15 lcd monitors free sample
Unused electronics are the bane of the modern life. Perfectly functional gadgets sit quietly in a corner of the store room, doing nothing. If you"re wondering what to do with old computer monitors, here are a few easy ideas to repurpose unused screens.
Perhaps the best thing to do with an old flat-screen monitor is a DIY DAKboard. The DAKboard is a LCD wall display that shows the current time, weather forecast, calendar events, stock quotes, fitness data, and news headlines. It"s all displayed on a soothing photo. You could buy an official DAKboard, but the makers themselves have shown how to build your own wall display with a Raspberry Pi. when you can build one for far less money and a little geeky fun, the choice is obvious.
Basically, you will be cutting out the polarizing film of the old LCD monitor. This film will then be put on a simple pair of glasses. Now your screen appears white, but the glasses can "see" the content. It"s one of the best ways to keep prying eyes out of your PC.
If you have a broken old LCD monitor, it can be re-purposed into a usable mirror; but if you have a working old LCD monitor, adding a Raspberry Pi can turn it into a smart magic mirror!
If you"re on a tight budget for a first-time DIY project, consider the $100 smart mirror. It"s not the best version of turning an LCD monitor into a smart mirror, but you"ll get the basic features and not spend a bomb.
All desktop operating systems support the ability to use dual monitors. It"s pretty easy to setup dual monitors on Windows, and you can then customize how you use the two spaces. To connect two monitors, you will likely need a graphics card with multiple HDMI ports, or use an HDMI and a VGA port on desktops.
Like any gadget, monitors have a limited shelf life. If you"re looking to upgrade, you now have a few ideas of what to do with your old monitor. And that age should influence which project you chose. For example, given the effort involved in building a smart mirror, don"t go with a screen that"s already shown signs of trouble. The Raspberry Pi-based projects are usually the easiest to keep changing.
4This offer is void where prohibited by law. Abbott may modify or rescind this offer at any time without notice. Benefits of the FreeStyle Promise program for test strips are not available to beneficiaries of Medicare, Medicaid or other federal or state healthcare programs. For Massachusetts residents, only those patients responsible for the full cost of the product may be eligible to receive automatic discounts at participating retail pharmacies. Residents of other states may be eligible to receive automatic discounts at participating pharmacies or to use the FreeStyle Promise card to receive savings after the first $15 is paid by the patient. Actual discounts and savings may vary. The free meter is provided as a sample and is limited to one free meter per eligible person. The meter cannot be re-sold nor submitted to any third party payer for reimbursement. FreeStyle Promise program benefits are not valid with FreeStyle Precision Neo meter and test strips. The FreeStyle Promise program is not health insurance.
Monitor displays are commonly used peripheral output devices in computers. These peripheral devices are also called ‘display monitors’ or ‘monitors’ or ‘displays’. They display information to a computer user.[1] There are a few important reasons why practicing radiologists should have a working knowledge of monitor displays and these are described below.
Impact of digital imaging: Computers play an important role in contemporary radiology practice. Most radiology modalities today use monitor displays to aid analysis of images. Monitors have become integral components of digital radiography, USG, CT / MRI consoles and workstations, and PACS terminals.
Shift in analysis model: In the traditional model of radiology practice, hardcopy images displayed on viewboxes were the first point of analysis. Today, in most instances, softcopy images displayed on monitors are the first point of analysis. As a result, key steps like viewing, analysis, processing, and postprocessing of softcopy images are executed directly at monitors of consoles, workstations, and office desktops.[2]
Heterogeneity of data: The data displayed on the monitors in a radiology department is heterogeneous. It is often a variable combination of monochrome and gray-scale and/or color images viewed alongside text, audio, and/or video.[3] In such circumstances, radiologists need to possess a working knowledge of important performance parameters like resolution, brightness, contrast ratio, and viewing angles.
Growth of RIS, PACS, and teleradiology: Image transfer across a variety of networks and radiology modalities is common practice these days. Images are increasingly being stored as part of a patient"s electronic medical records, to be analyzed as and when required; images are often transferred over departmental networks and to teleradiology workstations for analysis[3] In such a diverse set of locations, it is common to find different types of monitors used for displaying assorted types of data.
Original dataset: The American College of Radiology (ACR) has devised guidelines for monitor displays, based on the matrix size of the original digital image dataset. Monitors for small matrix datasets [typically sourced from CT, MRI, USG, nuclear medicine (NM), digital fluorography, and digital subtraction angiography (DSA)] have different performance guidelines as compared to monitors required for large matrix datasets [e.g., sourced from digital radiography (DR), computed radiography (CR), digitized films, and digital mammography][4]. The large matrix datasets require monitors with higher performance. As a rule of thumb, the resolution of the selected display system, ideally, should match the matrix of the image acquisition data.[4]
The display in modern monitors is typically an LCD with LED backlight, having by the 2010s replaced CCFL backlit LCDs. Before the mid-2000s,CRT. Monitors are connected to the computer via DisplayPort, HDMI, USB-C, DVI, VGA, or other proprietary connectors and signals.
Originally, computer monitors were used for data processing while television sets were used for video. From the 1980s onward, computers (and their monitors) have been used for both data processing and video, while televisions have implemented some computer functionality. In the 2000s, the typical display aspect ratio of both televisions and computer monitors has changed from 4:3 to 16:9.
Modern computer monitors are mostly interchangeable with television sets and vice versa. As most computer monitors do not include integrated speakers, TV tuners, nor remote controls, external components such as a DTA box may be needed to use a computer monitor as a TV set.
Early electronic computer front panels were fitted with an array of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as the "monitor". As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program"s operation.
Multiple technologies have been used for computer monitors. Until the 21st century most used cathode-ray tubes but they have largely been superseded by LCD monitors.
The first computer monitors used cathode-ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of the workstation in a single large chassis, typically limiting them to emulation of a paper teletypewriter, thus the early epithet of "glass TTY". The display was monochromatic and far less sharp and detailed than on a modern monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for specialized military, industrial and scientific applications but they were far too costly for general use; wider commercial use became possible after the release of a slow, but affordable Tektronix 4010 terminal in 1972.
By the end of the 1980s color progressive scan CRT monitors were widely available and increasingly affordable, while the sharpest prosumer monitors could clearly display high-definition video, against the backdrop of efforts at HDTV standardization from the 1970s to the 1980s failing continuously, leaving consumer SDTVs to stagnate increasingly far behind the capabilities of computer CRT monitors well into the 2000s. During the following decade, maximum display resolutions gradually increased and prices continued to fall as CRT technology remained dominant in the PC monitor market into the new millennium, partly because it remained cheaper to produce.
There are multiple technologies that have been used to implement liquid-crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines.
The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors was the Eizo FlexScan L66 in the mid-1990s, the SGI 1600SW, Apple Studio Display and the ViewSonic VP140vision science remain dependent on CRTs, the best LCD monitors having achieved moderate temporal accuracy, and so can be used only if their poor spatial accuracy is unimportant.
High dynamic range (HDR)television series, motion pictures and video games transitioning to widescreen, which makes squarer monitors unsuited to display them correctly.
Organic light-emitting diode (OLED) monitors provide most of the benefits of both LCD and CRT monitors with few of their drawbacks, though much like plasma panels or very early CRTs they suffer from burn-in, and remain very expensive.
Radius of curvature (for curved monitors) - is the radius that a circle would have if it had the same curvature as the display. This value is typically given in millimeters, but expressed with the letter "R" instead of a unit (for example, a display with "3800R curvature" has a 3800mm radius of curvature.
Dot pitch represents the distance between the primary elements of the display, typically averaged across it in nonuniform displays. A related unit is pixel pitch, In LCDs, pixel pitch is the distance between the center of two adjacent pixels. In CRTs, pixel pitch is defined as the distance between subpixels of the same color. Dot pitch is the reciprocal of pixel density.
Pixel density is a measure of how densely packed the pixels on a display are. In LCDs, pixel density is the number of pixels in one linear unit along the display, typically measured in pixels per inch (px/in or ppi).
Contrast ratio is the ratio of the luminosity of the brightest color (white) to that of the darkest color (black) that the monitor is capable of producing simultaneously. For example, a ratio of 20,000∶1 means that the brightest shade (white) is 20,000 times brighter than its darkest shade (black). Dynamic contrast ratio is measured with the LCD backlight turned off. ANSI contrast is with both black and white simultaneously adjacent onscreen.
Color depth - measured in bits per primary color or bits for all colors. Those with 10bpc (bits per channel) or more can display more shades of color (approximately 1 billion shades) than traditional 8bpc monitors (approximately 16.8 million shades or colors), and can do so more precisely without having to resort to dithering.
Refresh rate is (in CRTs) the number of times in a second that the display is illuminated (the number of times a second a raster scan is completed). In LCDs it is the number of times the image can be changed per second, expressed in hertz (Hz). Determines the maximum number of frames per second (FPS) a monitor is capable of showing. Maximum refresh rate is limited by response time.
On two-dimensional display devices such as computer monitors the display size or view able image size is the actual amount of screen space that is available to display a picture, video or working space, without obstruction from the bezel or other aspects of the unit"s design. The main measurements for display devices are: width, height, total area and the diagonal.
With the introduction of flat panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger viewable area than an eighteen-inch cathode-ray tube.
Until about 2003, most computer monitors had a 4:3 aspect ratio and some had 5:4. Between 2003 and 2006, monitors with 16:9 and mostly 16:10 (8:5) aspect ratios became commonly available, first in laptops and later also in standalone monitors. Reasons for this transition included productive uses (i.e. besides Field of view in video games and movie viewing) such as the word processor display of two standard letter pages side by side, as well as CAD displays of large-size drawings and application menus at the same time.LCD monitors and the same year 16:10 was the mainstream standard for laptops and notebook computers.
In 2011, non-widescreen displays with 4:3 aspect ratios were only being manufactured in small quantities. According to Samsung, this was because the "Demand for the old "Square monitors" has decreased rapidly over the last couple of years," and "I predict that by the end of 2011, production on all 4:3 or similar panels will be halted due to a lack of demand."
The resolution for computer monitors has increased over time. From 280 × 192 during the late 1970s, to 1024 × 768 during the late 1990s. Since 2009, the most commonly sold resolution for computer monitors is 1920 × 1080, shared with the 1080p of HDTV.2560 × 1600 at 30 in (76 cm), excluding niche professional monitors. By 2015 most major display manufacturers had released 3840 × 2160 (4K UHD) displays, and the first 7680 × 4320 (8K) monitors had begun shipping.
Most modern monitors will switch to a power-saving mode if no video-input signal is received. This allows modern operating systems to turn off a monitor after a specified period of inactivity. This also extends the monitor"s service life. Some monitors will also switch themselves off after a time period on standby.
Most modern monitors have two different indicator light colors wherein if video-input signal was detected, the indicator light is green and when the monitor is in power-saving mode, the screen is black and the indicator light is orange. Some monitors have different indicator light colors and some monitors have blinking indicator light when in power-saving mode.
Many monitors have other accessories (or connections for them) integrated. This places standard ports within easy reach and eliminates the need for another separate hub, camera, microphone, or set of speakers. These monitors have advanced microprocessors which contain codec information, Windows interface drivers and other small software which help in proper functioning of these functions.
Monitors that feature an aspect ratio greater than 2:1 (for instance, 21:9 or 32:9, as opposed to the more common 16:9, which resolves to 1.77:1).Monitors with an aspect ratio greater than 3:1 are marketed as super ultrawide monitors. These are typically massive curved screens intended to replace a multi-monitor deployment.
These monitors use touching of the screen as an input method. Items can be selected or moved with a finger, and finger gestures may be used to convey commands. The screen will need frequent cleaning due to image degradation from fingerprints.
Some displays, especially newer flat panel monitors, replace the traditional anti-glare matte finish with a glossy one. This increases color saturation and sharpness but reflections from lights and windows are more visible. Anti-reflective coatings are sometimes applied to help reduce reflections, although this only partly mitigates the problem.
Most often using nominally flat-panel display technology such as LCD or OLED, a concave rather than convex curve is imparted, reducing geometric distortion, especially in extremely large and wide seamless desktop monitors intended for close viewing range.
Newer monitors are able to display a different image for each eye, often with the help of special glasses and polarizers, giving the perception of depth. An autostereoscopic screen can generate 3D images without headgear.
Raw monitors are raw framed LCD monitors, to install a monitor on a not so common place, ie, on the car door or you need it in the trunk. It is usually paired with a power adapter to have a versatile monitor for home or commercial use.
A stowable rack mount monitor is 1U, 2U or 3U high and is mounted on rack slides allowing the display to be folded down and the unit slid into the rack for storage as a drawer. The flat display is visible only when pulled out of the rack and deployed. These units may include only a display or may be equipped with a keyboard creating a KVM (Keyboard Video Monitor). Most common are systems with a single LCD but there are systems providing two or three displays in a single rack mount system.
An open frame monitor provides the display and enough supporting structure to hold associated electronics and to minimally support the display. Provision will be made for attaching the unit to some external structure for support and protection. Open frame monitors are intended to be built into some other piece of equipment providing its own case. An arcade video game would be a good example with the display mounted inside the cabinet. There is usually an open frame display inside all end-use displays with the end-use display simply providing an attractive protective enclosure. Some rack mount monitor manufacturers will purchase desktop displays, take them apart, and discard the outer plastic parts, keeping the inner open-frame display for inclusion into their product.
Van Eck phreaking is the process of remotely displaying the contents of a CRT or LCD by detecting its electromagnetic emissions. It is named after Dutch computer researcher Wim van Eck, who in 1985 published the first paper on it, including proof of concept. Phreaking more generally is the process of exploiting telephone networks.
Masoud Ghodrati, Adam P. Morris, and Nicholas Seow Chiang Price (2015) The (un)suitability of modern liquid crystal displays (LCDs) for vision research. Frontiers in Psychology, 6:303.
How big is big enough? When it comes to computer monitors, you want something that can fit comfortably on your desk while giving you plenty of screen real estate. While in the past sub-20-inch monitors were commonplace, today, unless you’re really constrained for space, there’s no real need to buy anything under 22 inches. For most, 24 inches is going to be a baseline, as you can pick up a number of screens at that size for around $100, and they look fantastic at 1080p.
For those who want more than that, though, there are plenty of sizes to choose from. Monitors that stretch 27 inches diagonally are increasingly popular, and there are plenty of options beyond 30 inches that are affordable. If you want to go extreme, we’ve even tried some great computer monitors that get close to 50 inches, like Samsung’s CHG90.
While you’ll need to sit well back from those, there’s no denying that they look amazing. They give you the same screen as multiple smaller monitors without a bezel dividing them down the middle. They tend to be rather expensive, though, and if you go really wide, you’ll struggle to find media that can display at close to its native resolution, leaving the picture to either look stretched or surrounded by black.
Anywhere between 24 and 30 inches is going to be perfectly fine for most users. They let you make the most of modern resolutions and color clarity, and they also fit a couple of different web pages open at the same time without needing to use two monitors, which is handy for many professionals. They don’t tend to be too expensive at that size, either, unless you opt for the top-end models.
Today, all the best screens are still LCD monitors that use LED technology for a slim product that saves energy while providing ideal backlighting. We’ve been waiting years for OLED technology to make the transition to PC monitors, it isfinally beginning thanks to brands like LG, but the technology is still relatively rare.
One aspect of PC monitors that you do need to consider, though, is resolution. While 1080p was once the gold standard, today, it’s just the baseline. If you’re happy to spend a little more, there are a few other options worth considering, especially if you want to improve screen space or gaming visuals. Resolution isn’t the be-all and end-all of monitor features, though. In fact, too much resolution on too small of a screen can often be annoying because it shrinks all images down and forces you to enlarge everything to easily read it.
1080p: If you want reasonable clarity, but want to save on cost or focus on other, more important features, 1080p is where it’s at — as long as the monitor you’re buying isn’t extremely large. 1080p is ideal for 21-inch to 24-inch displays. These monitors offer great picture quality, and now that they are competing with 4K, the prices are rock-bottom. If you want to go larger than 24 inches, though, you should consider 2,560 x 1,440 resolution at the least and perhaps 4K.
4K/Ultra HD (UHD): 4K is the resolution that the industry is most keen to drive consumers towards. It looks much more detailed than 1080p with 3,840 x 2,160 pixels, and prices have come down substantially in the past few years. That said, gamers will need a powerful graphics card to run a system at this resolution, and finding affordable monitors with full suites of frame synching support or high-refresh rates is still difficult. There is plenty of 4K media out there to enjoy, though, whether you’re streaming or using UHD Blu-rays.
5K:This resolution made headlines when Apple debuted it on its iMac, but it’s far from a common resolution even years later. Dell’s UP2715K is a great-looking display, but we would recommend many high-end 4K monitors before it, as you won’t be able to see too much difference between them.
8K: There are some 8K monitors available as well, notably Dell’s 8K Ultrasharp. There’s not really any need for a monitor with such a high resolution at this time, but they are available for those with the budget if resolution is absolutely the most important thing.
While the above are the most common resolutions you’ll find on monitors, some fall into more niche categories. The best ultrawide monitors offer unique aspect ratios and resolutions with broad horizontal pixel counts, but less on the vertical dimension.
Aspect ratio: The aspect the screen shows images in (length compared to height). A common standard, and your best bet, is 16:9. It works with plenty of content, and it’s great for movies or games. Some fancy monitors like to stretch things out with ratios like 21:9, but that is more suitable for unusual work situations or hardcore gaming. Another common format, 16:10, provides slightly more vertical space for viewing multiple open documents or images. 3:2 is becoming more commonplace in laptops for better web viewing, but that’s rare on stand-alone displays.
Brightness: High-end monitors these days have brightness around 300 to 350 cd/m2. Extra brightness may be handy if you work in a well-lit room or next to large windows. However, too much brightness is a recipe for eye strain. As long as brightness options reach 250 cd/m2, your monitor is good to go. That said, if you want one with HDR support, the more peak brightness, the better to best take advantage of that technology.
HDR: High dynamic range, or HDR, is a recent addition to the PC monitor space and can have a dramatic impact on visuals. However, most PC monitors lack the brightness needed to take full advantage of it, and even the best ones don’t look as good as they should. Keep in mind there are a variety of HDR versions to consider, like HDR10+, for more advanced content.
IPS: Displays with IPS panels tend to be the most expensive of the bunch, but what you get for your money is much richer colors and clear viewing angles that are near horizontal. The downside of IPS panels is that they don’t tend to have as fast response times as TN displays, so some consider them inferior for gaming. There are, however, gaming IPS displays, like the fantastic Asus PG279Q, which make good ground on their TN counterparts. Some IPS monitors suffer from quality control issues, though, and most IPS displays have a telltale glow when displaying dark images due to backlight bleeding.
There are also curved monitors to consider. They don’t have different resolutions than their flat counterparts, but present a concave curved screen, which can make a difference to the experience and tasks they’re best suited for.
They have a narrow field of view, and aren’t that great for group watching. Fortunately, this is less of an issue on monitors, which tend to have an audience of one.
To run a display at 4K resolution, you’ll need to use HDMI 1.4 at the very least, though HDMI 2.0 would be required if you want to support a refresh rate of 60Hz, which should be a bare minimum unless all you do is watch movies on it (with HDMI 2.1 being the newest version of the standard). If you want to do high refresh rate gaming, especially at higher resolutions, DisplayPort 1.4 monitors can handle up to 8K at 60Hz and 4K at up to 200Hz, so they’re better suited than HDMI in that regard. DisplayPort 2.0 is also on the way.
The slightly older, DisplayPort 1.2 connector can handle 1440p and 1080p at high refresh rates, too, so if you’re not opting for 4K, that port option should suffice for lower-resolution monitors. USB-C is an option, as it can support up to 4K resolution, but it’s not as capable as DisplayPort connections.
We recommend picking a monitor that is easy to use, especially if you’re building a complex setup with more than one monitor. Think about adding a stand that you can tilt or rotate to achieve the perfect monitor angle. Some monitors even let you adjust tilt and rotation with one hand.
Built-in controls to navigate through the monitor’s menu and select different monitor modes are an interesting feature, but they shouldn’t feel clunky. Pay attention to port placement and cable management features to connect your new monitor in a neat and tidy manner. Some monitors go an extra step and include charging ports along the base or even turn the monitor base into a wireless charging pad for your phone.
The most common computer monitors are compact enough to sit on a table, desk, or stand. However, if you’re in the market for an enormous monitor, the most space-efficient choice is to mount the monitor onto a wall, thereby freeing up precious floor space. In this case, look for monitors thatcome with VESA standard mountingoptions or which are compatible with them. That way, you’ll have a larger selection of mounting arms from a variety of manufacturers to choose from, rather than being limited by specific mounting options.
You may use your monitor to hold video chats with friends or for business conferences. You have two main options for video communication, namely a built-in webcam or an independent camera, with marked differences that provide benefits according to your needs. Many monitors, especially high-quality models, come with an integrated webcam.
Flicker-free monitors are specially designed to produce a single continuous light source. A typical monitor adjusts its brightness through flickering, introducing periods of low light between higher brightness. While a user may not be aware of the flicker, it can cause a number of issues, including eye strain. However, many monitors now use flicker-free technology to put less strain on monitor users’ eyes.
Look around your typical office and what do you see? Perched on every desk is a computer. Your reliance on computers in the workplace means that office workers are exposed to computer monitors every day, and many of them use the monitor for the majority of their work tasks.
Unfortunately, continued exposure to computer monitors can be very harmful to your eyes, causing irritation and discomfort in the short term. It may also lead to more severe issues in the long-term.
Monitors that use LED backlighting flicker through pulse-width modulation (PWM), which enables you to adjust the brightness of your screen easily. If you’re in a sunlit room, you’ll need a bright screen to help you see; when you’re working late at night, you may prefer to dim your screen accordingly.
Computer companies are beginning to address the concerns and dangers that digital displays pose to your eye health. When certain features are integrated into digital displays and computer monitors, your eyes can be successfully protected from digital eye strain.
However, implementing design changes that will have a positive impact on eye health has proven to be difficult. Many computer companies have attempted to design flicker-free monitors, but the end product fails to truly protect your eyes. In other words, not all flicker-free monitors are created equal—and some aren’t actually “flicker-free” at all.
For example, some companies have attempted to protect your eyes from on-screen flicker but have only created monitors that mask the issue or create the impression of being flicker-free.
Conventional computer monitors flicker at a fixed frequency with comparatively longer periods of time between the “on” and “off” states of the backlight. Consequently, the on-screen flicker of conventional computer monitors is very noticeable.
It may seem like we’ve arrived at a catch-22. Non-flicker-free monitors have proven to harm your eyes, and traditional flicker-free monitors still, unfortunately, fail to solve this problem. So what’s the solution?
ViewSonic has used its 30 years of visual solution experience—along with a deep understanding of how traditional computer monitors harm your eyes—to develop a line of computer monitors designed to protect your eye health.
Engineered with flicker-free technology, ViewSonic’s line of monitors is created to reduce flicker and prevent eye strain, eye fatigue, and irritation as well as the development of Computer Vision Syndrome.
On-screen flicker isn’t the only problem computer users face. Companies have also tried to create monitors that protect your eyes from harsh blue light waves.
ViewSonic has designed a line of computer monitors with blue light filter technology that has been engineered to address this issue. This state-of-the-art technology helps the computer monitor maintain blue light waves that are closer in intensity to realistic, everyday colors.
Maintain a proper viewing distance at your workstation. You should not be situated too far or too close; according to the American Optometric Association, a healthy viewing distance means that your screen should be positioned 15 to 20 degrees below eye level, as well as 20 to 28 inches away from the eyes.
To ensure that your eyes stay healthy, you need to stay aware of the potential dangers of continued exposure to computer monitors. The key is understanding how certain computer monitors can impact the health of your eyes, either positively or negatively.
When selecting computer monitors for business purposes, ensure that the monitors you choose are flicker-free for optimum eye health and include integrated blue light filter technology.
* Rewards 3% back excludes taxes and shipping. Rewards are issued to your online Dell Rewards Account (available via your Dell.com My Account) typically within 30 business days after your order’s ship date. Rewards expire in 90 days (except where prohibited by law). “Current rewards balance” amount may not reflect the most recent transactions. Check Dell.com My Account for your most up-to-date reward balance. Total rewards earned may not exceed $2,000 within a 3-month period. Outlet purchases do not qualify for rewards. Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers and rewards subject to change without notice, not combinable with all other offers. See Dell.com/rewardsfaq. $50 in bonus rewards for Dell Rewards Members who open a new Dell Preferred Account (DPA), or Dell Business Credit (DBC) account on or after 8/10/2022. $50 bonus rewards typically issued within 30 business days after DPA or DBC open date.
*Expedited Delivery: * Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers subject to change, not combinable with all other offers. See Dell.com/rewardsfaq.