china mini tft display free sample
Established in 2010, Topfoison has devoted itself to the manufacturing and development of high-quality products for the Wearable device, Smart Watch, VR, Medical device, Industrial LCD display including Color LCD modules/OLED/LCD display/Round lcd screen/Round AMOLED/ Square transflective lcd screen/ IPS full wide display/ 1080p fhd AMOLED and 2K 1440p lcd. Topfoison focus on1.22-7.0 inch small size displays, all the products produced in our company enjoys the most advanced production craft and technology as well as the strictly ISO quality management system.
Established in 2010, Topfoison has devoted itself to the manufacturing and development of high-quality products for the Wearable device, Smart Watch, VR, Medical device, Industrial LCD display including Color LCD modules/OLED/LCD display/Round lcd screen/Round AMOLED/ Square transflective lcd screen/ IPS full wide display/ 1080p fhd AMOLED and 2K 1440p lcd. Topfoison focus on1.22-7.0 inch small size displays, all the products produced in our company enjoys the most advanced production craft and technology as well as the strictly ISO quality management system.
Nextion is a Human Machine Interface (HMI) solution combining an onboard processor and memory touch display with Nextion Editor software for HMI GUI project development.
Using the Nextion Editor software, you can quickly develop the HMI GUI by drag-and-drop components (graphics, text, button, slider, etc.) and ASCII text-based instructions for coding how components interact on the display side.
Nextion HMI display connects to peripheral MCU via TTL Serial (5V, TX, RX, GND) to provide event notifications that peripheral MCU can act on, the peripheral MCU can easily update progress, and status back to Nextion display utilizing simple ASCII text-based instructions.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Factory Free sample Oem 4mm Two Way Mirror Glass - Special Price for China Factory Price 1mm Ultra Thin Anti-Fingerprint Keyboard Glass Panel – Saida Detail:
we are able to supply top quality items, aggressive price and greatest buyer assistance. Our destination is “You come here with difficulty and we offer you a smile to take away” for Special Price for China Factory Price 1mm Ultra Thin Anti-Fingerprint Keyboard Glass Panel, With us your money in secure your business in protected . Hope we can be your trustworthy supplier in China . Wanting forward for your cooperation .
we are able to supply top quality items, aggressive price and greatest buyer assistance. Our destination is “You come here with difficulty and we offer you a smile to take away” for China Tempered Glass, Float Glass, As an experienced manufacturer we also accept customized order and we could make it the same as your picture or sample specification. The main goal of our company is to live a satisfactory memory to all the customers, and establish a long term business relationship with buyers and users all over the world.
We are also specializing in improving the things management and QC method in order that we could retain terrific edge inside the fiercely-competitive small business for Factory Free sample Oem 4mm Two Way Mirror Glass - Special Price for China Factory Price 1mm Ultra Thin Anti-Fingerprint Keyboard Glass Panel – Saida, The product will supply to all over the world, such as: Guinea, Mumbai, Chicago, Our continual availability of high grade products in combination with our excellent pre-sale and after-sales service ensures strong competitiveness in an increasingly globalized market. welcome new and old customers from all walks of life to contact us for future business relationships and mutual success!
Influence of the slight adjustment of oxides on the structural and physico-chemical properties of thin film transistor-liquid crystal display substrate glass
Data from: Influence of the slight adjustment of oxides on the structural and physico-chemical properties of thin film transistor-liquid crystal display substrate glass
By the slight adjustment of oxides constituting thin film transistor-liquid crystal display (TFT-LCD) substrate glass, including equal mole fraction substitution of Al2O3, GeO2, B2O3, P2O5 and ZrO2 for SiO2, as well as the substitution of CaO for SrO with the total contents unchanged, the structural and physico-chemical properties of the glass was investigated by Raman spectroscopy and other measurements. The results showed that the short-range disorder brought by the substitution of GeO2, B2O3 and P2O5 for SiO2 could weaken the stability and compactness of the glass network, and the physico-chemical properties deteriorated, while the process of glass melting would become easier accordingly. The short-range disorder by the substitution of ZrO2 for SiO2 with 1% mole fraction showed a little difference with other samples. Finally, the substitution of modified cations, such as CaO and SrO, showed a smaller variation compared with the substitution of network formers. On the condition of 1% mole fraction substitution of oxides investigated, the variation of samples showed a reasonable change and the performance was basically all satisfied for the use of TFT-LCD substrate.
Thin film transistor-liquid crystal display (TFT-LCD) substrate glass is a kind of substrate for electronic display [1,2]. In order to meet the demand of the process of LCD devices, the glass needs to be alkali-free. The international representative products such as Corning Eagle XG™ and Asahi AN100™ mainly contain some conventional oxides, such as SiO2, Al2O3, B2O3, MgO, CaO and SrO [3,4]. The influence of some unconventional oxides on the structural and physico-chemical properties of alkali-free glass deserve further study for the improvement of the glass industry. For example, some glass network formers, such as GeO2 and P2O5, and the modified cations ZrO2, the substitution of them for SiO2 could play an important role in shaping the glass network and improving the performance of glass. Herein, we studied the influence of the slight adjustment of oxides mentioned above. To investigate the structural and physico-chemical properties of the glass, Raman spectroscopy, as well as some physico-chemical measurements were used to evaluate the effects of the slight adjustment of oxides.
Seven kinds of the chemical compositions of alkali-free glass for TFT-LCD substrate are summarized in table 1, wherein sample 1 is the reference sample for the other six samples, which are acquired by the slight adjustment of oxides from sample 1. The details are as follows: sample 2 is acquired by 1% mole fraction substitution of Al2O3 for SiO2 with equal total amount compared with sample 1, and the other samples are acquired in the same way as sample 2, including 1% mole fraction substitution of GeO2 for SiO2 for sample 3, 1% mole fraction substitution of B2O3 for SiO2 for sample 4, 1% mole fraction substitution of P2O5 for SiO2 for sample 5, 1% mole fraction substitution of SrO and CaO for sample 6 and 1% mole fraction substitution of ZrO2 for SiO2 for sample 7. By the slight adjustment of the oxides, the structural along with the physico-chemical properties were investigated.
Table 6 shows the logarithm volume resistivity of samples measured at 25°C and 250°C, respectively. TFT-LCD substrate glass is a kind of alkali-free glass and the alkali-earth ions are the primary conductive elements, which show a lower conductivity than alkaline ions. This is why the volume resistivity of TFT-LCD substrate glass is larger than conventional soda lime glass. At a temperature of 25°C, the logarithm volume resistivities of the TFT-LCD substrate glass is between 15.1 Ω cm and 15.9 Ω cm. When the samples were heated, the energy of alkali-earth ions increased, and the number of ions with high enough energy in the glass network that could migrate in the electric field also increased, causing the decrease of the resistivity to around 13 Ω cm at 250°C shown in table 5, which declined about 100 times compared with that at 25°C.
By the slight adjustment of oxides of the TFT-LCD substrate glass, including equal mole fraction substitution of Al2O3, GeO2, B2O3, P2O5 and ZrO2 for SiO2, as well as the substitution of CaO for SrO with the total contents unchanged, the structure and physico-chemical properties of glass was investigated. The results were as follows.(i) The architecture of the glass network did not show too much difference with the substitution of 1% mole fraction for network formers and modified cations. The low frequency bending vibration of Si–Ob in Si–Ob–Si bonds dominated in alkali-free glass, and B3+ was mainly found in the form of a [BO3] triangle owing to its inferiority to Al3+ coordinated by oxygen ions and fewer alkali-earth ions. As for the [SiO4] tetrahedron, Q3 and Q4 units accounted for the most in four kinds of [SiO4] units. With the substitution of oxides for SiO2, Q3 decreased and Q4 increased, but the disorder degree of network increased, embodied in the lower frequency shift of the Raman peak. Sample 7 with Zr4+ showed more peak shift than others, mainly owing to the high electric of Zr4+ that can significantly affect the glass network.
Analysis on the development trend of liquid crystal substrate glass[C]. Electronic-Glass Technology Papers of Electronic Glass Branch Committee, Chinese Ceramic Society. Beijing, China: Electronic-Glass Technology, Chapter, 10–15.
Data from: Influence of the slight adjustment of oxides on the structural and physico-chemical properties of thin film transistor-liquid crystal display substrate glass