ili9341 4'3 inch tft lcd for sale
Reason: The hooks on the backight of ER-TFT032-3.1 is always complained by most customers for inconvenient assembly. So we cancel the hooks in the new version of ER-TFT032-3.2.That"s the only difference for these two versions.
ER-TFT032-3.2 is 240x320 dots 3.2" color tft lcd module display with ILI9341 controller and optional 4-wire resistive touch panel and 3.2 inch capactive touch panel with controller FT6236,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8/16-bit parallel,3/4-wire serial interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.2"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.
Specifications:Resolution: 240x320Driver IC: ILI9341Input Voltage: 5V/3.3VSize 2.2 inch, It has PCB backplane with power IC, SD card socketLED Numbers 4 LEDs, Driver IC: ILI9341, Color Depth 262K/65KModule Size:67mm(length)*40mm(width)*4mm(thickness), Active Area: 47.5mm(Length)x36.5mm(Width)How to use it?1. use 5v to led pin, 3.3v to vcc and 1k / 1.5k resistor voltage dividers to get it to work. 1k resistor in series from Arduino to tft logic pin, 1.5k from tft pin to ground.2.#define TFT_DC 9#define TFT_CS 10#define TFT_MOSI 11#define TFT_CLK 13#define TFT_RST 12#define TFT_MISO 83.// Use hardware SPI (on Uno, #13, #12, #11) and the above for CS/DC//ILI9341 tft = ILI9341(TFT_CS, TFT_DC);4.// If using the breakout, change pins as desiredILI9341 tft = ILI9341(TFT_CS, TFT_DC, TFT_MOSI, TFT_CLK, TFT_RST, TFT_MISO).Serial monitor output:1-- ILI9341 Test!Display Power Mode: 0x94MADCTL Mode: 0x48Pixel Format:0x5ImageFormat: 0x80Self Diagnostic: 0xC0Benchmark Time (microseconds)2-- Screen fill 18159720Text 921664Lines 8537648Horiz/Vert Lines 1485756Rectangles (outline) 946520Rectangles (filled) 37689232Circles (filled) 5325780Circles (outline) 3725412Triangles (outline) 1944508Triangles (filled) 12525852Rounded rects (outline) 1782700Rounded rects (filled) 40989648
ILI9341 is a 262144-color single-chip SOC driver for a TFT liquid crystal display with resolution of 240x320 dots (RGB), comprising a 720-channel source driver, a 320-channel gate driver, 172800 bytes GRAM for graphic display data of 240x320 dots (RGB), and power supply circuit.
ILI9341 supports parallel 8-/9-/16-/18-bit data bus MCU interface, 6-/16-/18-bit data bus RGB interface and 3-/4-line serial peripheral interface (SPI).
ILI9341 can operate with 1.65V ~ 3.3V I/O interface voltage and an incorporated voltage follower circuit to generate voltage levels for driving an LCD.
ILI9341 supports full color, 8-color display mode and sleep mode for precise power control by software and these features make the ILI9341 an ideal LCD driver for medium or small size portable products such as digital cellular phones, smart phone, MP3 and PMP where long battery life is a major concern.
This display module has a Thin Film Transistor (TFT) LCD panel. It is a 2.4-inch RGB LCD with 240x320 pixels resolution. There is an onboard controller ILI9341 embedded driver chip. This 2.4-inch TFT LCD is a multicolor RGB screen with 65K color levels (bit depth). It is a low-power 3.3V compatible module that works with the SPI (4-Wire) communication interface and supports most boards compatible with this interface such as Odroid, Arduino, Raspberry Pi, STM32, and NVIDIA Jetson Nano, etc. An 8-PIN 20cm long PH2.0 connector is included. This TFT LCD comes with examples, development resources, and manuals for STM32, Raspberry Pi, and Arduino.
Focus Displays offers a wide range of standard full color TFT displays. 64 million unique colors, high brightness, sharp contrast, -30C operating temperature, and fast response time are all good descriptions of a TFT display. This is why TFT technology is one of the most popular choices for a new product.
Thin Film Transistor (TFT) display technology can be seen in products such as laptop computers, cell phones, tablets, digital cameras, and many other products that require color. TFT’s are active matrix displays which offers exceptional viewing experiences especially when compared to other passive matrix technologies. The clarity on TFT displays is outstanding; and they possess a longer half-life than some types of OLEDs and range in sizes from less than an inch to over 15 inches.
CCFL’s are still available, but are becoming a legacy (obsolete) component. TFT displays equipped with a CCFL require higher MOQs (Minimum Order Quantities) than displays with LED backlights.
The majority of TFT displays contain a touch panel, or touch screen. The touch panel is a touch-sensitive transparent overlay mounted on the front of the display glass. Allowing for interaction between the user and the LCD display.
Some touch panels require an independent driver IC; which can be included in the TFT display module or placed on the customer’s Printed Circuit Board (PCB). Touch screens make use of coordinate systems to locate where the user touched the screen.
Resistive touch panels are the lowest cost option and are standard equipment on many TFT modules. They are more common on smaller TFT displays, but can still be incorporated on larger modules.
Contrast ratio, or static contrast ratio, is one way to measure the sharpness of the TFT LCD display. This ratio is the difference between the darkest black and the brightest white the display is able to produce. The higher the number on the left, the sharper the image. A typical contrast ratio for TFT may be 300:1. This number ratio means that the white is 300 times brighter than the black.
TFT LCD displays are measured in inches; this is the measurement of the diagonal distance across the glass. Common TFT sizes include: 1.77”, 2.4”, 2.8”, 3”, 4.3”, 5”, 5.7”, 5.8”, 7”, 10.2”, 12.1 and 15”.
TFT resolution is the number of dots or pixels the display contains. It is measured by the number of dots along the horizontal (X axis) and the dots along the vertical (Y axis).
The higher the resolution, the more dots per square inch (DPI), the sharper the display will look. A higher resolution results in a higher cost. One reason for the increase in cost is that more driver chips are necessary to drive each segment.
Certain combinations of width and height are standardized and typically given a name and a letter representation that is descriptive of its dimensions. Popular names given to the TFT LCD displays resolution include:
Transmissive displays must have the backlight on at all times to read the display, but are not the best option in direct sunlight unless the backlight is 750 Nits or higher. A majority of TFT displays are Transmissive, but they will require more power to operate with a brighter backlight.
A primary job of the driver is to refresh each pixel. In passive TFT displays, the pixel is refreshed and then allowed to slowly fade (aka decay) until refreshed again. The higher the refresh frequency, the sharper the displays contrast.
The TFT display (minus touch screen/backlight) alone will contain one controller/driver combination. These are built into the display so the design engineer does not need to locate the correct hardware.
If you do not see a Thin Film Transistor (TFT) Display module that meets your specifications, or you need a replacement TFT, we can build a custom TFT displays to meet your requirements. Custom TFTs require a one-time tooling fee and may require higher MOQs.
Ready to order samples for your TFT design? Contact one of our US-based technical support people today concerning your design requirements. Note: We can provide smaller quantities for samples and prototyping.