boards»I/O & Communication»Embedded CAN bus Modules»Embedded Ethernet Switches»Embedded Digital IO Modules»Embedded Analog IO Modules»Embedded Serial IO Modules»PCIe Mini Cards»Embedded Power Supplies»Standard Embedded Power»Smart Embedded Power»PC/104 Power Supplies»Embedded UPS Modules»Embedded Motherboards»PC/104 Motherboards»ETX Motherboards»COM Express Motherboards»EPIC Motherboards»EBX Motherboards»Mini-ITX Motherboards»Micro-ATX Motherboards»Industrial ATX Motherboards»Embedded GPS Modules»GPS Receiver Modules»Embedded GPS Antennas»CPU Boards & SBC»PC/104 SBC»EPIC SBC»ETX SBC»EBX SBC»Mini-ITX SBC»ARM CPU Modules»Micro-ATX SBC»Embedded ATX SBC»Com Express SBC»Embedded Ultracapacitor Modules»Embedded Battery Modules»Embedded Video Cards»Systems»Fanless Box PC»Wide Temperature»Industrial Automation Computers»Rugged Vehicle Computers»Railway Computers»Vehicle Tracking Systems»Industrial Rackmount Computers»Wide Temperature Systems»Digital Displays»Marine Monitors»Rugged LCD Displays»Wide Temperature LCD Displays»Waterproof LCD Panels»Advertising LCD Displays»Stretched Bar LCD»Sunlight Readable LCD Displays»Public Transportation LCD Displays»Railway LCD Displays»Outdoor LCD Displays»High Brightness LCD Displays»Extended Temperature LCD Displays»Industrial Monitors»Panel Computing»Marine Panel PC»Infotainment Panel PC»Wide Temperature Panel PC»HMI Panel PC»Modular Panel PC»Mobile Computing»Rugged Tablets»Rugged Windows Tablets»Rugged Android Tablets»Rugged PDA»Antennas»GPS Antennas»External GPS Antennas»Passive GPS Antennas»Active GPS Antennas»Marine GPS Antennas»Internal GPS Antennas»GNSS Antennas»GLONASS Antennas»Multi-Band Antennas»GPS-GLONASS Antennas»Iridium Antennas»GPS & RF Signal Distribution»GPS Amplifiers»Low Noise Amplifiers»GPS Receivers»Marine GPS Receivers»GPS Attenuators»GPS Combiners»GPS Splitters»Active GPS Splitters»Military GPS Splitters»Rackmount GPS Splitters»Passive GPS Splitters»Repeaters»GPS Repeaters»GLONASS Repeaters»GPS Filters»Enclosures & Chassis»PC/104 Chassis»Rugged Mini-ITX Cases»EPIC Enclosures»EBX Enclosures»Memory & Storage»Memory»Flash Storage»Industrial SSD»SATA Disk On Modules»Industrial Micro SD Cards»Industrial SD Cards»Industrial CompactFlash Cards»Sensors»Industrial Networking»Manufactured by Tri-M»Power & UPS»Standard Power Supplies»HE104: 60 Watt»HE104-DX: 60 Watt»HE104-75W: 75 Watt»HE104+DX: 108 Watt»HE-HP: 100 Watt»Smart Power Supplies (PowerOS)»HESC-SERD: 60 Watt»HESC104+: 108 Watt»HPS3512: 203 Watt»HPSP-XYZ: 240W Programmable»V12SC-SER[-UPS]»TPS1000: 35 Watt, 42 Watt»TPSi1075: 75 Watt, Isolated»TPSi1085: 85 Watt, Isolated»HPSC104-SER: 160 Watt»HESC104: 60 Watt»TPS1035»TPC1000»HPS3524»Smart UPS (PowerOS)»TUP1000: Ultracapacitor UPS»V5SC-SER-UPS: NiMh Battery UPS»UltraUPS»V12SC-SER[-UPS]»Ultra Capacitor Packs»TBP4xxx»Battery Backup Packs»BAT-NiMh45»BAT104-NiMh»BAT104-NiCd»BAT-SLA(25/45)»UltraUPS»Heavy Duty Transient Stopper»CPU Modules»I/O & Communication»Input / Output»IO104-60IN: PC104 I/O Board»IR104 PC/104 Relay Module»Communication»TCB1000 PC/104 Com Board»FlexCom104-GPS»Enclosures»VersaTainer: PC104 & EBX»CanTainer: PC104»FlexTainer: EPIC, MITX, EBX»GPS & Networking»GPS & Networking Boards»FlexCom104-GPS»Antennas»Mighty Mouse: Small GPS Antenna»Micro Mouse: Micro GPS Antenna»Big Brother»Re-Radiators»Super-Radiator»Xtreme-Radiator»Vehicle GPS Repeater»Complete System Solutions»HECS1000 System»UltraUPS Complete Backup Solution»Support Products & Accessories»PC104-T AC Termination Modules»Extract104»TS-I2C Temperature Sensor»DA104»VSX-2812 Video Modules»ISA104X1»Postcode104»Legacy Products»Distributed by Tri-M»Diamond Systems»Single Board Computers»Aurora PC/104 SBC»Helios PC/104 SBC»Neptune EPIC SBC»Pluto ETX SBC»Hercules III EBX SBC»IEI»IEI Mobile»MicroMax Computer Intelligence»San Jose Technology (SANAV)»GNSS Repeaters»RK-306»RK-106»Innodisk»GPS Networking»Litemax»Spanpixel»Durapixel»Navpixel»Aaeon Electronics»Systems»Fanless Embedded Computers»Entry-Level Box PC»ICOP Technology»ICOP-2811»VDX2-6554»VEX-6254»VSX-2812S»86Duino Enjoy Desktop 3D Printer»MPLSelector Guides»Power Selector Guide»Backup Power SelectorServices»Conformal Coating»HumiSeal 1B31»Laser Engraving & EtchingTri-M Rugged»PowerOS»Mining Applications»Mining Application Story»Rail & ITS Applications»Automation & Manufacturing»Mil-Aero Defence & Aerospace»Aerospace Application StorySupportAbout Us»About Us»Privacy PolicywebstoreTriple Programmable PSUQuote Request
Many projects benefit from a small display as a user interface. For very low power applications this is usually a no-go as the display needs too much energy. I have used e-paper displays from Kent: while these e-paper displays do not need any power to keep the image, changing the display content is not for free, plus is very slow (around 1 second needed to update the display). So I was looking for something low power and fast for a long time, until Christian (thanks!) pointed me to a display from Sharp: both very low power and fast:
And even better: Adafruit has a breakout board for that display available (https://www.adafruit.com/product/1393) :-). The display on the board is the Sharp LS013B4DN04 with 96×96 monochrome pixel resolution. The display is a cross between a e-paper and normal LCD. The ‘background’ color is a nice silver color. What looks cool with this display is that the pixels show up like little mirror:
The display has no backlight: readability is excellent (although somewhat view angle dependent) under daylight, under darker light conditions an extra illumination is needed. It has a very good contrast between the pixels:
The Adafruit breakout board comes with a level shifter so it can be used with 3.3V-5V. I’m using it with 3.3V, and only need 5 wires connected to the display:
One special thing with the Sharp Memory display is that it needs a special clock signal to generate the VCOM, an alternating signal that prevents a DC bias from being built up within the display panel. Depending on the display used, that signal or clock needs to supplied in the range of 0.5 to 60 Hz. That signal can be supplied either externally or by software, depending on the EXTMODE pin:
On the Adafruit breakout board, EXTMODE is pulled LOW: the clocking has to be provided by software. With software a special ‘VCOM’ command is sent to the display:
The ToggleVCOM() function only needs to be called if there are no other display commands sent, as the VCOM bit can be toggled while writing to the display.
Each line of the display can be updated with a command: sending line number, then the number of bytes (12 for the 96 bits) followed by a trailing 16 zero byte:
Of course I have created a new Processor Expert component for using that display. With it is only a matter of minutes to get the display up and running:
Making full updates of the display every 20 ms (50 images per second) requires 41 μA. Of course the less frequent image updates or the less lines update, the better.
That Sharp Memory Display is a really cool one. The Adafruit breakout board has its price ($39.95). It took me a while to get the protocol right, but now I have very low power display and driver in my inventory :-). There is an example project on GitHub, and the SharpMemDisplaycomponent is available on GitHub and will be part of the next McuOnEclipse component release. If you are interested in the sources only, they are available on the McuOnEclipseLibrary project.
High quality and low power consumption lcd screen from shenzhen risingstar, LCD screen with LG AUO Samsung"s original LCD module.Equipped with LED backlight, uniform brightness.
Low power consumption lcd screen with the standard automatic dimming system can adjust the brightness of the bright LCD screen according to the ambient light to achieve clear visibility in the sun.
It is widely used in outdoor LCD advertising player, electronic bus stop advertising screens, new energy charging piles, etc. In addition, there is no doubt that the free editing software can support any split screen in horizontal and vertical orientation.