plasma vs lcd screen made in china
A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large (over 32 inches diagonal) flat panel displays to be released to the public.
Until about 2007, plasma displays were commonly used in large televisions (30 inches (76 cm) and larger). By 2013, they had lost nearly all market share due to competition from low-cost LCDs and more expensive but high-contrast OLED flat-panel displays. Manufacturing of plasma displays for the United States retail market ended in 2014,
Plasma displays are bright (1,000 lux or higher for the display module), have a wide color gamut, and can be produced in fairly large sizes—up to 3.8 metres (150 in) diagonally. They had a very low luminance "dark-room" black level compared with the lighter grey of the unilluminated parts of an LCD screen. (As plasma panels are locally lit and do not require a back light, blacks are blacker on plasma and grayer on LCD"s.)LED-backlit LCD televisions have been developed to reduce this distinction. The display panel itself is about 6 cm (2.4 in) thick, generally allowing the device"s total thickness (including electronics) to be less than 10 cm (3.9 in). Power consumption varies greatly with picture content, with bright scenes drawing significantly more power than darker ones – this is also true for CRTs as well as modern LCDs where LED backlight brightness is adjusted dynamically. The plasma that illuminates the screen can reach a temperature of at least 1,200 °C (2,190 °F). Typical power consumption is 400 watts for a 127 cm (50 in) screen. Most screens are set to "vivid" mode by default in the factory (which maximizes the brightness and raises the contrast so the image on the screen looks good under the extremely bright lights that are common in big box stores), which draws at least twice the power (around 500–700 watts) of a "home" setting of less extreme brightness.
Plasma screens are made out of glass, which may result in glare on the screen from nearby light sources. Plasma display panels cannot be economically manufactured in screen sizes smaller than 82 centimetres (32 in).enhanced-definition televisions (EDTV) this small, even fewer have made 32 inch plasma HDTVs. With the trend toward large-screen television technology, the 32 inch screen size is rapidly disappearing. Though considered bulky and thick compared with their LCD counterparts, some sets such as Panasonic"s Z1 and Samsung"s B860 series are as slim as 2.5 cm (1 in) thick making them comparable to LCDs in this respect.
Wider viewing angles than those of LCD; images do not suffer from degradation at less than straight ahead angles like LCDs. LCDs using IPS technology have the widest angles, but they do not equal the range of plasma primarily due to "IPS glow", a generally whitish haze that appears due to the nature of the IPS pixel design.
Superior uniformity. LCD panel backlights nearly always produce uneven brightness levels, although this is not always noticeable. High-end computer monitors have technologies to try to compensate for the uniformity problem.
Earlier generation displays were more susceptible to screen burn-in and image retention. Recent models have a pixel orbiter that moves the entire picture slower than is noticeable to the human eye, which reduces the effect of burn-in but does not prevent it.
Due to the bistable nature of the color and intensity generating method, some people will notice that plasma displays have a shimmering or flickering effect with a number of hues, intensities and dither patterns.
Uses more electrical power, on average, than an LCD TV using a LED backlight. Older CCFL backlights for LCD panels used quite a bit more power, and older plasma TVs used quite a bit more power than recent models.
Fixed-pixel displays such as plasma TVs scale the video image of each incoming signal to the native resolution of the display panel. The most common native resolutions for plasma display panels are 852×480 (EDTV), 1,366×768 and 1920×1080 (HDTV). As a result, picture quality varies depending on the performance of the video scaling processor and the upscaling and downscaling algorithms used by each display manufacturer.
Early plasma televisions were enhanced-definition (ED) with a native resolution of 840×480 (discontinued) or 852×480 and down-scaled their incoming high-definition video signals to match their native display resolutions.
The following ED resolutions were common prior to the introduction of HD displays, but have long been phased out in favor of HD displays, as well as because the overall pixel count in ED displays is lower than the pixel count on SD PAL displays (852×480 vs 720×576, respectively).
Early high-definition (HD) plasma displays had a resolution of 1024x1024 and were alternate lighting of surfaces (ALiS) panels made by Fujitsu and Hitachi.
Later HDTV plasma televisions usually have a resolution of 1,024×768 found on many 42 inch plasma screens, 1280×768 and 1,366×768 found on 50 in, 60 in, and 65 in plasma screens, or 1920×1080 found on plasma screen sizes from 42 inch to 103 inch. These displays are usually progressive displays, with non-square pixels, and will up-scale and de-interlace their incoming standard-definition signals to match their native display resolutions. 1024×768 resolution requires that 720p content be downscaled in one direction and upscaled in the other.
Ionized gases such as the ones shown here are confined to millions of tiny individual compartments across the face of a plasma display, to collectively form a visual image.
A panel of a plasma display typically comprises millions of tiny compartments in between two panels of glass. These compartments, or "bulbs" or "cells", hold a mixture of noble gases and a minuscule amount of another gas (e.g., mercury vapor). Just as in the fluorescent lamps over an office desk, when a high voltage is applied across the cell, the gas in the cells forms a plasma. With flow of electricity (electrons), some of the electrons strike mercury particles as the electrons move through the plasma, momentarily increasing the energy level of the atom until the excess energy is shed. Mercury sheds the energy as ultraviolet (UV) photons. The UV photons then strike phosphor that is painted on the inside of the cell. When the UV photon strikes a phosphor molecule, it momentarily raises the energy level of an outer orbit electron in the phosphor molecule, moving the electron from a stable to an unstable state; the electron then sheds the excess energy as a photon at a lower energy level than UV light; the lower energy photons are mostly in the infrared range but about 40% are in the visible light range. Thus the input energy is converted to mostly infrared but also as visible light. The screen heats up to between 30 and 41 °C (86 and 106 °F) during operation. Depending on the phosphors used, different colors of visible light can be achieved. Each pixel in a plasma display is made up of three cells comprising the primary colors of visible light. Varying the voltage of the signals to the cells thus allows different perceived colors.
Control circuitry charges the electrodes that cross paths at a cell, creating a voltage difference between front and back. Some of the atoms in the gas of a cell then lose electrons and become ionized, which creates an electrically conducting plasma of atoms, free electrons, and ions. The collisions of the flowing electrons in the plasma with the inert gas atoms leads to light emission; such light-emitting plasmas are known as glow discharges.
Relative spectral power of red, green and blue phosphors of a common plasma display. The units of spectral power are simply raw sensor values (with a linear response at specific wavelengths).
In a monochrome plasma panel, the gas is mostly neon, and the color is the characteristic orange of a neon-filled lamp (or sign). Once a glow discharge has been initiated in a cell, it can be maintained by applying a low-level voltage between all the horizontal and vertical electrodes–even after the ionizing voltage is removed. To erase a cell all voltage is removed from a pair of electrodes. This type of panel has inherent memory. A small amount of nitrogen is added to the neon to increase hysteresis.phosphor. The ultraviolet photons emitted by the plasma excite these phosphors, which give off visible light with colors determined by the phosphor materials. This aspect is comparable to fluorescent lamps and to the neon signs that use colored phosphors.
Every pixel is made up of three separate subpixel cells, each with different colored phosphors. One subpixel has a red light phosphor, one subpixel has a green light phosphor and one subpixel has a blue light phosphor. These colors blend together to create the overall color of the pixel, the same as a triad of a shadow mask CRT or color LCD. Plasma panels use pulse-width modulation (PWM) to control brightness: by varying the pulses of current flowing through the different cells thousands of times per second, the control system can increase or decrease the intensity of each subpixel color to create billions of different combinations of red, green and blue. In this way, the control system can produce most of the visible colors. Plasma displays use the same phosphors as CRTs, which accounts for the extremely accurate color reproduction when viewing television or computer video images (which use an RGB color system designed for CRT displays).
Plasma displays are different from liquid crystal displays (LCDs), another lightweight flat-screen display using very different technology. LCDs may use one or two large fluorescent lamps as a backlight source, but the different colors are controlled by LCD units, which in effect behave as gates that allow or block light through red, green, or blue filters on the front of the LCD panel.
Contrast ratio is the difference between the brightest and darkest parts of an image, measured in discrete steps, at any given moment. Generally, the higher the contrast ratio, the more realistic the image is (though the "realism" of an image depends on many factors including color accuracy, luminance linearity, and spatial linearity). Contrast ratios for plasma displays are often advertised as high as 5,000,000:1.organic light-emitting diode. Although there are no industry-wide guidelines for reporting contrast ratio, most manufacturers follow either the ANSI standard or perform a full-on-full-off test. The ANSI standard uses a checkered test pattern whereby the darkest blacks and the lightest whites are simultaneously measured, yielding the most accurate "real-world" ratings. In contrast, a full-on-full-off test measures the ratio using a pure black screen and a pure white screen, which gives higher values but does not represent a typical viewing scenario. Some displays, using many different technologies, have some "leakage" of light, through either optical or electronic means, from lit pixels to adjacent pixels so that dark pixels that are near bright ones appear less dark than they do during a full-off display. Manufacturers can further artificially improve the reported contrast ratio by increasing the contrast and brightness settings to achieve the highest test values. However, a contrast ratio generated by this method is misleading, as content would be essentially unwatchable at such settings.
Each cell on a plasma display must be precharged before it is lit, otherwise the cell would not respond quickly enough. Precharging normally increases power consumption, so energy recovery mechanisms may be in place to avoid an increase in power consumption.LED illumination can automatically reduce the backlighting on darker scenes, though this method cannot be used in high-contrast scenes, leaving some light showing from black parts of an image with bright parts, such as (at the extreme) a solid black screen with one fine intense bright line. This is called a "halo" effect which has been minimized on newer LED-backlit LCDs with local dimming. Edgelit models cannot compete with this as the light is reflected via a light guide to distribute the light behind the panel.
Image burn-in occurs on CRTs and plasma panels when the same picture is displayed for long periods. This causes the phosphors to overheat, losing some of their luminosity and producing a "shadow" image that is visible with the power off. Burn-in is especially a problem on plasma panels because they run hotter than CRTs. Early plasma televisions were plagued by burn-in, making it impossible to use video games or anything else that displayed static images.
Plasma displays also exhibit another image retention issue which is sometimes confused with screen burn-in damage. In this mode, when a group of pixels are run at high brightness (when displaying white, for example) for an extended period, a charge build-up in the pixel structure occurs and a ghost image can be seen. However, unlike burn-in, this charge build-up is transient and self-corrects after the image condition that caused the effect has been removed and a long enough period has passed (with the display either off or on).
Plasma manufacturers have tried various ways of reducing burn-in such as using gray pillarboxes, pixel orbiters and image washing routines, but none to date have eliminated the problem and all plasma manufacturers continue to exclude burn-in from their warranties.
The first practical plasma video display was co-invented in 1964 at the University of Illinois at Urbana–Champaign by Donald Bitzer, H. Gene Slottow, and graduate student Robert Willson for the PLATO computer system.Owens-Illinois were very popular in the early 1970s because they were rugged and needed neither memory nor circuitry to refresh the images.CRT displays cheaper than the $2500 USD 512 × 512 PLATO plasma displays.
Burroughs Corporation, a maker of adding machines and computers, developed the Panaplex display in the early 1970s. The Panaplex display, generically referred to as a gas-discharge or gas-plasma display,seven-segment display for use in adding machines. They became popular for their bright orange luminous look and found nearly ubiquitous use throughout the late 1970s and into the 1990s in cash registers, calculators, pinball machines, aircraft avionics such as radios, navigational instruments, and stormscopes; test equipment such as frequency counters and multimeters; and generally anything that previously used nixie tube or numitron displays with a high digit-count. These displays were eventually replaced by LEDs because of their low current-draw and module-flexibility, but are still found in some applications where their high brightness is desired, such as pinball machines and avionics.
In 1983, IBM introduced a 19-inch (48 cm) orange-on-black monochrome display (Model 3290 Information Panel) which was able to show up to four simultaneous IBM 3270 terminal sessions. By the end of the decade, orange monochrome plasma displays were used in a number of high-end AC-powered portable computers, such as the Compaq Portable 386 (1987) and the IBM P75 (1990). Plasma displays had a better contrast ratio, viewability angle, and less motion blur than the LCDs that were available at the time, and were used until the introduction of active-matrix color LCD displays in 1992.
Due to heavy competition from monochrome LCDs used in laptops and the high costs of plasma display technology, in 1987 IBM planned to shut down its factory in Kingston, New York, the largest plasma plant in the world, in favor of manufacturing mainframe computers, which would have left development to Japanese companies.Larry F. Weber, a University of Illinois ECE PhD (in plasma display research) and staff scientist working at CERL (home of the PLATO System), co-founded Plasmaco with Stephen Globus and IBM plant manager James Kehoe, and bought the plant from IBM for US$50,000. Weber stayed in Urbana as CTO until 1990, then moved to upstate New York to work at Plasmaco.
In 1994, Weber demonstrated a color plasma display at an industry convention in San Jose. Panasonic Corporation began a joint development project with Plasmaco, which led in 1996 to the purchase of Plasmaco, its color AC technology, and its American factory for US$26 million.
In 1995, Fujitsu introduced the first 42-inch (107 cm) plasma display panel;Philips introduced at CES and CeBIT the first large commercially available flat-panel TV, using the Fujitsu panels.Sears locations in the US for $14,999, including in-home installation. Pioneer and Fujitsu
In the year 2000, the first 60-inch plasma display was developed by Plasmaco. Panasonic was also reported to have developed a process to make plasma displays using ordinary window glass instead of the much more expensive "high strain point" glass.
In late 2006, analysts noted that LCDs had overtaken plasmas, particularly in the 40-inch (100 cm) and above segment where plasma had previously gained market share.
Until the early 2000s, plasma displays were the most popular choice for HDTV flat panel display as they had many benefits over LCDs. Beyond plasma"s deeper blacks, increased contrast, faster response time, greater color spectrum, and wider viewing angle; they were also much bigger than LCDs, and it was believed that LCDs were suited only to smaller sized televisions. However, improvements in VLSI fabrication narrowed the technological gap. The increased size, lower weight, falling prices, and often lower electrical power consumption of LCDs made them competitive with plasma television sets.
Screen sizes have increased since the introduction of plasma displays. The largest plasma video display in the world at the 2008 Consumer Electronics Show in Las Vegas, Nevada, was a 150-inch (380 cm) unit manufactured by Matsushita Electric Industrial (Panasonic) standing 6 ft (180 cm) tall by 11 ft (340 cm) wide.
At the 2010 Consumer Electronics Show in Las Vegas, Panasonic introduced their 152" 2160p 3D plasma. In 2010, Panasonic shipped 19.1 million plasma TV panels.
Panasonic was the biggest plasma display manufacturer until 2013, when it decided to discontinue plasma production. In the following months, Samsung and LG also ceased production of plasma sets. Panasonic, Samsung and LG were the last plasma manufacturers for the U.S. retail market.
• Perform highly diversified duties to install and maintain electrical apparatus on production machines and any other facility equipment (Screen Print, Punch Press, Steel Rule Die, Automated Machines, Turret, Laser Cutting Machines, etc.).
The last company to make plasma TV screens for U.S. consumers said this week that it would stop production of plasma sets in November. The widely expected announcement by LG has put the final nail in plasma TV"s coffin.
Samsung stop making plasma screens by November. Panasonic, the only other manufacturer of plasma TVs for U.S. consumers, shut down its plasma screen production in 2013.
As the TV makers sell off their existing plasma TV inventory, tech consultancy IHS expects that plasma TVs will no longer be available in U.S. stores after the 2014 holiday shopping season.
There are still a few Chinese companies producing plasma TVs, but they don"t sell their televisions in the United States. They too will likely stop plasma production by 2016, IHS forecasts.
TV buyers have opted for the less expensive, higher-resolution and lower-energy LCD TV technology over plasma TVs. Once a popular high-end option for HDTV sets, plasma technology has been outpaced by LCD, which includes the super-thin LED TVs.
Plasma TVs are composed of pixels filled with gas that light up in different colors when they"re hit with an electrical current. LCD televisions use screens made of liquid crystals that are lit up from behind to create images.
Plasma TVs offered what many considered to be the best picture quality on the market in the past few years, albeit at higher prices than LCDs. They gained favor thanks to their brighter images, warmer tones and wider viewing angles.
SEOUL (Reuters) - LG Electronics Inc.is creating its smallest plasma display panel for the Chinese TV market, a company spokesman said on Monday, as the loss-making flat screen division struggles to diversify its customer base.A saleswoman demonstrates the use of an LG Electronics 55-inch Full-HD LCD TV equipped with a liquid crystal display from LG.Philips at the Korea Electronics Show in Goyang, October 11, 2005. LG Electronics Inc. is creating its smallest plasma display panel for the Chinese TV market, a company spokesman said on Monday, as the loss-making flat screen division struggles to diversify its customer base. REUTERS/You Sung-Ho
South Korea-based LG, the world’s No. 2 maker of plasma display panels (PDPs), will supply 32-inch plasma panels -- the smallest the company has ever produced -- for unspecified Chinese TV set makers, the spokesman said.
He added LG would offer its 32-inch PDP screens at a lower price than similar-sized LCD panels but did not give a price. Production volume has yet to be decided.
It said on Friday it would halt production at the smallest of its three domestic plasma panel lines before the end of June, a move analysts see as a step towards a broader restructuring.
Plasma screens, which once dominated the 40-inch-and-larger TV market with cheaper price tags and technical advantages, have been pummeled in a price war with liquid crystal display (LCD) screens backed by larger production lines and economies of scale.
Analysts expect plasma makers can enjoy price competitiveness for a while in the 50-inch-and-above segment, but the market has yet to grow as flat-screen TV demand is still focused on smaller sizes, particularly in emerging markets.
Panasonic announced today that it"s closing down its plasma TV assembly plant in Shanghai, China – the latest stage in the reduction of its plasma display capacity in the face of a market increasingly dominated by LCD TVs.
The company has already pared back its plasma display panel production in Japan, as part of cost-cutting measures brought about by what"s expected to be a net loss of some Y765bn (around £5.3bn) for the current financial year.
The Shanghai plant hasn"t been operating since last September, and its closure reflects a market oversupplied with plasma TV manufacturing, and the failure of the technology to sell in large quantities in China, which Panasonic saw as a major growth market.
And the TV product mix is changing: two years ago Panasonic sold 7.5m plasma TVs in a year, representing almost 40% of its TV sales, but this year it expects to sell just a third as many, and for LCD-based TVs to account for 84% of all sales.
The company says it isn"t abandoning plasma: it still makes display panels in Japan, and sets are assembled at several plants worldwide. And that includes China: some of the capacity of the Shanghai plant will transferred to an existing LCD TV factory in Jinan, Shandong Province.
Panasonic Corp. is shutting down a plasma-television assembly plant in Shanghai, the latest indication of how the Japanese consumer-electronics maker"s big bet on the technology hasn"t paid off.
The closure of the Japanese electronics company"s sole dedicated plasma-TV factory in China is part of its broader restructuring, and comes as demand for plasma-TV sets is declining. Liquid-crystal-display TVs dominate the market, and most Panasonic TV sets now come with LCD screens.
Motorola has scrapped an alliance with Moxell Technology to bring Motorola-branded plasma TVs, LCD TVs and monitors to North America and China, a nation where Motorola enjoys high recognition and brand awareness. The TVs and screens had been expected to come out in the middle of this year.
A Motorola representative said the deal ended because of a "difference of opinion over the portfolio of products in North America." Some Motorola LCD monitors did come out in China. These will be sold off. TVs, however, never made it to either market, and North America did not see a launch of Motorola LCDs.
"LCD TVs were supposed to be the panacea, but (shipments) did not live up to expectations," said Vinita Jakhanwal, a senior analyst with research company iSuppli, speaking in July of the LCD industry in general.
Plasma TVs contain tiny pockets of gas, and when a voltage is applied to them, they turn into a plasma state. The voltage then strikes the mercury within the plasma to emit ultraviolet (UV) rays, which pass through phosphor cells to produce an image. Each pixel in the TV contains three phosphor cells: red, green, and blue, and these three colors combine to produce a color. Essentially, plasma TVs don"t require a backlight, and each pixel is self-emissive as it produces its own light.
Unlike plasma TVs, LCD TVs use a backlight. Initially, LCD TVs used Cold-Cathode Fluorescent Lamp (CCFL) as their backlight. These are long tubes that are placed horizontally across the screen behind the LCD panel. When the light is turned on, it applies a voltage to the pixels, which makes them rotate a certain way to allow light through and produce an image. When it wants to display black, the pixels are rotated to create an opaque screen so that light doesn"t get through. This is what makes them different from plasma TVs because each pixel isn"t self-emitting.
Light-Emitting Diode (LED) TVs are the same as traditional LCD TVs, but instead of using CCFL backlights, they use many smaller LED lights. It produces an image the same way as a regular LCD TV because it still uses an LCD panel, but it has more control over the backlighting. The LEDs can be placed along the edges, which is called edge-lit LED, or all over the back panel, which is either called direct LED or full-array backlighting. You can see the differences between LCD and LED TVs below.
It"s also important to note LED is simply a marketing term used by manufacturers to describe their backlight. They"re still technically LCD TVs, but since calling them LED is so common now, we even label them as LED, and we"ll continue to do so throughout this article.
Plasma and LED TVs each present their own advantages and disadvantages in terms of picture quality, price, build, and availability. It"s generally thought that plasma produces a better picture quality due to their superior contrast ratio, but LED TVs became more popular because of other factors, like a lower cost and greater availability.
Below you can see the differences in picture quality between two older TVs from 2013. It"s clear the plasma was better at the time, but LED TVs have also gotten better since then, so picture quality has greatly improved.
Contrast ratio was one of the main advantages and selling points of plasma TVs. Since each pixel emitted its own light, it simply turned itself off when it wanted to display a black image. This allowed the TV to display very deep blacks, but because there was always a bit of charge left in the plasma, it still wasn"t a perfect black level.
On the other hand, LED TVs can"t achieve a perfect black level because the backlight is always on. However, technology has evolved to greatly improved the contrast of LED TVs, even to the point where it"s also as good as what plasma once was. There are two main types of LCD panels in TVs: Vertical Alignment (VA) and In-Plane Switching (IPS). VA panels produce a better contrast than IPS, and high-end TVs also have local dimming features that turn off certain zones of the LED backlights. Still, you won"t get a perfect black level, but most modern LED TVs produce such deep blacks that even in a dark environment it looks like perfect black levels. For reference, plasma TVs had a max contrast of about 4,000:1, according to DisplayMate.com, but some recent LED TVs can reach a contrast of over 20,000:1 with local dimming enabled, like the Samsung QN90A QLED.
LED TVs are a clear winner here, and it"s one of the reasons why they surpassed plasmas in terms of popularity. LED TVs get significantly brighter, so they can fight glare from light sources easier. Additionally, plasma TVs had to use glass on their front panel, which caused intense glare if you had any lamps or windows around the TV. LED TVs can use a coating on their glass panel to help reflect and diffuse light, making it a better choice for well-lit rooms.
Plasmas were designed for dark-room viewing, but since most people don"t have dedicated home theater setups and often watch with a few light sources around, they weren"t that useful. As you can see below, the plasma TV had pronounced reflections, to the point where it"s even hard to see the image, and instead you"re watching yourself watch TV. Reflections are still noticeable on an LED TV, but at least you can see the image.
Pixels on plasma TVs emitted light in all directions, creating extremely wide viewing angles, much better than most LED TVs. This means that the image remained accurate when viewing from the side, which was great for watching sports or a show with a few people. Out of the two main panel types for LED TVs, IPS has wider viewing angles than VA panels, but it"s still not as good as plasma.
TV manufacturers have tried different technologies to improve viewing angles on VA panels. Samsung has an "Ultra Viewing Angle" layer, and Sony uses their "X-Wide Angle" technology to increase the viewing angles, both at the cost of a lower contrast ratio. It"s still not as good as plasma, but they"re wide enough for watching TV in a fairly large seating area.
Below you can see the differences in viewing angles between a plasma and a VA panel. These TVs were tested on different test benches, so you shouldn"t directly compare the videos, but we included them to give you an idea of how each technology affects the viewing angle.
Plasma TVs were great for motion handling, like with sports and video games due to their quick response time. Since each pixel had to retain a certain charge at any given moment, it was ready to display an image almost instantly. This meant fast-moving scenes looked crisp and smooth, with no motion blur behind them. However, for LED TVs, it can be a toss-up; some lower-end models have a slow response time that causes motion blur, while other high-end TVs have a really fast response time.
Some LED TVs also use Pulse Width Modulation to dim their backlight, and this causes the backlight to flicker, which may create image duplication in fast-moving scenes. This can be particularly annoying, especially if you"re watching sports with fast-moving content.
In terms of refresh rate, plasma TVs had a higher internal refresh rate, up to 600Hz, while LED TVs tend to be 60 or 120Hz. However, the refresh rate depends on the content, and since most content doesn"t go past 120 frames per second, having a higher refresh rate TV isn"t very useful.
Screen uniformity is another area where plasma TVs win. Since they didn"t have a backlight, they could evenly control each pixel. LED TVs can suffer from uniformity issues, like darker edges or Dirty Screen Effect in the center, because the backlight output may not be even across the panel. However, this is only really noticeable when watching content with large areas of uniform color, like a hockey or basketball broadcast, or if you"re going to use the TV as a PC monitor. It shouldn"t be noticeable with other types of content, and since uniformity can vary between units, you shouldn"t worry about it too much.
One of the reasons plasma TVs didn"t last too long at the top of the TV world is because of their risk of temporary image retention and permanent burn-in. Plasmas lose their brightness over the years, and in the worst case, would have permanent burn-in with certain colors staying on the screen, as you can see here. Even after watching content with static elements, like the news, for an extended period, the outline of the static elements would stay on the screen for a few minutes after changing the channel.
These problems are particularly annoying, especially if you watch a lot of TV. There was no way to help reduce this issue, and after a few years, depending on how much you used the TV, your plasma would need replacing. LEDs don"t suffer from this same permanent burn-in, so you won"t have to worry about replacing your LED TV down the line because of burn-in.
Due to their different technologies, LED and plasma TVs are built differently. Plasma TVs tended to be heavier and thicker because the panel itself was larger. Although plasmas were the first flat-screen TVs available at a consumer level at the end of the 20th century, LCD TVs quickly became even thinner, easier to package, and lighter to carry from the store to your house. These days, LED TVs are as thin as 1", like the Samsung QN85A QLED.
Plasma TVs also required a lot of power to work and tended to get very hot. With the growth of environment-friendly consumer practices, it became clear LED TVs would win out since they required a lot less electricity, and in a way were better for the environment.
Both plasma and LED TVs were made with larger sizes, but LED had a slight advantage because they were also made in displays smaller than 32 inches, like with monitors. Although small TVs are rare now, you can still find a basic 28 or 32 inch TV for a kitchen or bedroom with an LED panel. Plasma TVs weren"t made that small. LED TVs also cost less to produce and are cheaper on the market, so at the end of the day, the lower cost drove LED sales.
When 4k TVs started to become the norm over 1080p and 720p TVs in the mid-2010s, manufacturers started to produce 4k LED TVs, while plasma TVs were stuck at 1080p. This presented a major advantage for LED TVs, as a higher resolution helps create a crisper image, and this essentially was the nail in the coffin for plasma TVs. Since manufacturers were focused on making 4k LED TVs, plasma TVs became less available, and by 2014, Panasonic, LG, and Samsung all stopped their plasma production. LED TVs surpassed plasma sales in 2007, and they haven"t looked back since.
There were a few other problems that contributed to the decline of plasma TVs. First of all, plasma TVs didn"t work at high altitudes because of the change in air pressure with the gasses inside. They would create a buzzing noise, and the image wouldn"t look the same, so this could have been problematic if you lived at a high altitude. LED TVs can be used at any altitude; you shouldn"t use them in extreme cold or extreme heat, but this is standard practice for any electronic, and temperature is easier to control than your altitude. Also, plasma TVs emitted a radio frequency that could have interfered with other devices around, like if you had a radio in the same room. Each of these issues are simply inconvenient for most people.
The simple answer is yes, but it doesn"t mean you should go out tomorrow and buy a new TV just because you read this article. If you aren"t experiencing any issues with your plasma, then you probably don"t need to replace it right away. However, if you notice your plasma is starting to show some signs of permanent burn-in, it"s probably a good idea to get a new TV before the burn-in becomes worse.
There could be other advantages if you upgrade your TV, like technological advancements and a higher 4k resolution. Modern TVs come with a built-in smart system, which isn"t something that most plasmas had, and this allows you to directly stream your favorite content without the need for an external streaming device. As mentioned, LED TVs aren"t very costly, and you can easily find the best 4k TVs for under $500.
At the same time that plasma TVs met their end, OLEDs grew from the ashes of their predecessor. After LG released the first commercially available 55 inch OLED in 2012, it soon competed with LED TVs. OLED, which stands for Organic Light-Emitting Diode, is different from plasma, but shares many of the same characteristics, while also avoiding some of plasma"s downfalls.
OLEDs use self-emissive pixels, but what sets them apart is how the pixels completely shut off, creating an infinite contrast ratio and perfect black uniformity. This is an improvement from plasma because it was never able to reach those perfect blacks. OLEDs also have wide viewing angles and a near-instant response time like plasmas. Sadly, they don"t get extremely bright, but they"re still better for well-lit rooms than plasma because they get a bit brighter and have much better reflection handling. Also, OLEDs have the same burn-in risk as plasma, but this only happens with constant exposure to the same static elements, and we don"t expect it to be a problem for people who watch varied content.
Another advantage for OLED is how thin they are, especially compared to plasma, and they aren"t as heavy. For example, the LG GX OLED is a TV designed to sit flush against the wall and it"s only 0.94" thick!
Compared to LED competitors, OLEDs are much more costly, and even though they offer superior picture quality, LEDs are still the favorite. Also, LED TVs are available in smaller sizes, while the smallest OLED TV we"ve tested is 48 inches. LEDs are generally the better choice for well-lit rooms since they still get much brighter, but OLEDs are a fantastic choice for dark room viewing.
Although plasma TVs once dominated the TV market for a short time at the turn of the 21st century, their disadvantages outweighed their advantages, and LED-backlit LCD TVs soon held the market share of sales. There were a few reasons for this, like burn-in issues, low peak brightness, and a thick and heavy design compared to LED TVs. Despite plasma TVs" superior overall picture quality, improved contrast, and very quick response time, it wasn"t enough to convince consumers to keep buying them once 4k LED TVs became readily available. If you still have a plasma, it"s likely you"ll need to replace it within the next few years, and you"ll probably buy a new LED TV.
You can get made in china lcd tv with an operation range that suits your specific application, choosing from a wide selection of suppliers. Source wholesale made in china lcd tv on Alibaba.com for your business and enjoy a wide variety and great deals.
TV definition improves vastly every day with constant new technology. With our wholesale 4k Ultra HD TVs, viewers can watch their favorite programs in ultra-high definition. These made in china lcd tv come in the highest resolution for optimal viewing. For customers who want the latest technology at affordable prices, then choose from our range of 4k TVs.
Looking for amazing TV deals? Alibaba supplies online wholesale made in china lcd tv in a range of sizes at incredible prices. Smaller TVs, such as a 20-inch TV or a 32-inch tv, are great for putting in bedrooms, or on kitchen walls for all of the family to watch. Larger tvs, including as TV as, as 20 asinch TV, are ideal for being the main TV in the house. Put these in the middle of the living room for sensational viewing. To view all of our wholesale deals on made in ch l tv, then visit our online wholesaler"s – –ibib...
• Perform highly diversified duties to install and maintain electrical apparatus on production machines and any other facility equipment (Screen Print, Punch Press, Steel Rule Die, Automated Machines, Turret, Laser Cutting Machines, etc.).
LG Electronics is one of the topmost Non Chinese TV brands. It is a South Korean multinational electronics company. The company"s headquarters is based in Yeouido-dong, Seoul, South Korea. LG Electronics has a great stronghold in Indian markets and its TVs provide a great viewing experience with amazing features. There are various types of LG TVs like LED, OLED and Plasma televisions. LG E9 OLED is one of the best models of the brand and LG B9 OLED is very reasonably-priced, as per an online news portal.
Samsung is a Korean multinational conglomerate. It is headquartered in Samsung Town, Seoul. It was founded by Lee Byung-chul in 1938 as a trading company and entered the electronics industry by 1960s. Samsung has introduced a great range of LED and smart TVs that are not only affordable but also give the best features. The prices range from ₹14990 to ₹31990. It"s TE50A Smart HD TV is a model to look out for.
Sharp Corporation is also one of the Non Chinese TV companies that is situated in Japan. This Japanese corporation designs and manufactures various electronic products. Its headquarters are situated in Sakai-ku, Sakai, Osaka Prefecture and was established in 1912. Sharp also had made some amazing portable TVs in the 1950s. It has a full range of TVs from 32 Inch up to 70 Inch at reasonable prices.
Toshiba Company is also a Japanese multinational conglomerate with its headquarters in Minato, Tokyo. The company provides various products in IT and communications along with electronics. Toshiba"s 49U7763DB, with 4K TV, is a great TV model by the company. It provides some of the best TVs with affordable prices and stunning features.
Onida is an India-based electronics company that started its journey in 1981. They started purely as a TV brand company, and then slowly shifted to manufacturing other home appliances as well. "It"s Neighbour’s envy", Owner’s pride’ tagline is one of the most memorable ones in the history of Indian advertising. The company has two manufacturing facilities in Wada, Maharashtra and Roorkee in Uttarakhand. They produce over 3.4 Million Televisions. Onida has a wide range of stunning television sets, smart LED TVs with FIRE TV ranging from 20,000 to 99,000 as well.
One of the popular Indian TV companies is Videocon Industries started in the year 1985 in Aurangabad. It was started by Nandlal Madhavlal Dhoot. As per Anirudh Dhoot, his grandson, Videocon was the first company to bring colour TVs in India. It has over 100 models in TV, ranging from 24” to 98” displays. Videocon’s high-end TVs include Ai Smart TV, Liquid Luminous Display, Ultra HD, Wireless display connectivity and are even star-rated, which means they are power-saving.
Once among the most popular TV makers in the World, Panasonic pulled out of the U.S. TV market in 2016. The brand"s TVs are no longer featured on their U.S. website, and they no longer appear at Best Buy, which was once the manufacturer"s primary sales outlet.
Despite Panasonic"s exit from the market, you may still find some used 2015 and 2016 TVs for purchase through Amazon, as well as some brick-and-mortar retailers.
Panasonic"s departure from the U.S. TV market means that Sony is the only major Japan-based TV maker selling TVs in the U.S. The current major players, such as LG and Samsung are based in South Korea. Vizio is a U.S. based brand that manufactures overseas, and the rest (TCL, Hisense, Haier) are based in China.
Things started going downhill for the TV division when Plasma TV sales began to plummet alongside improvements in LCD TV technology. Lower power consumption, LED Backlighting, fast screen refresh rates, and motion processing, as well as the introduction of 4K Ultra HD, resulted in a sales explosion for LCD TVs. Since Plasma was the claim to fame and the main focus of its TV marketing strategy, these developments did not bode well for the company"s sales outlook. Consequently, Panasonic ended Plasma TV production in 2014.
Although LG and Samsung also used to feature Plasma TVs in their product lines (both brands also ended production in late 2014), they did not emphasize Plasma over LCD, so its demise did not have as big of a financial impact.
In addition, with increased competition from LG, Samsung, and the aggressive entry of China-based TV makers, Panasonic found itself in a corner as consumers failed to warm to the company"s own LCD TV product lines, even though the sets were definitely deserving of consideration.
Despite obstacles, the company continued to make efforts to stay in the market. In 2015 and early 2016, it displayed and delivered budget-priced 4K Ultra HD LCD TVs and hinted at its own OLED TV product line. If this plan had continued, the move would have made it one of the only TV makers, along with LG and Sony, to market OLED TVs in the U.S. Unfortunately, it reversed course on both OLED and LED/LCD. As a result, Panasonic TVs (including OLED) are only available in select markets outside of the U.S.
While Panasonic no longer offers TVs for U.S. customers, it still has a solid presence in several key product categories. Those markets include Ultra HD Blu-ray Disc players, headphones, and compact audio systems. The company has also resurrected its high-end Technics audio brand.
Despite all of Panasonic"s misfortunes, there may be a silver lining for brand fans and U.S. consumers. Whether it re-enters the U.S. TV market depends a lot on whether its 4K Ultra HD and OLED TVs sell well in Canada.
Today, Philips Magnavox specializes in television sets and the assembly of projection TVs. The company also has several plants worldwide that help in the assembly of materials: Mexico, China, Thailand, and Malaysia.
Silo Digital is a private company in Chatsworth, California that specializes in LED TVs. Perhaps more interesting is how the company has been leading the TV manufacturing scene in the country for the past decade.
They entered the industry with their tube TVs, but really only gained popularity later.Since then, the company now manufacturers quality LCD and LED TVs: