ahva lcd panel in stock

B101UAN01.7 10.1 inch 1920x1200 Glossy WLED-Backlit WUXGA Anti-Glare Touchscreen AHVA One Glass Solution Panel LCD Screen Display VT08D 0VT08D CN-0VT08D Compatible Replacement Spare Part for Dell Venue 10 Pro 5056 Series.Model:B101UAN01.7Part Number:VT08D 0VT08D CN-0VT08DCompatible Part Numbers:63JD5 063JD5 CN-063JD5 RF6YP 0RF6YP CN-0RF6YP 0W1V7 00W1V7 CN-00W1V7 460.03P01.0003 6X7CY 06X7CY CN-06X7CY R9W47 0R9W47 CN-0R9W47 460.03P01.0002Compatible Models:Dell Venue 10 Pro 5056 SeriesScreen Size:10.1"Maximum Resolution:1920x1200Screen Surface:GlossyScreen Panel Type:WUXGA Anti-Glare AHVA PanelTouchscreen:YesRefresh Rate:60HzAspect Ratio:16:10Display Colors:16.7M 50% NTSCBacklight:WLED-BacklitColor:BlackType:LCD Screen DisplayFeatures:EDP Cable P/N: 1FCDN 01FCDN CN-01FCDN

ahva lcd panel in stock

While there are many different manufacturers of LCD monitors, the panels themselves are actually only manufactured by a relatively small selection of companies. The three main manufacturers tend to be Samsung, AU Optronics and LG.Display (previously LG.Philips), but there are also a range of other companies like Innolux and CPT which are used widely in the market. Below is a database of all the current panel modules manufactured in each size. These show the module number along with important information including panel technology and a detailed spec. This should provide a detailed list of panels used, and can give you some insight into what is used in any given LCD display.

Note:These are taken from manufacturer product documentation and panel resource websites. Specs are up to date to the best of our knowledge, and new panels will be added as and when they are produced. Where gaps are present, the detail is unknown or not listed in documentation. The colour depth specs are taken from the manufacturer, and so where they specify FRC and 8-bit etc, this is their listing. Absence of such in the table below does not necessarily mean they aren’t using FRC etc, just that this is how the manufacturer lists the spec on their site.

ahva lcd panel in stock

I also found out that the AUO display seems to be B140HAN01 (I guess the .2 version, source: http://www.notebookcheck.com/Test-Dell-Latitude-E7440-Notebook.101912.0.html). I am not sure which LG panel exactly is used but I guess it might be the same as in the Thinkpad T440s and T440p since Lenovo also uses AUO and LG as suppliers and the AUO panel in the Thinkpads is the B140HAN01.2

Now in the Thinkpad Comunity there is a big discussion about the to panels LG and AUO (for example: https://forums.lenovo.com/t5/T400-T500-and-newer-T-series/T440s-LG-or-AUO-Display/td-p/1371605) because the AUO panel seems to be much better in many aspects.

1. Are there any users or Dell technicians out there who can confirm my information that both AUO and LG panels are used for the IPS version and that the exakt part numbers are B140HAN01.2 (Dell internal: XTRY9) for the AUO and LP140WF1 (Dell internal: 0MJ2P) for the LG.

4. Are those panels really matte or just some kind of semi-matte? Any pictures which illustrate that? [I currently own a Dell E6400 ATG which was sold as "matte" but was actually a display with GorillaGlass which a good anti-refletion technology (but nevertheless glossy with annoying reflextions, so it should be called semi-glossy and not matte)]

ahva lcd panel in stock

If you’ve ever bought a monitor, you would know how vital the refresh rate, screen size, and 3D support are. However, there is another feature that can significantly impact the quality of your picture. And that is known as monitor panel type.

Are you aware of the monitor panel type? Well, if you’re not, we can help. In this article, you’ll find everything about a monitor panel and its types. This will help you select the right kind of monitor for your use. So, if you’re ready, let’s dive right in.

Panel type is a technology used in LCD monitors. Different panel types bring in various features and benefits. The most common panel types are TN panels, VA panels, and IPS panels.

The TN panel type is one of the most popular panel types that replaced CRT TVs. It’s better than the CRT TVs but comes with some disadvantages. Viewing angles being an example. The colors in a TN panel invert completely when you view it from an extreme angle.

Another disadvantage is the low color reproduction. The TN panels cannot display 24-bit true color and use interpolation for color shade stimulation. This leads to a low contrast ratio as compared to IPS or VA panels.

However, people still go for TN panels. It’s because these panels are cheap and affordable. If you don’t want many colors and great viewing angles, the TN panels can be significant. The TN panels also support refresh rates of 240Hz without any hassle.

You can think of VA panels as an advanced form of TN panels. These panel types offer a better contrast ratio. It’s the reason why TV manufacturers use it vigorously. You can commonly find a contrast ratio of 3000:1 in these panel types.

The VA panels also offer amazing viewing angles. The performance is way better than TN panels and similar to IPS panels. However, the response rate of VA panels is slower as compared to the TN panels. VA monitor with refresh rates of up to 240Hz is available, but it usually results in motion blur.

Unlike the TN panels, VA panels offer better color reproduction even if you buy lower models in this range. The VA panels are good for multiple average uses. You can play single-player games using this panel type or use it generally for watching TV.

IPS panels are the best panels available in the LCD panel technology. These panels offer better image quality, viewing angles, and color accuracy. When it comes to graphics design, where you need constant color reproduction and color accuracy, IPS panels are the best.

Also, the viewing angles you get with IPS panels are the best. It can even support a wide viewing angle of 178 degrees, which is quite impressive. So, if you care about the image quality and viewing angles, this is what you should go for.

Super PLS is similar to the IPS panel technology that Samsung developed. The manufacturer claims to produce better and wider angles as compared to previously available IPS panels. Also, they claim to generate about 10 percent more brightness as compared to the generic IPS displays.

The AHVA panels are also known for being similar to IPS panels and offer performance similar to PLS. The AHVA is an acronym that, when expanded, becomes Advanced Hyper Viewing Angle. As the name suggests, this panel type delivers a better and wider viewing angle.

IPS panels are the best when compared with the VA or TN panels. For everyone who needs better color accuracy, reproduction, and wider viewing angles, IPS panels are what you should prefer.

All of the above panel types come with their advantages and disadvantages. Choosing the best one can be easy if you know the purpose you need the monitor for. Here’s a briefly summarized view of all the panel types discussed above for your reference.

IPS, PLS, AHVA:All the IPS panel types are usually voted as the best because of the better image quality they deliver. However, it’s the price that keeps most people from buying a monitor with IPS panels.

VA Panels:VA panels offer a good contrast ratio, color reproduction, and viewing angles as compared to the TN and IPS panels.However, the response times are slightly lower as compared to TN and IPS panels. You may also experience color shifting in these kinds of panels. But the VA panels are easily available and affordable too.

TN Panels:These panels are easily available in the market and are the cheapest. You can also find the best response rates with these panels. However, the TN panels offer poor contrast ratio, viewing angles, and color reproduction.

ahva lcd panel in stock

First, to be clear, there is no “best” panel type out of these, as all have their respective advantages and disadvantages over the others. The information here pertains to general characteristics, as even panels of the same panel type will have some variance in characteristics (power consumption, backlight bleed, etc.) depending on the luck of the draw. Manufacturer tuning can also impact display output, affording some differentiating leverage to manufacturers sourcing from panel suppliers (which is effectively all of them).

Nostalgia or riddance aside, there are still some valid reasons to use a CRT monitor. When compared to LCD panels, CRT monitors can have higher contrast ratio, very low response time (which leads to non-blurred pictures even with fast movement on screen), and very little input lag, although LCD input lag can be largely negated. The downsides of CRTs are apparent, though: they’re large, heavy, consume more power, produce flicker, can produce audible, high frequency noise (although age plays into whether one can hear them or not), produce slightly distorted images, and produce harmful electromagnetic waves (in the form of x-rays), which requires that toxic materials such as lead and barium must be used as shielding to prevent detrimental health effects. CRT monitors are also notoriously hazardous to repair, given their large, active electrical coils that can measure upwards of 50,000 volts of electricity.

CRT displays are sometimes still used in medical, simulation, military, and government fields that have embedded the displays into control panels and machinery.

CRT monitors have largely gone out of production, and are rarely sold new (finding a used CRT is fairly easy), but their advantages temporarily lent themselves to some special uses. In regards to gaming, CRT monitors have historically been advantageous to use when gaming competitively due to very little motion blur and very little input lag. That being said, these advantages have faded with the progressive march of TN panels.

TN panels now have low motion blur (especially with lightboost or a similar technology), offer high refresh rates, low response times (1ms GTG in many cases), and are more than adequate even in the world’s most competitive games.

Ultimately, for the vast majority of users, the disadvantages of CRTs aren’t worth their limited gains, especially when TN panels meant for gaming more than adequately satisfy the needs of even competitive gamers.

TN panels have many benefits over the previously popular CRT monitors: lower weight, lower cost to produce, lower power consumption, they’re much thinner, offer clearer pictures, have no realistically achievable resolution limits, offer flexibility in size and shape, and the ability to eliminate flicker.

That being said, TN panels weren"t and still aren’t perfect, and compared to the previously popular CRT monitors, they’ve suffered from limited viewing angles, uneven backlighting, worse motion blur, higher input lag, dead/stuck pixels, and poor display in sunlight.

To be clear, many of these issues have been improved upon, but due to the underlying science of LCD TN panels, cannot be completely resolved. In fact, many of these issues -- like uneven backlighting, motion blur, input lag, and dead/stuck pixels -- are inherent issues across all LCD panel types. Poor viewing angles become a more pressing issue with larger displays, since the viewing angle when viewed straight on increases towards the outside of the monitor, thus causing more color distortion. TN panels do have the advantages of lower response times and higher refresh rates than other panel types/CRTs. TN panels are generally from 60Hz to 144Hz, offering substantially greater fluidity of gameplay with higher frequencies.

TN panels provide a good compromise between CRTs and other LCD panels as their traditionally low response rates, input lag, and high refresh rate make them comparable to CRTs for accuracy; TN panels also have the advantages of offering sharper pictures, widescreen output, lower weight, smaller physical dimensions, and higher resolutions compared to CRTs.

Still, compared to other LCD panels, TN panels suffer from poor viewing angles and worse color reproduction. Ultimately, for most gamers playing somewhat competitively to very competitively, TN panels are a good choice, but for those looking for a prettier and improved color experience, another panel type may be worth considering.

IPS (In-Plane Switching) was created to address the shortcomings of TN panels. IPS panels seek to solve TN panels’ issues of poor color reproduction and viewing angles. In this regard, IPS panels have largely succeed. Not only do they offer a higher contrast ratio (superior blacks), high color accuracy (which leads to IPS panels also generally looking less “washed out”), but IPS panels also have very little color shift when changing the viewing angles.

The tradeoff to this is that IPS panels have slower response times, higher production costs, higher power consumption, and lower possible refresh rates. IPS panels have traditionally been 60Hz, although, as with all monitors, they can be overclocked (results will vary). There have been improvements to IPS panels over the years, and slightly different revisions in the form of E-IPS and H-IPS, but ultimately the differences between these versions are inconsequential to gamers and those not involved in graphic design as a job.

Due to their worse response rates and lower possible refresh rates, IPS panels are generally considered to be worse for competitive gameplay and used more often when color is important, such as graphic design. For gamers who don’t play competitively and prefer breathtaking strolls in Skyrim instead of sweeping scrubs in CS:GO, an IPS panel should be a consideration for the next monitor.

PLS (Plane to Line Switching) are quite similar to IPS panels, so much so that they have the same advantages and disadvantages, with a couple extra minor advantages. PLS is produced by Samsung, who claims that compared to IPS panels, PLS panels have better viewing angles, a 10% increase in brightness, 15% decrease in production costs, increased image quality, and allow for flexible panels. Samsung’s PLS panels have been known to overclock well in monitors such as the QNIX 2710 in particular. Overall, PLS is basically Samsung’s version of IPS, as it is very similar in functionality (and even name). AHVA is also very similar to IPS and PLS, and differentiation between them is rare, although it should not be confused with the next panel type.

VA (Vertical Alignment) panels offer a solid medium between TN and IPS panels. VA was created to combine the advantages of IPS and TN panels, and largely did, although they did so with some compromise. That seems to be a theme in the world of monitors.

Compared to IPS panels, VA panels have the advantage of higher possible refresh rates. Although most are currently 60Hz, there are a few that are above 60Hz. VA has more advantages over TN panels than IPS, with better color reproduction, higher maximum brightness, and better viewing angles. VA panels do have the best contrast ratios of all panel types mentioned, but they also have the worst response times of the monitor technologies covered here. This causes blurring in fast-moving pictures and is disadvantageous to gaming.

For the use of gaming, VA is not the greatest option due to generally higher response time in comparison to other panel types; this slower response causes more motion blur, effectively eliminating its deployment for fast-moving titles. For a general work monitor, VA panels provide high contrast ratios, brightness, refresh rates, good color reproduction, and good viewing angles.

TN panels are another good choice for competitive gamers, as they support higher refresh rates, low response times, decent input lag, and high resolutions. Their bad viewing angles, color reproduction, and slight blurring compared to CRT monitors (due to higher response times) are all disadvantages, ones which cannot be easily fixed.

IPS panels solve the issues of TN panels, with better color reproduction and viewing angles, but do so at the cost of refresh rate and response time. IPS panels are especially useful for those not wanting to play too competitively, but want a beautiful/immersive visual experience. PLS and AHVA are similar enough to IPS to usually not be differentiated.

VA panels provide a good middle ground with better-than-IPS refresh rates and contrast levels, but have worse viewing angles and color production, although generally still better than TN. Response times are VA’s largest downfall, though, being slower than IPS and its variants and TN.

What’s best for you will depend on all of these items. For those wanting to play at a competitive level and who favor FPS or racing games, TN panels are best. Those wanting a more impressive and immersive experience may want an IPS (or similar variant, such as PLS), especially if working on artistic endeavors. Finally, those wanting a general monitor for work might consider a VA panel, although due to their higher response times, they won’t be good for gaming.

ahva lcd panel in stock

PLS (Plane to Line Switching) panel in an IPS-type panel made by Samsung; All IPS-type panels, such as Innolux’s AAS, AUO’s AHVA and LG’s AH-IPS and Nano IPS offer excellent color accuracy and wide viewing angles.

PLS stands for Plane to Line Switching and is produced by Samsung, who claims that a PLS panel offers 10% more brightness, better viewing angles, lower production costs (about 15%), better image quality and the possibility of having flexible panels.

There are several variations of IPS panels, such as AU Optronics‘ AHVA (Advanced Hyper-Viewing Angle) panels. New AHVA panels are usually faster than other IPS panels but don’t have as wide color gamut.

In reality, most people don’t differentiate between IPS, AHVA and PLS since they are pretty much alike, which is why they are categorized under a single entity and simply called ‘IPS.’

Overall, whether a monitor has an IPS, PLS, or AHVA panel shouldn’t be the deciding factor when searching for a new display. You should check each monitor’s color gamut, brightness, response time and other specifications to determine which monitor’s panel is better.

ahva lcd panel in stock

Your gaming monitor is one of the most important parts of your PC, and a big part of that is down to the type of panel it uses to display all those lovely polygons. You"ve probably seen lots of different monitor panel types crop up in a gaming screen"s specs sheet, too: words like TN, IPS and VA. But what do they actually mean, and how do they affect the quality of your gaming monitor? Well, as you"ve probably guessed from the title up top there, I"m going to tell you everything you need to know about all the different gaming monitor panel types, including their strengths, weaknesses and which one you should look to buy if you want the best possible image quality.

Now, I"m going to warn you - most of what you"ll read below is all going to be pretty general. Not all panel types behave the same way, for example, and there will always be some that outperform the rest. That"s why it"s still important to read proper reviews of gaming monitors so you can get an accurate picture of how a monitor"s panel type stacks up against the rest.

I"m also not going to spend ages talking about the exact chemical structure of every single type of sub-pixel, because, well, there are plenty of other people who have done that already. If you"re after that kind of detail, I"d suggest heading over to the folks at TFT Central. Instead, I"m going to be concentrating on what you actually need to know about gaming monitor panel types, such as how their various characteristics affect their performance, and how you can avoid falling into monitor misery by making sure you know exactly what specs sheets are talking about when they start throwing a million acronyms at you. So let"s get to it.

Let"s start with one of the most common monitor panel types available today: TN, or Twisted Nematic. TN panels are what you"ll find in most gaming monitors these days, especially ones with high refresh rates and those geared toward competitive esports and the like.

The good: That"s because they"re a) generally quite cheap to make and b) have the fastest response times out of all the different panel types. This means there"s less lag between you clicking your mouse or tapping your keyboard and that action being translated onscreen, making them ideal for twitchy shooters and games that need fast reaction times.

The bad: Alas, the disadvantage of picking a TN panel is that they generally don"t have the best colour accuracy and they also have quite narrow viewing angles. The former isn"t the case for every TN screen - those certified by Nvidia for use in their G-Sync gaming monitors, for instance, have to meet rigorous colour accuracy standards - but I"ve seen plenty of non-G-Sync screens that barely cover 85% of the standard sRGB colour gamut, which means washed out colours and generally not very rich and vibrant images.

IPS monitors, on the other hand, are all about colour accuracy. Largely made by LG, there have actually been lots of different types of IPS panel that have emerged over the years as varying manufacturers tried their hand at matching the quality of LG"s panels, leading to dozens of different variations and combinations of acronyms. These days, though, most manufacturers (especially gaming ones) just tend to say they"re IPS as opposed a specific variant.

Unless, that is, it"s an AHVA, or Advanced Hyper-Viewing Angle, panel. Despite sounding like a VA panel (our third main panel type, which you"ll find more on below), AHVA is actually another type of IPS panel produced by AU Optronics and offers pretty much identical performance to a classic LG IPS panel.

The good: As I just mentioned, IPS panels generally have pretty great colour accuracy (I normally expect an sRGB coverage score of around 96% here) and wide viewing angles, making them better suited to colour intensive work and tasks like photo and video editing. This is true across all types of IPS panel, and their superior viewing angles (often quoted as 178 / 178 degrees) means you don"t get that nasty colour or contrast shift when you"re looking at the screen from a funny angle.

The bad: Unfortunately, their response times are often slower than TN panels, although these have become a lot better in recent years. Personally, I"ve never had any problems with latency when playing games on this type of screen, and for me, image quality is a lot more important than a couple of millisecond"s difference in overall response time.

They can also be more expensive to produce than TN panels, which, combined with their slower response times, is another reason why you don"t tend to see them a lot in displays designed primarily for gaming.

Finally, there"s the VA, or Vertical Alignment panel. Much like IPS, there are dozens of different types of VA panel, but the main ones we need to concern ourselves with are MVA (multi-domain vertical alignment) and AMVA (advanced MVA).

MVA panels were first designed to sit in the middle of TN and IPS displays, offering better viewing angles than TN screens and higher contrast ratios and deeper blacks than IPS. However, their colour accuracy isn"t quite as good as IPS, and they don"t have very fast response times, either.

AMVA, on the other hand (not to be confused with the IPS-like AHVA panel tech described above) builds on that even further, improving the panel"s colour accuracy while still maintaining those ultra high contrast ratios and deep blacks. Its viewing angles still aren"t quite as wide as IPS displays, though, and its response times are still a bit slower as well. However, through the use of features like a monitor"s Overdrive function, VA response times are now much faster than they used to be, making them a much more common occurrence in gaming screens, especially when it comes to curved or ultrawide displays.

The good: As a result, VA monitors can sort of be viewed as the ultimate compromise screen. The key advantages are their best in class black levels and their superior contrast ratios, and compared to TN panels, they also have better viewing angles and higher colour accuracy.

The bad: However, while VA might rectify some of the weaknesses you"ll find in TN screens, they"re still not as colour accurate as IPS panels, and their narrower viewing angles also can"t compete with their IPS rivals, either. Their main weakness, however, is their slow response time, which is generally said to be the slowest of the three main panel types. As I said, steps have been taken to try and mitigate this when it comes to putting a VA panel inside a gaming monitor, but if your gaming library consists solely of competitive shooters and the like, then you"re probably better off looking elsewhere.