tn vs tft lcd panel factory

IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.

The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.

A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.

tn vs tft lcd panel factory

When searching for a liquid crystal display (LCD), consideration of the device’s display technology is essential. Screen technology companies such as Apple and Samsung search for the best possible display panels and panel technology in order to offer their customers the best image quality. In competitive gaming, gaming monitors must be able to provide great image quality but also fast refresh rates so that gamers can play at a fast pace.

Before diving into how exactly liquid crystals affect display features, it is necessary to understand their general role in an LCD monitor. LCD technology is not capable of illuminating itself, so it requires a backlight. The liquid crystals are responsible for transmitting the light from backlight to the computer monitor surface in a manner determined by the signals received. They do so by essentially moving the light differently through the layer’s molecular matrix when the liquid crystals are oriented or aligned in a certain manner, a process which is controlled by the LCD cell’s electrodes and their electric currents.

The methods of alignment, however, can vary between panel types, offering different features and benefits. Two common and popular liquid crystal alignment techniques are twisted nematic (TN) and in-plane switching(IPS).

TN panels offer the cheapest method of crystal alignment. They also are the most common of the alignment methods and have been used for quite a long time in the display industry, including in cathode ray tubes (CRTs) that preceded the LCD.

In TN displays, the electrodes are positioned on either side of the liquid crystal layer. When a current is sent between the back and front electrode, something called an electric field is created that shifts and manipulates the orientation of the molecular matrix.

If no electric field is applied to the specific cell, the crystals experience a 90 degree twist in the alignment. As light from the backlight passes through this twist, the light waves are polarized, allowing them to pass through the polarizer that sits on the surface of the TN monitor.

If an electric field is applied, it can either untwist the TN liquid crystal layer partially or in full, depending on the strength of the field. The structure of TN crystals will typically straighten out when this happens, and some, if not all, light waves will not be polarized properly to pass through to the surface.

Each LCD cell composes a pixel of the display, and in each pixel are subpixels. These subpixels use standard red green blue (sRGB) colors to create a variety of colors to make the pixel display the necessary color to play its role in the overall display. If beneath the subpixel the liquid crystal fully polarizes the light, that subpixel’s specific color would be very bright in the pixel as a whole. But if the light is not polarized at all, then that color will not show up. If partially polarized, only a limited amount of that color is used in the mixture of RGB colors in the final pixel.

A more complex method of alignment is IPS. IPS monitors, unlike the TN, place both electrodes on the same level, behind the liquid crystal layer. When the electric field is applied, this forces the liquid crystal molecules to align themselves parallel to the IPS device layers instead of perpendicularly like the TN molecules.

Opposite of the TN, when the electric field is applied, IPS technology will polarize the light to pass, whereas when the electric field is not applied, the light will not be polarized to pass. Because of the orientation of the crystals, IPS displays require brighter, more powerful backlights in order to produce the correct amount of brightness for the display.

An important consideration is viewing angles. The TN offers only a limited viewing angle, especially limited from vertical angle shifts, and so color reproduction at these angles will likely not look the same as from a straight-on viewing; the TN’s colors may invert at extreme angles. The IPS counters that and allows for greater and better viewing angles that consequently offer better color reproduction at these angles than the TN. There is one issue with extreme viewing angles for IPS devices: IPS glow. This occurs when the backlight shines through the display at very wide angles, but typically is not an issue unless a device is looked at from the side.

In terms of color, as mentioned, TN devices do not have very strong color reproduction compared to other alignment technologies. Without strong color reproduction, color banding can become visible, contrast ratio can suffer, and accurate colors may not be produced. Color gamut, or the range of colors that the device can reproduce and display, is another feature that most TN displays do not excel in. This means that the full sRGB spectrum is not accessible. IPS devices, on the other hand, have good quality black color reproductions, allowing the device to achieve a deeper, richer display, but it is still not the best option if a customer is in search of high contrast (discussed further in a couple more paragraphs).

While TNs may not have the best color quality, they allow for high refresh rates (how often a new image is updated per second), often around 240 Hz. They also have the lowest input lag (receiving of signals from external controllers) at about one millisecond. TN panels often attract gamers because of the need for minimal lag and fast refresh rates in a competitive or time-sensitive setting. In consideration of moving displays like in video game displays, it is also important for fast response times (how fast a pixel can change from one amount of lighting to another). The lower the response time (the higher the response rate), the less motion blur will be shown as the display changes to show motion. TNs also offer these low response times, but it is important to remember that a powerful graphics processing unit, commonly called a GPU, is still needed to push these displays to meet the fastest refresh and response rates.

Oftentimes, refresh rates and frame rate of output devices (such as graphics cards) will not be synchronized, causing screen tearing when two different display images will be shown at once. This problem can be addressed through syncing technologies like Vsynch, Nvidia’s G-Sync, or FreeSync (a royalty-free adaptive synchronization technology developed by AMD).

Another common consideration of customers is the price of each display. TN, though it does not offer as high quality of a display, offers the lowest cost and best moving displays, making it useful if the intended use of the LCD monitor is simple and not too demanding. However, if you intend for something that calls for better color production or viewing angles, the IPS and other methods are viable choices, but at much higher costs. Even though IPS motion displays have reached the speed and rates of TNs, the price for such technology is much more expensive than the TN option.

There are other options besides the TN and IPS. One option is known as vertical alignment (VA) and it allows for the best color accuracy and color gamut. Compared to a typical IPS contrast ratio of 1000:1, VA panels can often have ratios of 3000:1 or even 6000:1. Besides improved contrast ratio, the VA is in between the TN and IPS. To compare the TN vs IPS vs VA, the VA does not have as great a viewing angle as IPS but not as poor as the TN. Its response times are slower than TN but faster than IPS (though at fast refresh rates, the VA displays often suffer from ghosting and motion blur). Due to the contrast ratio benefits, VA technologies are most often desirable for TVs.

And lastly, there is an option quite similar to IPS that is called plane to line switching (PLS). It is only produced by Samsung, who claims the PLS offers better brightness and contrast ratios than the IPS, uses less energy, and is cheaper to manufacture (but because it is only created by Samsung, it is hard to judge pricing). It also has potential in creating flexible displays.

tn vs tft lcd panel factory

Everyday, we look at LCD display, TV, cell phone, monitor. It becomes a necessity in modern society. LCD panel is the most important part of an LCD display. It determines LCD screen"s performance, e.g. brightness, contrast, color and viewing angle. Therefore, picking the right type of LCD panel is critical to your application.

These names reflect the alignment of crystal molecules inside the LCD, and how they change when they are charged electrically. All liquid crystal displays change the alignment of liquid crystal molecules to work, but the manner in which they do so can drastically affect the image quality and response time. Each panel type has its advantages and disadvantages. The easiest way to choose between them is to decide which attributes are most important to your project. It mainly depends on what you use your LCD display for, and your budget.

TN is the most mature technology in LCD panel manufacturing. When there is no voltage difference between the two transparent electrodes, liquid crystal molecules are twisted 90 degrees, in combination of upper and bottom polarizers, allows light to pass through LCD. As voltage applied, crystal molecules are untwisted and aligned to the same direction, blocking light.

In IPS panel, crystal molecules are parallel to the glass substrates at initial stage, LCD is off. When the in-plane electrodes is charged, crystal molecules are rotated, modifying light"s direction. Which lights up the LCD display.

As its name suggests, VA panel"s liquid crystals are aligned vertically without charged. When a voltage is applied, the molecules tilt and modifying light direction.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a perpendicular alignment and tilt. These difference create LCD display with distinctive performance.

IPS LCD is the clear winner in this aspect. It has 178/178 viewing angle ratings. Which means you can look at IPS LCD display from any angle without the image shifting in color and contrast. VA LCD has pretty wide viewing angle, too. But it has contrast shifts at off-center angles. As for TN LCD, viewing angle is its weakest point.

Most TN LCDs have 6-bits colors. Manufacturers use frame rate control (FRC) to enhance its color performance. For IPS and VA panels, you can still find 6-bits entry level LCD. But most of them are 8-bits. And IPS technology can provide natively 10-bits colors.

Color gamut is another part that VA and IPS panels shine at. The best TN LCD can reach sRGB gamut. VA panels typically start with full sRGB coverage, and get to around 90% DCI-P3 coverage. With IPS LCD panel, you could find the best ones full DCI-P3 and Adobe RGB coverage. That is why you see most professional grade LCD displays use IPS panel.

There is no inherent differences among the three panel technologies, because LCD backlight is the main factor here. However, there is a big gap in terms of contrast ratio. TN LCD panel tends to have the lowest value among the three. IPS LCD screen sits in the middle can reach 1500:1. For VA panel, the best one can exceed 4500:1 easily. VA LCD display provides far darker screen than TN & IPS. That is why they are used in vehicle dashboard.

TN panel does have an advantage when it comes to refresh rate. The panel offers the best refresh rate and response time. This is the reason why most gaming LCD monitors are made of TN panel.

TN LCD provides the best refresh rate and economic solution. If your application requires wide viewing angles and good color presentation, VA panel is probably the choice. While IPS has the best overall visual performance, in general it is more expensive than the other two.

tn vs tft lcd panel factory

The word TFT means Thin Film Transistor. It is the technology that is used in LCD or Liquid Crystal Display. It is also called Active Matrix LCD which differentializes from Passive Matrix LCD. A TFT substrate is composed of a matrix of pixels and ITO electrode (Indium Tin Oxide, a transparent electric conducting film) each with a TFT device and is so called array. Thousands or millions of these pixels together create an image on the display. The diagram below shows the simple structure of a pixel.

As long as there are TFT in the LCD, the LCD should be called a TFT LCD. But when the TFT LCD display was first commercialized, 100% TFT LCDs were TN (twisted Nematic) type TFT displays. As TN is a very technical term so most of the users ignored TN and named TN type TFT display as TFT display. While the newly developed TFT LCD display technologies such as IPS (in-plane-switching ) type TFT display, O-Film type TFT display (derived from TN type TFT display), MVA( Multi-domain Vertical Alignment) type TFT display, AFFS (Advanced Fringe Field Switching) type TFT display, they are widely call IPS display, O-Film display, MVA display and AFFS display. As the above terms have been used for long and widely accepted in the market, we will not try to correct the misunderstanding here. We will still use the TFT display (should be TN type TFT display) and IPS display (should be IPS type TFT display) in the following.

The twisted nematic effect (TN-LCD) was a main technology breakthrough that made LCDs practical. TN LCDs first make battery powered devices popular. TN-LCD displays led to the rapid expansion in the display field, quickly replacing other displays like LEDs, plasma, CRTs etc. By the 1990s, TN LCDs were widely used in portable electronics.

The TN display takes advantage of the ability of the nematic substance to rotate the polarization of light beams passing through it. Two polarizing filters, parallel planes of glass with their polarizing lines oriented at right angles with respect to each other, are positioned on either side of the liquid crystal. When light enters the display, it is polarized by the input filter. In the absence of an electric field, all the incoming light is transmitted. This is because the light polarization is rotated 90 degrees by the nematic liquid crystal, and the light therefore passes easily through the output filter, which is oriented to match the 90-degree shift. With the application of a voltage, an electric field is produced in the nematic liquid crystal. Under these conditions the polarization effect is reduced. If the voltage is large enough, the polarization effect disappears altogether, and the light is blocked by the output polarizing filter. The diagram below shows how a TN LCD works.

The best feature of TFT displays is the low cost due to a simpler manufacturing process, low-cost raw materials, and one of the oldest technologies for LCD displays. But they are not the best quality considering poor viewing angles, lower contrast ratio, slower response time, lower aperture ratio (each pixel not bright enough), and the worst is that there is one view angle with gray scale inversion (reversed image), see the below picture for reference.

IPS (in-plane-switching) technology is also one type of TFT LCD display. The basic LCD structure is similar to TN type TFT display but the inside display schematic is different.

In 1992, Hitachi researchers in Japan first developed details of the IPS technology. NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remained the dominant LCD designs through 2006. IPS technology is widely used in LCD panels for TVs, laptops, monitors, and smartphones. Apple Inc. products branded with the label Retina Display (such as iPhone 4 onward, iPad 3 on, iPad Mini 2 on, MacBook Pro with Retina display adopted IPS LCDs with LED backlighting.

An IPS LCD panel, when no electric field is applied to the liquid crystal cells, the cells naturally align in liquid crystal cells in a horizontal direction between two glass substrates which blocks the transmission of light from the backlight. This makes the display dark and results in a black display screen. When an electric field is applied, the liquid crystal cells are able to rotate through 90° allowing light to pass through resulting in a white display screen. IPS panels have superior image quality, good contrast ratio and wide viewing angles of up to 170°. IPS panels are well suited for graphics design and other applications which require accurate and consistent color reproduction.

In summary, normally high-end products such as Apple Mac computer monitors and Samsung mobile phones generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting-edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology. Of course, a TFT LCD display can always meet the basic needs at the most efficient price.

This article is an original piece of content written by Bill Cheung, a marketing manager who has an engineering and technical support background at Orient Display. We are a LCD and display technology provider with over two decades of industry experience in delivering cutting edge display solutions. Please browse our knowledge base if you would like to learn more about LCDs!

tn vs tft lcd panel factory

First, to be clear, there is no “best” panel type out of these, as all have their respective advantages and disadvantages over the others. The information here pertains to general characteristics, as even panels of the same panel type will have some variance in characteristics (power consumption, backlight bleed, etc.) depending on the luck of the draw. Manufacturer tuning can also impact display output, affording some differentiating leverage to manufacturers sourcing from panel suppliers (which is effectively all of them).

Nostalgia or riddance aside, there are still some valid reasons to use a CRT monitor. When compared to LCD panels, CRT monitors can have higher contrast ratio, very low response time (which leads to non-blurred pictures even with fast movement on screen), and very little input lag, although LCD input lag can be largely negated. The downsides of CRTs are apparent, though: they’re large, heavy, consume more power, produce flicker, can produce audible, high frequency noise (although age plays into whether one can hear them or not), produce slightly distorted images, and produce harmful electromagnetic waves (in the form of x-rays), which requires that toxic materials such as lead and barium must be used as shielding to prevent detrimental health effects. CRT monitors are also notoriously hazardous to repair, given their large, active electrical coils that can measure upwards of 50,000 volts of electricity.

CRT displays are sometimes still used in medical, simulation, military, and government fields that have embedded the displays into control panels and machinery.

CRT monitors have largely gone out of production, and are rarely sold new (finding a used CRT is fairly easy), but their advantages temporarily lent themselves to some special uses. In regards to gaming, CRT monitors have historically been advantageous to use when gaming competitively due to very little motion blur and very little input lag. That being said, these advantages have faded with the progressive march of TN panels.

TN panels now have low motion blur (especially with lightboost or a similar technology), offer high refresh rates, low response times (1ms GTG in many cases), and are more than adequate even in the world’s most competitive games.

Ultimately, for the vast majority of users, the disadvantages of CRTs aren’t worth their limited gains, especially when TN panels meant for gaming more than adequately satisfy the needs of even competitive gamers.

TN panels have many benefits over the previously popular CRT monitors: lower weight, lower cost to produce, lower power consumption, they’re much thinner, offer clearer pictures, have no realistically achievable resolution limits, offer flexibility in size and shape, and the ability to eliminate flicker.

That being said, TN panels weren"t and still aren’t perfect, and compared to the previously popular CRT monitors, they’ve suffered from limited viewing angles, uneven backlighting, worse motion blur, higher input lag, dead/stuck pixels, and poor display in sunlight.

To be clear, many of these issues have been improved upon, but due to the underlying science of LCD TN panels, cannot be completely resolved. In fact, many of these issues -- like uneven backlighting, motion blur, input lag, and dead/stuck pixels -- are inherent issues across all LCD panel types. Poor viewing angles become a more pressing issue with larger displays, since the viewing angle when viewed straight on increases towards the outside of the monitor, thus causing more color distortion. TN panels do have the advantages of lower response times and higher refresh rates than other panel types/CRTs. TN panels are generally from 60Hz to 144Hz, offering substantially greater fluidity of gameplay with higher frequencies.

TN panels provide a good compromise between CRTs and other LCD panels as their traditionally low response rates, input lag, and high refresh rate make them comparable to CRTs for accuracy; TN panels also have the advantages of offering sharper pictures, widescreen output, lower weight, smaller physical dimensions, and higher resolutions compared to CRTs.

Still, compared to other LCD panels, TN panels suffer from poor viewing angles and worse color reproduction. Ultimately, for most gamers playing somewhat competitively to very competitively, TN panels are a good choice, but for those looking for a prettier and improved color experience, another panel type may be worth considering.

IPS (In-Plane Switching) was created to address the shortcomings of TN panels. IPS panels seek to solve TN panels’ issues of poor color reproduction and viewing angles. In this regard, IPS panels have largely succeed. Not only do they offer a higher contrast ratio (superior blacks), high color accuracy (which leads to IPS panels also generally looking less “washed out”), but IPS panels also have very little color shift when changing the viewing angles.

The tradeoff to this is that IPS panels have slower response times, higher production costs, higher power consumption, and lower possible refresh rates. IPS panels have traditionally been 60Hz, although, as with all monitors, they can be overclocked (results will vary). There have been improvements to IPS panels over the years, and slightly different revisions in the form of E-IPS and H-IPS, but ultimately the differences between these versions are inconsequential to gamers and those not involved in graphic design as a job.

Due to their worse response rates and lower possible refresh rates, IPS panels are generally considered to be worse for competitive gameplay and used more often when color is important, such as graphic design. For gamers who don’t play competitively and prefer breathtaking strolls in Skyrim instead of sweeping scrubs in CS:GO, an IPS panel should be a consideration for the next monitor.

PLS (Plane to Line Switching) are quite similar to IPS panels, so much so that they have the same advantages and disadvantages, with a couple extra minor advantages. PLS is produced by Samsung, who claims that compared to IPS panels, PLS panels have better viewing angles, a 10% increase in brightness, 15% decrease in production costs, increased image quality, and allow for flexible panels. Samsung’s PLS panels have been known to overclock well in monitors such as the QNIX 2710 in particular. Overall, PLS is basically Samsung’s version of IPS, as it is very similar in functionality (and even name). AHVA is also very similar to IPS and PLS, and differentiation between them is rare, although it should not be confused with the next panel type.

VA (Vertical Alignment) panels offer a solid medium between TN and IPS panels. VA was created to combine the advantages of IPS and TN panels, and largely did, although they did so with some compromise. That seems to be a theme in the world of monitors.

Compared to IPS panels, VA panels have the advantage of higher possible refresh rates. Although most are currently 60Hz, there are a few that are above 60Hz. VA has more advantages over TN panels than IPS, with better color reproduction, higher maximum brightness, and better viewing angles. VA panels do have the best contrast ratios of all panel types mentioned, but they also have the worst response times of the monitor technologies covered here. This causes blurring in fast-moving pictures and is disadvantageous to gaming.

For the use of gaming, VA is not the greatest option due to generally higher response time in comparison to other panel types; this slower response causes more motion blur, effectively eliminating its deployment for fast-moving titles. For a general work monitor, VA panels provide high contrast ratios, brightness, refresh rates, good color reproduction, and good viewing angles.

TN panels are another good choice for competitive gamers, as they support higher refresh rates, low response times, decent input lag, and high resolutions. Their bad viewing angles, color reproduction, and slight blurring compared to CRT monitors (due to higher response times) are all disadvantages, ones which cannot be easily fixed.

IPS panels solve the issues of TN panels, with better color reproduction and viewing angles, but do so at the cost of refresh rate and response time. IPS panels are especially useful for those not wanting to play too competitively, but want a beautiful/immersive visual experience. PLS and AHVA are similar enough to IPS to usually not be differentiated.

VA panels provide a good middle ground with better-than-IPS refresh rates and contrast levels, but have worse viewing angles and color production, although generally still better than TN. Response times are VA’s largest downfall, though, being slower than IPS and its variants and TN.

What’s best for you will depend on all of these items. For those wanting to play at a competitive level and who favor FPS or racing games, TN panels are best. Those wanting a more impressive and immersive experience may want an IPS (or similar variant, such as PLS), especially if working on artistic endeavors. Finally, those wanting a general monitor for work might consider a VA panel, although due to their higher response times, they won’t be good for gaming.

tn vs tft lcd panel factory

So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.

TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.

IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.

In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.

IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.

While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.

Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.

Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.

One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.

VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.

In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”

VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.

Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.

For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.

When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.

Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.

LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.

Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.

Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.

Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.

Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.

Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.

Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.

If you can, check out the monitor you’re interested in in-person before you buy it. You can perform some simple ghosting and motion blur tests by grabbing a window with the mouse and moving it rapidly around the screen. You can also test the brightness, watch some videos, and play with the onscreen display to get a feel for it.

tn vs tft lcd panel factory

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

tn vs tft lcd panel factory

“TN and IPS are the most common LCD panel types. TN LCDs have advantage in cost and can meet severe environment challenge, while IPS LCDs have excellent performance in wide viewing angle and color restoration.

As early as the CRT display, given its unique imaging principle, the color, brightness, and contrast from the display can maintain good visual quality no matter from any viewing angle around the screen. However, its bulky structure has limited the design and application of displays for many applicants. As technology develops, flat panel displays take over the mainstream in the display market.

LCD is one of the main flat-panel display technologies. When it was just launched and the price was too high, it was difficult for the public to accept, so the LCD panel factories launched the affordable version, TN LCD.

To reduce the cost, the structure of TN LCD is simplified and the arrangement of liquid crystal molecules changes. It comes with the natural defects of the low color display quality and small effective viewing angle. When we look at the screen beyond the effective viewing angle, we will notice obvious image distortion.

In 1995, Hitachi was the first to introduce the IPS technology in LCD and put it into mass production in 1996. Ever since, the technology has undergone continuous innovation through Super-IPS, Advanced-SuperIPS, IPS-Pro, and still going on.

When the IPS display is on, the liquid crystal molecules of the panel rotate in a similar direction as in TN panels. However, when the display is off, they still rotate horizontally but change from the original spiral to layers.

The liquid crystal molecules of the TN panel lay in the vertical direction, in consequence, the light can emit around the vertical area. Therefore, we can only get better visual quality at a very limited angle and notice the obvious color distortion in tilting angles.

In contrast, in IPS panels, the horizontal arrangement of the LC benefits the light emission at any angle, which enables a wide effective viewing angle. It can reach 170 to nearly 180 degrees both vertically and horizontally, so we also call the IPS LCD an “all viewing angle” display.

Due to the high contrast ratio and wide color gamut of HD, IPS panels take more time to respond than TN panels. In particular, in showing the dynamic HD pictures IPS are easy to appear ghosts and jitters. However, the phenomenon has greatly improved in recent years.

Compared to the TN panels, IPS panels have more gray levels, the imaging performance is more delicate, and can restore the color image in fine and vivid effect. As figure 4 shows, the image display on the TN panel appears only black in all four corners, with no details. While the IPS can show multiple color layers.

Due to the horizontal layout of liquid crystal molecules, under external pressure, the restoration speed of the IPS is about 10 times faster than TN which molecules in a vertical layout.

In addition, the surface of the IPS LCD is protected by a transparent resin film with high hardness, so it can remain the same when touched and there are no water ripples created on the screen surface. If we look at the screen with a magnifier, we can see that the pixels distribute towards the left like fish-scaled.

In contrast, when pressing the TN panel with a finger, there are water ripples on the surface, but the surface can restore quickly when the pressure is released. In addition, if it is bonded with a capacitive touchscreen, the cover of the CTP is normally hard (glass or hard plastic), which can release the pressure in touch.

tn vs tft lcd panel factory

“TN and IPS are the most common LCD panel types. TN LCDs have advantage in cost and can meet severe environment challenge, while IPS LCDs have excellent performance in wide viewing angle and color restoration.

As early as the CRT display, given its unique imaging principle, the color, brightness, and contrast from the display can maintain good visual quality no matter from any viewing angle around the screen. However, its bulky structure has limited the design and application of displays for many applicants. As technology develops, flat panel displays take over the mainstream in the display market.

LCD is one of the main flat-panel display technologies. When it was just launched and the price was too high, it was difficult for the public to accept, so the LCD panel factories launched the affordable version, TN LCD.

To reduce the cost, the structure of TN LCD is simplified and the arrangement of liquid crystal molecules changes. It comes with the natural defects of the low color display quality and small effective viewing angle. When we look at the screen beyond the effective viewing angle, we will notice obvious image distortion.

In 1995, Hitachi was the first to introduce the IPS technology in LCD and put it into mass production in 1996. Ever since, the technology has undergone continuous innovation through Super-IPS, Advanced-SuperIPS, IPS-Pro, and still going on.

When the IPS display is on, the liquid crystal molecules of the panel rotate in a similar direction as in TN panels. However, when the display is off, they still rotate horizontally but change from the original spiral to layers.

The liquid crystal molecules of the TN panel lay in the vertical direction, in consequence, the light can emit around the vertical area. Therefore, we can only get better visual quality at a very limited angle and notice the obvious color distortion in tilting angles.

In contrast, in IPS panels, the horizontal arrangement of the LC benefits the light emission at any angle, which enables a wide effective viewing angle. It can reach 170 to nearly 180 degrees both vertically and horizontally, so we also call the IPS LCD an “all viewing angle” display.

Due to the high contrast ratio and wide color gamut of HD, IPS panels take more time to respond than TN panels. In particular, in showing the dynamic HD pictures IPS are easy to appear ghosts and jitters. However, the phenomenon has greatly improved in recent years.

Compared to the TN panels, IPS panels have more gray levels, the imaging performance is more delicate, and can restore the color image in fine and vivid effect. As figure 4 shows, the image display on the TN panel appears only black in all four corners, with no details. While the IPS can show multiple color layers.

Due to the horizontal layout of liquid crystal molecules, under external pressure, the restoration speed of the IPS is about 10 times faster than TN which molecules in a vertical layout.

In addition, the surface of the IPS LCD is protected by a transparent resin film with high hardness, so it can remain the same when touched and there are no water ripples created on the screen surface. If we look at the screen with a magnifier, we can see that the pixels distribute towards the left like fish-scaled.

In contrast, when pressing the TN panel with a finger, there are water ripples on the surface, but the surface can restore quickly when the pressure is released. In addition, if it is bonded with a capacitive touchscreen, the cover of the CTP is normally hard (glass or hard plastic), which can release the pressure in touch.

tn vs tft lcd panel factory

When it comes todisplay technologies such asprojectorsand panels, factors such as resolution and refresh rate are often discussed. But the underlying technology is equally, if not more, important. There are tons of different types of screens, from OLED and LED to TN, VA, and IPS. Learn about the various monitor and television types, from operation to pros and cons!

The most common form of monitor or TV on the market is LCD or Liquid Crystal Display. As the name suggests, LCDs use liquid crystals that alter the light to generate a specific colour. So some form of backlighting is necessary. Often, it’s LED lighting. But there are multiple forms of backlighting.

LCDs have utilized CCFLs or cold cathode fluorescent lamps. An LCD panel lit with CCFL backlighting benefits from extremely uniform illumination for a pretty even level of brightness across the entire screen. However, this comes at the expense of picture quality. Unlike an LED TV, cold cathode fluorescent lamp LCD monitors lack dimming capabilities. Since the brightness level is even throughout the entire array, a darker portion of scenes might look overly lit or washed out. While that might not be as obvious in a room filled with ambient light, under ideal movie-watching conditions, or in a dark room, it’s noticeable. LED TVs have mostly replaced CCFL.

An LCD panel is transmissive rather than emissive. Composition depends on the specific form of LCD being used, but generally, pixels are made up of subpixel layers that comprise the RGB (red-green-blue) colour spectrum and control the light that passes through. A backlight is needed, and it’s usually LED for modern monitors.

Please note that some of the mentioned types may be considered a sub-category of LCD TVs; therefore, some of the names may vary depending on the manufacturer and the market.

1)Film layer that polarizes light entering2)glass substrate that dictates the dark shapes when the LCD screen is on3)Liquid crystal layer4)glass substrate that lines up with the horizontal filter5)Horizontal film filter letting light through or blocking it6)Reflective surface transmitting an image to the viewer

While many newer TVs and monitors are marketed as LED TVs, it’s sort of the same as an LCD TV. Whereas LCD refers to a display type, LED points to the backlighting in liquid crystal display instead. As such, LED TV is a subset of LCD. Rather than CCFLs, LEDs are light-emitting diodes or semiconductor light sources which generate light when a current passes through.

LED TVs boast several different benefits. Physically, LED television tends to be slimmer than CCFL-based LCD panels, and viewing angles are generally better than on non-LED LCD monitors. So if you’re at an angle, the picture remains relatively clear nonetheless. LEDs are alsoextremely long-lasting as well as more energy-efficient. As such, you can expect a lengthy lifespan and low power draw. Chances are you’ll upgrade to a new telly, or an internal part will go out far before any LEDs cease functioning.

Ultimately, the choice between LED vs VA or any other display technology will depend on your specific needs and preferences, including things like size, resolution, brightness, and colour accuracy.

Please note that some of the mentioned types may be considered a sub-category of LED TVs; therefore, some of the names may vary depending on the manufacturer and the market.

Further segmenting LED TVs down, you"ll find TN panels. A TN or twisted nematic display is a type of LED TV that offers a low-cost solution with a low response time and low input lag.

These displays are known for their high refresh rates, ranging from 100Hz to 144Hz or higher. As a result, many monitors marketed towards gamers feature TN technology. The fast response time and low input lag make them ideal for fast-paced action and gaming. However, TN panels have some limitations.

Overall, while TN panels are an affordable and fast option, they may not be the best choice for those looking for accurate colour reproduction and wide viewing angles.

Like TN, IPS or In-plane Switching displays are a subset of LED panels. IPS monitors tend to boast accurate colour reproduction and great viewing angles. Price is higher than on TN monitors, but in-plane switching TVs generally feature a better picture when compared with twisted nematic sets. Latency and response time can be higher on IPS monitors meaning not all are ideal for gaming.

An IPS display aligns liquid crystals in parallel for lush colours. Polarizing filters have transmission axes aligned in the same direction. Because the electrode alignment differs from TN panels, black levels, viewing angles, and colour accuracy is much better. TN liquid crystals are perpendicular.

A VA or vertical alignment monitor is a type of LED monitor that features excellent contrast ratios, colour reproduction, and viewing angles. This is achieved by using crystals that are perpendicular to the polarizers at right angles, similar to the technology used in TN monitors. VA monitors are known for their deep blacks and vibrant colours, making them popular for media consumption and gaming.

They also have better viewing angles than TN monitors, meaning that the picture quality remains consistent when viewed from different angles. However, the response time of a VA monitor is not as fast as that of a TN monitor, which can be a concern for those looking to use the monitor for fast-paced action or gaming.

The pricing of VA monitors varies, but they are typically more expensive than TN monitors and less costly than IPS or OLED monitors. Overall, VA monitors are an excellent option for those looking for a balance between good picture quality and affordability.

A quantum dot LED TV or QLED is yet another form of LED television. But it’s drastically different from other LED variants. Whereas most LED panels use a white backlight, quantum dot televisions opt for blue lights. In front of these blue LEDs sits a thin layer of quantum dots. These quantum dots in a screen glow at specific wavelengths of colour, either red, green, or blue, therefore comprising the entire RGB (red-green-blue) colour spectrum required to create a colour TV image.

QLED TV sets are thus able to achieve many more local dimming zones than other LED TVs. As opposed to uniform backlighting, local dimming zones can vary backlighting into zones for adjustable lighting to show accurate light and dark scenes. Quantum Dot displays maintain an excellent, bright image with precise colour reproduction.

Please note that some of the mentioned types may be considered a sub-category of Quantum Dot TVs; therefore, some of the names may vary depending on the manufacturer and the market. Also, it"s worth mentioning that not all brands use the same technology. Some are using QD films or QD-LEDs, others are using QD-OLEDs, and the list could go on.

An OLED or organic light-emitting diode display isn’t another variation of LED. OLEDs use negatively and positively charged ions for illuminating individual pixels. By contrast, LCD/LED TVs use a backlight that can make an unwanted glow. In OLED display, there are several layers, including a substrate, an anode, a hole injection layer, a hole transport layer, an emissive layer, a blocking layer, an electron transport layer, and a cathode. The emissive layer, comprised of an electroluminescent layer of film, is nestled between an electron-injecting cathode and an electron removal layer, the anode. OLEDs benefit from darker blacks and eschew any unwanted screen glow. Because OLED panels are made up of millions of individual subpixels, the pixels themselves emit light, and it’s, therefore, an emissive display as opposed to a transmissive technology like LCD/LED panels where a backlight is required behind the pixels themselves.

The image quality is top-notch. OLED TVs feature superb local dimming capabilities. The contrast ratio is unrivalled, even by the best of QLEDs, since pixels not used may be turned off. There’s no light bleed, black levels are incredible, excellent screen uniformity, and viewing angles don’t degrade the picture. Unfortunately, this comes at a cost. OLEDs are pricey, and the image isn’t as bright overall when compared to LED panels. For viewing in a darkened room, that’s fine, but ambient lighting isn’t ideal for OLED use.

As you can see, a wide variety of displays are available on the market today, each with their unique advantages and disadvantages. While many monitors and TVs are referred to by various names, such as LED, IPS, VA, TN, or QLED, many are variations of LCD panels. The specific technology used in a display, such as the colour of backlighting and the alignment of pixels, plays a major role in determining the overall picture quality.

tn vs tft lcd panel factory

These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.

tn vs tft lcd panel factory

A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.

The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.

Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.

The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.

Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermedia