transparent lcd panel manufacturer quotation

2098 transparent lcd display manufacturer products are offered for sale by suppliers on Alibaba.com, of which digital signage and displays accounts for 56%, lcd modules accounts for 34%.

A wide variety of transparent lcd display manufacturer options are available to you, such as original manufacturer, odm and agency.You can also choose from datasheet, transparent lcd display manufacturer,as well as from tft, ips, and standard transparent lcd display manufacturer,

transparent lcd panel manufacturer quotation

Transparent lcd displays are available in a variety of colors. On Alibaba.com, you can find the type of transparent lcd displays made in a variety of materials. Such as polystyrene, inexpensive, and easy to maintain and use. Clear lcd displays in bulk are available at wholesale prices.

Transparent lcdds are flexible because they include more things than a single-, rystal-displays, and membrane-displaysers. Clear lcdds are flexible, which include them that require more maintenance and more than the latter type of display. Find lcdds in bulk available on Alibaba.com.

Transparent LCD displays have a variety of functions and interfaces for different products. On the other hand, LCD displays create a variety of events that will be relevant to the user and interfere with the content.

Find the ideal type of lcd display in bulk, suppliers on Alibaba.com offer a wide variety of lcd displays in bulk. For lcd displays in bulk, it"s free to explore the wide variety of lcd displays in bulk and at wholesale prices.

transparent lcd panel manufacturer quotation

Screen Solutions offers complete solutions for transparent displays including standard and custom display cases. SSI has designed and built transparent displays for companies like Chrysler, Lockheed Martin, Mazda and many others over the last 15 years.

Standard Sizes start as small as 10″ and can get as big as 86″ Diagonal as seen in the video to your left. These complete displays include transparent panel, lighting, glass, display case and even a touch screen if you want.

transparent lcd panel manufacturer quotation

Transparent LCD’s provide an innovative display solution opening up new ways for brands to promote their products and services. Examples include retail stores looking to advertise a new fashion clothing or accessory, museums securely housing a precious artifact with information displayed on screen or brands looking to launch a new product at a live event or show. The opportunities are endless!

Our Transparent LCD Displays include a Grade A LCD panel with metal bezel protecting the edges / electronics and a media board supporting HDMI or VGA inputs from your PC, Laptop or Media Player.

Transparent screen technology offers intriguing ways to deliver visual information to your audience, being used to reveal or conceal products, objects or artefacts behind the screen.

The combination of HD LCD technology (4K on our 65″, 86″, 98″ version) with a transparent screen substrate opens up creative avenues that were previously closed with traditional LCD displays. Solid black pixels on a transparent background can be used in intriguing ways to hide (and gradually reveal) whatever is behind the screen.

Our Transparent LCD monitors are designed for integration into the customers own furniture housing or display case while our Transparent LCD showcases offer a complete solution including the display, housing and backlight with white or black options available on request. We can also offer custom freestanding options for POP / POS displays. Transparent LCD’s are predominantly fully housed however we’ve recently developed an innovative housing method using a high brightness LED panel which allows the display case sides to remain transparent for improved visibly into the display case.

Using their original design as a starting point, we worked closely with the team at Nike to adapt to the mechanical aspects of the design, the result was a sleek and minimalist set of nine Transparent LCD Display Screens, custom built to suit the applications requirements, bringing Nike’s original concept ideas to life.

Transparent LCD’s comprise of an LCD panel without the backlight with white pixels appearing as transparent. In order to display an image, the Transparent LCD needs to be integrated into a housing with a high bright LED backlight.

We can also offer more complete solutions like our Transparent LCD Showcase that comes fully contained and ready to use with a powerful backlighting system to guarantee the best picture quality.

Yes in order to display an image Transparent LCD’s need to have a strong backlight. Notoriously Transparent LCD’s have also needed some form of housing to achieve optimum image quality, however, Nike’s House of Innovation paired our Transparent LCD’s with powerful, oversized backlights that allowed the screens to be mounted with no surround but still producing a high-quality image.

Transparent LCD’s are arguably the most popular transparent screens but are hindered by their need for a backlight to operate. For applications looking for a similar effect without the backlighting, Transparent OLEDs require no housing or surround but are only currently available in a 55″ screen size with HD quality. For larger transparent screen applications, Transparent LED’s are recommended with external and internal solutions usually installed to glass facades for the impact of an led screen without compromising the view from inside the building.

We also offer transparent projection technologies including our Clearview Rear Projection Film featured in Guardians of the Galaxy as well as at the 83rd Oscars celebration and MTV EMA awards.

Transparent LCD’s are a great way to combine physical and digital displays in one central place making them a popular choice for museums and exhibitions. Our transparent screens can also be integrated into display furniture and appliances & vending machines like freezer doors for supermarkets. Other uses include POS displays, store window displays, trade shows and product launches.

We manufacture in Britain and ship worldwide – if you need further information, a pricing quote, or want to discuss ideas for using our Transparent LCD Display click the link below to contact us, email us via info@prodisplay.com or call us on +44 (0)1226 361 306.

transparent lcd panel manufacturer quotation

The combination of HD LCD technology (4K on our 84″ version) with a transparent screen substrate opens up creative avenues that were previously closed with traditional LCD screens. Solid black pixels on a transparent background can be used in intriguing ways to hide (and gradually reveal) whatever is behind the screen.

A transparent LCD screen can also be combined with touch foils or touch frames to add an interactive element to your installation. This creates a particularly powerful impact when the content on screen integrates with real life objects behind the screen, encouraging viewers to interact.

Retail windows, interactive booths, display cases, interactive games, vending machines, drinks coolers… the uses for transparent screens are limited only by your creativity.

transparent lcd panel manufacturer quotation

The present invention relates generally to refrigerated display cases and refrigerator doors and, more particularly, to a refrigerator door with a transparent LCD panel. BACKGROUND OF THE INVENTION

The invention described herein includes the use of a transparent LCD glass panel as one of the panes in a three-pane unit, such as one used in an insulated glass refrigerator/freezer door.

Other types of refrigerator/freezer doors also require both power and data. For example, LED light fixtures mounted to the swinging door, LED illuminated marquee signs mounted inside the insulated glass assembly of the door, LCD displays mounted on the door handle, and transparent LCD glass panels with advertising all require both power and data. Most of these products require UL Class 2 low voltage (<60VDC), and many require a data supply, e.g. LCD displays with advertising pictures or videos requiring TCP/IP type data communications.

Generally, the invention is to use a transparent LCD glass panel as one of the panes in a three-pane unit, such as one used in an insulated glass refrigerator/freezer door. With the transparent LCD panel, a consumer can see the media shown on the LCD panel, but can also see inside the display case/refrigerator to view the contents therein. For example, transparent LCD panels are commercially available from Samsung. In a preferred embodiment, the LCD glass panel is used as the center panel. It is within the scope of the present invention to use the LCD glass panel as the inner or outer pane or to add the LCD glass panel as an additional pane. However, in a preferred embodiment, the LCD glass panel needs to be protected from impact and/or moisture damage. Mounting the panel externally may decrease visible transmittance and would also subject the panel to impact by shopping carts. Also, if the store ambient temperature and humidity are not properly controlled, the door can be subject to condensation which may damage the LCD panel or associated electronics. Mounting the panel inside the freezer (adjacent to the food) may cause condensation when the door is opened. Housing the LCD panel inside the hermetically sealed glass unit protects the panel from condensation damage. The associated electronics can also optionally be mounted inside the hermetically sealed glass assembly to protect them from condensation damage. In another embodiment, the electronics can be mounted outside the hermetically sealed glass assembly, such as in the rail of the door.

The door preferably includes the following distinctive features: (1) transparent LCD panel functioning as the center insulating pane of a three-pane low-temp glass freezer door to maximize visible transmittance while maintaining thermal insulating performance; (2) transparent LCD panel mounted between an inner and outer pane of glass to it protect from impact damage; (3) transparent LCD panel mounted inside the hermetically sealed glass unit to protect from moisture damage; (4) mounting the associated electronics, wires, and media player inside the sealed glass unit to protect it from moisture damage or inside the rail of the door; (5) using selectively decorated opaque areas (e.g. screen printing, dot matrix decorating, roller printing, ink jet printing, painting or the like) of the outer or inner pane of glass to hide the circuit boards around the LCD panel perimeter, the wires, and media player hardware of the door assembly, allowing the complete system to be conveniently housed inside the door. The “LCD door” can be used for advertising merchandise, nutritional value, pricing, etc.

In accordance with a first aspect of the present invention there is provided a door assembly that includes a single glass unit having at least first, second and third panels, a front surface, a rear surface, and an outside edge. At least one of the first, second or third panels is a transparent LCD panel on which media can be displayed. The single glass unit also includes a frame that at least partially surrounds the outside edge of the single glass unit, and electronic components in electrical communication with the LCD panel. In a preferred embodiment, the second panel comprises the transparent LCD panel and is positioned between the first and third panels and the first panel is spaced from the second panel by a first spacer and the third panel is spaced from the second panel by a second spacer. The first, second and third panels each have an outside edge and a length and a width. The length and the width of the second panel is smaller than the length and the width of the first and third panels, thereby defining a margin between the outer edge of the second panel and the outer edges of the first and third panels. The first panel is spaced from the third panel by a third spacer that is positioned within the margin.

In a preferred embodiment, the single glass unit includes insulation disposed within the margin and between the first and third panels and the second panel is hermetically sealed between the first and third panels. Furthermore, the first panel includes an outer opaque section and an inner transparent section through which the second panel is visible. In one embodiment, the electronic components for running the LCD panel are disposed between the first and third panels. In another embodiment, the electronic components are positioned in the rail and the rail includes a removable cover for accessing the electronic components. In an embodiment, one of the panels includes an electro-conductive film thereon that is generally clear, wherein when a voltage is applied across a portion of the film, the film becomes opaque. In an embodiment, the electronic components are powered by 24V DC. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a series of refrigerated display cases that each include a door assembly with single glass unit having a center LCD panel;

FIG. 2 is a front elevational view of one of the single glass unit having a center LCD panel of FIG. 1 with a portion of the front outer pane cut away to show the electronic components;

FIG. 1 shows a series of refrigerated display case doors 100 that include a three-pane unit, single glass unit or package 10 with a transparent LCD panel 16 associated therewith. FIGS. 2-4 show the single glass unit 10 with front/outer pane 12, rear/inner pane 14 and center transparent LCD panel 16. It will be understood that in FIGS. 2-4 and 8, the outer perimeter or frame 102 of the door 100 is not shown. In a preferred embodiment, the panes are glass. However, any transparent material, such as plastic, can be used.

As shown in FIG. 3, in a preferred embodiment, the single glass unit 10 includes front and rear panes 12 and 14, LCD panel 16, electronic components 18, spacers 20 a, 20 b, 20 c,and insulation 22. In a preferred embodiment, the front and rear panes 12 and 14 include an opaque section 24 that obscures or hides components inside the unit 10. For example, by providing the opaque section 24 (preferably done by screen printing or some other type of coating) on selected areas of one or more of the panes 12 and/or 14, the spacers 20 a, 20 b, 20 cinsulation 22, electronic components 18 and other components can be housed inside the unit 10 (and the door 100) and hidden from view. Thermal insulation 22 may be added in certain areas to maintain the overall thermal performance of the door.

Each panel 12, 14 and 16, has a front and rear surface, For ease of description, these are described herein and depicted in FIG. 4 as surfaces 121, 122, 123, 124, 125 and 126. It will be appreciated by those skilled in the art that in use surface 121 faces the customer and surface 126 faces the interior space of the display case.

In a preferred embodiment, the opaque section 24 on the front and rear panes 12 and 14 (or dot matrix decorating, etc.) is placed on surfaces 122 and 125 to hide the components therein and the margin of the LCD panel, etc. However, this is not a limitation and the opaque section(s) can be placed on any desired surface.

It will be understood that the LCD panel may include a number of different layers or panes of glass/plexiglass or the like laminated to one another. Accordingly, as used herein, the LCD panel can be a single layer or multi-layer panel that includes an LCD screen for playing media. For example, the LCD screen may include a layer of glass adhered thereto to improve strength and reduce flex when the door is slammed. This can add strength to the LCD panel by essentially making it a double laminated panel. In a preferred embodiment, the LCD panel 16 has an aluminum rail therearound.

In a preferred embodiment, as shown in FIG. 3, unit 10 includes at least three different spacers 20 a, 20 band 20 c.Spacer 20 aspans the space between the front and rear panels 12 and 14, spacer 20 bspans the space between the front panel 12 and the LCD panel 16, and spacer 20 cspans the space between the rear panel 14 and the LCD panel 16, as is shown in FIG. 4. It will be understood that the spacers 20 a, 20 band 20 care adhered to a surface of the panel 12, 14 or 16. For example, spacer 20 ais adhered to the inner surfaces of front panel 12 and rear panel 14. In a preferred embodiment, the spacers 20 a, 20 band 20 care made of an elastomeric material. However, this is not a limitation on the present invention. The spacers can be made of other materials, such as a polymer, a metal such as aluminum, etc. The elastomeric material or spacers 20 band 20 csupports and suspends the LCD panel 16 inside the door and between the front and rear panels 12 and 14, thus helping prevent damage from shock and vibration when the door 100 closes. In another embodiment, the spacers 20 a, 20 band 20 ccan be formed as a unit, as shown in FIG. 8 and as shown in U.S. Pat. No. 6,148,563, the entirety of which is incorporated herein by reference. In this embodiment, the front and rear panels 12 and 14 are spaced from the center panel by spacers 20 band 20 c,but they are also connected by spacer 20 a.This essentially forms a single spacer with a detent in the middle for receiving the LCD panel 16.

When incorporating a single glass unit 10 with a transparent LCD panel 16, the door includes components 18 for operation of the LCD screen. As shown in FIGS. 2 and 4, in a preferred embodiment, the LCD panel 16 is smaller (length and width dimensions) than the outer panes 12 and 14. This provides space or a margin 25 around the perimeter of the LCD panel 16 for housing the components 18. For example, the unit 10 or door 100 can include circuit board(s) 26 (labeled A-D board in FIG. 2), wires or cables 28, a media player 30 (that includes a hard drive with memory and appropriate software) and associated connectors and such for providing media and/or power to the LCD panel 16. In another embodiment, the unit 10 can include one or more speakers 29, as shown in FIG. 7. In a preferred embodiment, components 18 are positioned within the margin 25 under the LCD panel 16. However, this is not a limitation on the present invention and the components 18 can be positioned as desired. See, for example, FIG. 7, where the components are positioned in the rail of the door, which is described more fully below.

As discussed above, in a preferred embodiment, unit 10 includes a media player 30 for controlling and playing media on the LCD panel 16. Data can be provided to the media player 30 via wires or cables or wirelessly, e.g., Wi-Fi, 802.11:x, etc., as desired (with the appropriate transmitter and/or receiver). In a preferred embodiment, the media player 30 includes a solid-state drive to prevent a spinning hard drive from failing when the door is slammed. However, this is not a limitation on the present invention and a spinning hard drive or other type of drive can also be used. Wireless (or wired) communications with the media player 30 can be used to deliver desired content to be played on the LCD panel 16, e.g, advertising content, nutritional content, special offers, etc. For example, the invention can implement IP addressable communications so an advertiser can remotely feed new data over the Internet. Furthermore, this allows remote monitoring of the health of the hard drive of the media player and associated electronic components.

In a preferred embodiment, the case into which the door 100 is mounted is pre-wired with low-voltage DC power supply, e.g. 12V, 24V, UL Class 2, etc. so that it accepts a transparent LCD door 100 with power through the hinge pin 31, or wired cords near the rotating hinge pin. However, this is not a limitation on the present invention. For example, a high-voltage option can also be implemented. As shown in FIG. 5, insulated electrical conductors and/or wired communications (for the media player 30 and associated components) can be directed through the hinge pin 31 (e.g., via TCP/IP-type Internet communications).

One feature of a preferred embodiment of the invention is to provide an electrical hinge pin 31, similar to the "582 patent hinge pin, but replacing the AC conductors of the "582 patent with low-voltage DC conductors and a data cable. The elimination of the high voltage AC conductors makes more space available in the hinge pin 31 for both the low-voltage DC antisweat heat and powering the electronics, and a data cable, e.g. Cat 5 with TCP/IP type communications. The low voltage conductors (e.g., 24V DC) can be used to power all electronic components, such as the components 18 for the LCD panel 16, heated glass, anti-sweat perimeter heating, etc. In another embodiment, the electrical hinge pin can be omitted and a regular hinge pin can be used. For example, in an outside mount embodiment of the door, the electronic components can be powered by (and data communicated therewith) a cord that does not run through the hinge pin. This type of door may be used, for example, on a self serve case at the end of a check out aisle in a store.

In a preferred embodiment, (and preferably in low-temp applications), an insulating gas, such as argon, xenon or other insulating gas can be used to fill the inner and/or outer cavities 32 between the LCD panel 16 and the front and rear panes 12 and 14, as shown in FIG. 4 (and other voids or cavities within the unit 10). In a preferred embodiment, the gas-filled inner cavities 32 are hermetically sealed (see seal 33 in FIG. 4) to keep from contaminating the transparent LCD panel 16 with dust, residue or outgassing from the outer insulated cavity containing insulation and electronics.

The thickness of the unit 10 can be different for different applications. However, in an exemplary embodiment, the overall thickness of the unit 10 is preferably about 0.125″, with the front and rear panes 12 and 14 being about 0.125″ thick and the center LCD pane 16 being about 0.125″ thick. These dimensions are not a limitation on the present invention.

In a preferred embodiment, any of the panes/panels 12, 14 or 16 can include an electro-conductive coating, such as a pyrolitic coating that is applied by spraying. It will be appreciated by those skilled in the art that other electro-conductive coatings can be used and can be adhered, applied, laminated or the like on a desired surface. For example, a chemical vapor deposition technique can be used. However, this is not a limitation on the present invention.

In a preferred embodiment, panes 12, 14 and 16 are preferably designed to maximize visible light transmission from inside the case to the customer, thereby improving the ability of customers to view display items. However, it is also desirable to minimize the transmission of non-visible light (i.e., ultraviolet and infrared light) through glass unit 10 from outside to inside the case in order to improve thermal performance and to protect items therein. Coolers are a type of refrigerated display case which operate at a temperature of approximately 38° F. Freezers are another type of refrigerated display case which operate below 0° F. When the glass unit 10 of such display cases comes into contact with ambient air, the relatively colder glass unit 10 can cause moisture in the air to condense on the surfaces of the glass unit. Thus, besides the use of the electro-conductive coating described above, it is desirable to use the non-visible wavelengths of light to heat the glass panels, thus reducing or preventing condensation. In a preferred embodiment, the panes 12, 14 and 16 can also include a UV inhibitor, which can help increase the shelf life of products inside. Also, panes 12, 14 and 16 may include low-emissivity heat-reflective coatings to improve overall thermal resistance and/or prevent external condensation. In an embodiment where reflection is an issue, an anti-reflective coating can be applied to any of the panes the glass unit 10.

In a preferred embodiment, touch screen technology 34, as shown in FIGS. 1 and 6, can be used. Exemplary touch screen technology is disclosed in U.S. Patent Publication Nos. 2009/0146945 and 2007/0216657, the entireties of which are incorporated by reference herein. In this embodiment, a user can touch the front of the outer panel 12 and access information as desired. In various embodiments, the entire outer panel 12 can incorporate touch screen technology or only various portions of the outer panel 12 can include touch screen technology. For example, the user can access nutritional information about the contents of the case or the user can access information about the layout of the store.

In a preferred embodiment, the unit 10 includes motion sensor technology, such as a visual recognition camera 36, as shown in FIG. 6. In this embodiment, the media player 30 only plays content on the LCD panel 16, when a person walks by or in front of the unit 10. In an exemplary embodiment, the unit 10 can include software that allows the camera 36, and/or the components thereof, to recognize if a man or a woman is standing in front of the door 100. Therefore, the advertisement or other media played on the LCD panel 16 can be tailored to the specific gender of the person standing in front of the door 100.

In another preferred embodiment, two or more smaller screens can be combined in a matrix to increase the visible display area. For example a 46″ 16:9 standard TV size in a 30″×67″ door leaves a large opaque margin top and bottom. Two smaller adjacent panels would leave more space for visible transmittance. Another way to increase the visible area is to cut down the long side of a larger 16:9 LCD panel such that it better fits the typical 67″ or 75″ vertical height but would otherwise exceed the standard 30″ width.

Furthermore, the LCD panel does not have to be the center panel. In other embodiments, the LCD panel can be the inside or outside panel. For example, a transparent LCD screen can be adhered or laminated to the outside panel or the inside panel of a triple pane refrigerator door. In another embodiment, the unit 10 can include more than three panels or panes. For example, the LCD panel 16 can be inserted between the first and second or second and third panels in a triple pane refrigerator door.

In a preferred embodiment, a separate pocket is created in the margin of the door outside the hermetic seal of the insulated glass, that would allow access to the media player and related electronic components 18 for service or upgrade. This can be implemented by using an “offset” insulated glass package/unit (e.g. pane number three is smaller than pane number one) to create the pocket to contain the media player or other electronics to allow service. However, the glass package/unit does not have to be offset. In another embodiment, as shown in FIG. 7, the pocket 38 is created or defined in the hollow area made by the rail 106. As shown, the rail 106 can include a cover 40 that is removably attached to the rail 106 by threaded fasteners or the like. The cover 40 can be removed to allow access to the pocket 38 and the electronic components 18 therein, thus allowing repair, upgrade, replacement, etc. In FIG. 7, the pocket 38, cover 40 and components 18 are shown in the top rail 106 of the door 100. However, the pocket 38, cover 40 and components 18 (such as speaker 29) can be mounted in any rail or portion of the frame. In another embodiment, the electronic components for running the LCD panel can be mounted in the display case or refrigerator.

In another preferred embodiment, the unit 10 includes a switchable film or glass 42 disposed or laminated on at least one of the surfaces of the front or rear panels 12 and/or 14, as shown in FIGS. 6 and 8. In a preferred embodiment, the film is disposed on surface five, which is the front surface of the rear panel 14. The panel with the switchable film 42 can be formed by laminating a liquid crystal switchable film thereon or the film can be directly mounted on the panel with a double sided tape, optical glue or the like. In use, a voltage is selectively applied to the film to make it either clear or opaque as desired. In a preferred embodiment, if a voltage is applied to the film, it goes clear and if no voltage is applied it is opaque or frosted. Therefore, in use, if no voltage is applied, images on the clear LCD panel look like a regular television, which helps accentuate the images on the transparent LCD panel and eliminate the distracting contrast of the product in the display case. Then when a voltage is applied, the film goes clear and the product in the case is easier to see. In another embodiment, the film 42 is disposed on the front or center panels. In another embodiment, the film 42 is disposed on another panel, such as a fourth panel. In another embodiment, the single glass unit includes only two panels, one of which is the LCD panel and the other includes the switchable film 42. This type of unit can be used in non-door applications, such as in department store windows, etc. where the window is desirable to be transparent at times and opaque at other times to better see the media on the LCD panel. As will be appreciated by those skilled in the art, appropriate wiring and the like can be associated with the film 42 to supply the voltage. In a preferred embodiment, switchable film 42 is backlit with the display case lighting.

In an embodiment, the door 100 can include a light guide plate (made of glass, plexiglass or the like) that helps illuminate (preferably via LED lighting) the images on the LCD panel. Other types of lighting for LCD panel are also within the scope of the invention.

transparent lcd panel manufacturer quotation

Crystalfontz America is the leading supplier of LCD, TFT, OLED and ePaper display modules and accessories. We specialize in providing our customers the very best in display products, cables and connectors.

In addition to our large catalog of displays, we offer LCD development kits, breakout boards, cables, ZIF connectors and all of the LCD software and drivers you need to develop your product or project. We are located in the U.S. so we can get product to you fast!

transparent lcd panel manufacturer quotation

LCD Transparent Displays, transparent screens, transparent monitors, see through screens, transparent touch screen technology, and kits from CDS as we have our own range of transparent screens / displays and transparent video screens manufactured for us, and as we control the manufacturing, we can not only offer more sizes than anyone else in the world, but also guarantee stable supply, long term availability LCDs with amazing quality.  We have replaced the Samsung Transparent Displays / see through Displays and LG Transparent OLEDs that are no longer available!

CDS has increased the use of these see through screens / see through displays / see through computer screens / clear monitors across the world including touchscreen computer screens combined with the transparent LCD touch screens and Transparent OLED displays.

transparent lcd panel manufacturer quotation

Fast and superior quotations, informed advisers to help you choose the correct merchandise that suits all your requirements, a short generation time, responsible quality control and different services for paying and shipping affairs for Clear Lcd Panel, Lcd Panel Shop, Different Types Of Lcd Display, Lcd Graphic Module,Tft Widescreen Monitor. We cordially welcome customers from at home and abroad to join us and cooperate with us to enjoy a better future. The product will supply to all over the world, such as Europe, America, Australia,Rwanda, Oman,Johannesburg, Toronto.Establish long term and win-win business relationships with all our customers, share the success and enjoy the happiness of spreading our products to the world together. Trust us and you will gain more. Please feel free to contact us for more information, we assure you of our best attention at all times.

transparent lcd panel manufacturer quotation

The OLED transparent display measures 55-inch in diagonal. It can be used in both portrait and landscape modes, can be table mounted, ceiling mounted, or built into custom fixtures using the straight flush-mount design. It can also be tiled to create large, eye-catching video wall arrays.

The OLED transparent display offers vibrant colors greater than 100 percent National Television System Committee (NTSC) performance as well as wide viewing angles with no off-axis contrast or brightness limitations. The display provides Full HD resolution that allows for beautiful graphics and full-motion video.

The OLED transparent display comes with standard digital inputs including HDMI and DisplayPort, is fully controllable using RS-232, LAN, Crestron and other control systems, and is compatible with sources ranging from PCs and players to consumer video devices that rely on High-bandwidth Digital Content Protection (HDCP) compliance.

Each pixel in a transparent OLED display is made up of 4 sub-pixels.  Color is created by the combination of the red, green, and blue sub-pixels and the remaining area of the pixel is clear. That clear section creates the transparency. This is why there is a direct relationship between resolution and transparency. If the display contains more active pixels that creates less space for the clear pixels and results in a display that is less see through. This is why the OLED is Full HD resolution today, as it optimizes transmission and resolution.

Unlike transparent LCD displays, black or dark content on the screen is clear and white or bright content is opaque. You can see this in the photos below. The car image appears to be floating in space and through the black background you can clearly see the books and pencils which are physical objects set behind the display. The full screen image of the boat appears in the foreground, but if you look closely at the hull of the boat you will see some objects behind the display, made visible by the dark area.

Just like any glass surface, ambient light affects that appearance of transparency. The two images below are the same display, the same on-screen content (of the model), and the same plant behind the display. The only difference is that the plant has been “uplit.” With more light on the object behind the screen you can see that the leaves of grass are much more visible through the display than they would be if the light was off. A transparent display in an entirely dark room will appear opaque. A transparent display in a light filled room with objects or scenes heavily lit behind the display will appear like transparent glass.

The OLED transparent display is quite clear, which makes reading fine details or text on objects behind the display possible. This means that retail merchandisers or museum exhibit designers can put the display in front of goods or artifacts without obscuring their view.

Transparent OLED technology has long been recognized for its amazing color performance.  While best-in-class LCD displays achieve around 72% NTSC color space (a measure of the number of colors that the display is capable of showing), OLED can achieve greater than 100%.  This means more vivid reds, more vibrant greens, and eye-popping blues.

This color performance, together with the peak brightness characteristics of the emissive display, create a display that appears much brighter than you might expect from reading the specifications alone. Your eye translates color as brightness and in a side-by-side comparison with a “brighter” display, the transparent OLED will be the most vivid.

transparent lcd panel manufacturer quotation

This is a Graphic LCD with green backlight that can display not just alphanumeric characters but also simple graphics. Great for doing neat menus and animations.read more...

Msquare is known as the leading company engaged in dealing and supplying & providing after sales support of branded LED/ Plasma / LCD DISPLAYS like VIDEO WALL developed by DELTA , Hitachi, LG, Toshiba or Samsung. This diplay products supplied by our company are of excellent resolution & picture quality. All the productsread more...

Nuline is the largest supplier of custom developed LCD (Liquid Crystal Display) modules for the automotive industry in India. The LCD modules are developed as per customer specifications for 2 Wheeler and 4 wheeler instrumentread more...

Nuline Technologies established its manufacturing facility for manufacturing Alpha Numeric LCD display modules in the year 1998 primarily to meet the domestic requirement. Nuline has established an excellent production facility using surface mount technology and have been manufacturing both alphanumeric and graphical displayread more...